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We establish fixed point theorems for multivalued mappings defined on a closed subset of a
complete metric space. We generalize Lim’s result on weakly inward contractions in a Banach
space. We also generalize recent results of Azé and Corvellec, Maciejewski, and Uderzo for
contractions and directional contractions. Finally, we present local fixed point theorems and
continuation principles for generalized inward contractions.

1. Introduction and Preliminaries

In the following X denotes a complete metric space. The open ball centered in x ∈ X of
radius r > 0 is denoted B(x, r). For A, B two nonempty, closed subsets of X, the generalized
Hausdorff metric is defined by

D(A,B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b,A)

}
. (1.1)

Definition 1.1. Let K ⊂ X; we say that the multivalued map F : K → X is a contraction if F
has nonempty, closed values, and there exists k ∈ [0, 1[ such that

D
(
F(x), F

(
y
)) ≤ kd

(
x, y

) ∀x, y ∈ X. (1.2)

The constant k is called the constant of contraction.
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Thewell knownNadler fixed point Theorem [1] says that amultivalued contraction on
X to itself has a fixed point. However, to insure the existence of a fixed point to a multivalued
contraction defined on a closed subset K of X, extra assumptions are needed.

In 2000, Lim [2] obtained the following fixed point theorem for weakly inward
multivalued contractions in Banach spaces using the transfinite induction.

Theorem 1.2. LetK be a nonempty closed subset of a Banach space E and F : K → E a multivalued
contraction with closed values. Assume that F is weakly inward, that is,

F(x) ⊂ {x + h(u − x) : u ∈ K,h ≥ 1}. (1.3)

Then F has a fixed point.

Observe that in the definition of weakly inward maps, linear intervals play a crucial
role. Indeed, y = x + h(u − x) for some u ∈ K \ {x} and h ≥ 1 if and only if

u ∈ {
(1 − t)x + ty : 0 < t ≤ 1

} ∩K. (1.4)

Moreover, ‖x − u‖ + ‖u − y‖ = ‖x − y‖.
From this observation, generalizations of this result to complete metric spaces were

recently obtained with simpler proofs by Azé and Corvellec [3], and by Maciejewski [4].
They generalized the inwardness condition using the metric left-open segment

]
x, y

]
=
{
z ∈ X \ {x} : d(x, z) + d

(
z, y

)
= d

(
x, y

)}
, (1.5)

which should be nonempty for every y ∈ F(x) \ {x} and “close enough” of K. They also
obtained results for directional k-contractions in the sense of Song [5]. In 2005, Uderzo [6]
established a local fixed point theorem for directional k(·)-contractions.

In this paper, we generalize their results. More precisely, we first generalize the
inwardness conditions used in [2–4]. In particular, for y ∈ F(x) \ {x} with y /∈K, one can
have ]x, y] = {y}. Also, we slightly generalize the notion of k-directional contractions.

Finally, we present local fixed point theorems and continuation principles generalizing
results of Maciejewski [4] and Uderzo [6].

Here is the well known Caristi Theorem [7] which will play a crucial role in the
following.

Theorem 1.3 (Caristi [7]). Let f : X → X and a map φ : X → R lower semicontinuous and
bounded from below such that

d
(
x, f(x)

) ≤ φ(x) − φ
(
f(x)

) ∀x ∈ X. (1.6)

Then f has a fixed point.

This result, which is equivalent to the Ekeland variational Principle [8, 9], can also be
deduced from the Bishop-Phelps theorem. The following formulation appeared in [10] (see
also [11])while the original formulation appeared in a different form in [12] (see also [13]).



Fixed Point Theory and Applications 3

Theorem 1.4 ( Theorem (Bishop and Phelps)). Let φ : X → R be lower semicontinuous and
bounded from below, and λ > 0. Then for any x0 ∈ X, there exists x∗ ∈ X such that

(i) φ(x∗) + λd(x0, x
∗) ≤ φ(x0);

(ii) φ(x∗) < φ(x) + λd(x, x∗) for every x /=x∗.

The interested reader can find a multivalued version of Caristi’s fixed point theorem
in an article of Mizoguchi and Takahashi [14].

2. Generalizations of Inward Contractions

In this section, we obtain fixed point results for contractions defined on a closed subset of a
metric space satisfying a generalized inwardness condition.

Theorem 2.1. Let K be a closed subset of X, and let F : K → X be a multivalued contraction with
constant k ∈ [0, 1[. Assume that there exits θ ∈]k, 1] such that for every x ∈ K,

F(x) ⊂ {x} ∪ {
y ∈ X : ∃u ∈ K \ {x} such that θd(x, u) + d

(
u, y

) ≤ d
(
x, y

)}
. (2.1)

Then F has a fixed point.

Proof. Assume that F has no fixed point. Choose ε > 0 such that k(1 + 2ε) < θ. Consider on
graphF = {(x, y) ∈ K ×X : y ∈ F(x)} the metric

d̂
((
x1, y1

)
,
(
x2, y2

))
=

θ

1 + 2ε
d(x1, x2) + d

(
y1, y2

)
. (2.2)

Since F is a contraction with closed values, (graphF, d̂) is a complete metric space.
Let (x, y) ∈ graphF. By assumption, there exists x ∈ K \ {x} such that

θd(x, x) + d
(
x, y

) ≤ d
(
x, y

)
. (2.3)

Since y ∈ F(x) and

D(F(x), F(x)) ≤ kd(x, x) <
θ

1 + 2ε
d(x, x), (2.4)

there exists y ∈ F(x) such that

d
(
y, y

)
<

θ

1 + 2ε
d(x, x). (2.5)
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Therefore,

εd̂
((
x, y

)
,
(
x, y

))
+ d

(
x, y

) ≤ εθ

1 + 2ε
d(x, x) + εd

(
y, y

)
+ d

(
x, y

)
+ d

(
y, y

)
≤ θd(x, x) + d

(
x, y

)
≤ d

(
x, y

)
.

(2.6)

Defining f : graphF → graphF and φ : graphF → R, respectively, by

f
(
x, y

)
=
(
x, y

)
, φ

(
x, y

)
=

d
(
x, y

)
ε

, (2.7)

we deduce from Caristi’s theorem (Theorem 1.3) that f has a fixed point which is a
contradiction since x /=x. So, F has a fixed point.

As a corollary, we obtain Maciejewski’s result [4] which generalizes Lim’s fixed point
theorem for weakly inward multivalued contractions in Banach spaces [2].

Corollary 2.2 (Maciejewski [4]). LetK be a closed subset ofX, and let F : K → X be a multivalued
contraction such that for every x ∈ K,

F(x) ⊂ ĨK(x) = {x} ∪
{
y ∈ X \ {x} : inf

z∈]x,y]
d(z,K)
d(z, x)

= 0
}
. (2.8)

Then F has a fixed point.

Proof. Let k ∈ [0, 1[ be a constant of contraction of F. Fix δ ∈]0, (1 − k)/(1 + k)[. One can
choose θ ∈]k, (1 − δ)/(1 + δ)[. If y ∈ F(x) \ {x}, there exists z ∈]x, y] such that

d(z,K)
d(z, x)

< δ. (2.9)

Thus, there exists u ∈ K such that d(z, u) < δd(z, x). So

θd(x, u) + d
(
u, y

) ≤ θd(x, z) + (θ + 1)d(z, u) + d
(
z, y

)
≤ θd(x, z) + (θ + 1)δd(x, z) + d

(
z, y

)
≤ d(x, z) + d

(
z, y

)
= d

(
x, y

)
.

(2.10)

Thus F(x) satisfies (2.1).

From the proof of Theorem 2.1, one sees that one can weaken the assumption that F is
a contraction, and hence one can generalize a result due to Azé and Corvellec [3].
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Theorem 2.3. LetK be a closed subset ofX and let F : K → X be a multivalued map with nonempty
values and closed graph. Assume that there are constants k ∈ [0, 1[ and θ ∈]k, 1] such that for every
x ∈ K,

F(x) ⊂ {x} ∪ {
y ∈ X : ∃u ∈ K \ {x}
such that d

(
y, F(u)

) ≤ kd(x, u) ≤ θd(x, u) + d
(
u, y

) ≤ d
(
x, y

)}
.

(2.11)

Then F has a fixed point.

Corollary 2.4 (Azé and Corvellec [3]). Let K be a closed subset of X, and let F : K → X be a
multivalued map with nonempty values and closed graph. Assume that there exists k ∈ [0, 1[ and
δ > 0 such that k < (1 − δ)/(1 + δ) and for every x ∈ K and every y ∈ F(x) \ {x} there exist
z ∈]x, y] and u ∈ K such that

d(u, z) < δd(x, z), d
(
y, F(u)

) ≤ kd(x, u). (2.12)

Then F has a fixed point.

Proof. Choose θ ∈]k, (1 − δ)/(1 + δ)[. It is easy to see that F(x) satisfies (2.11) for every
x ∈ K.

Remark 2.5. Observe that in Theorems 2.1 and 2.3, one can have for some y ∈ F(x) \ {x},

{
y
}
=
]
x, y

]
,

d
(
y,K

)
d
(
x, y

) ≥ 1 − k

1 + k
. (2.13)

So

inf
z∈]x,y]

d(z,K)
d
(
x, y

) /= 0, d
(
u, y

)
> δd

(
x, y

) ∀u ∈ K, ∀δ > 0 such that k <
1 − δ

1 + δ
. (2.14)

Therefore, (2.8) and (2.12) are not satisfied.

Example 2.6. Let X = {(a, b) ∈ R
2 : ab = 0},K = [(0, 0), (1, 0)], F : K → X defined by F(t, 0) =

[(0, 0), (0, t/2)]. F is a contraction with constant k = 1/2. Take x = (1, 0) and y = (0, 1/2) ∈
F(x). Observe that ]x, y] = {y}, and d(y,K) = 1/2 ≥ √

5/6 = d(x, y)(1 − k)/(1 + k). So, (2.8)
and (2.12) are not satisfied. On the other hand, choose θ = (

√
5 − 1)/2. Let x = (t, 0) ∈ K with

t ∈]0, 1]. For all y ∈ F(x), there exists s ∈ [0, 1] such that y = (0, st/2). So, taking u = (0, 0),
one has

θd(x, u) + d
(
u, y

)
=

√
5 − 1
2

t +
st

2
≤ t

2

√
4 + s2 = d

(
x, y

)
. (2.15)

Hence F(x) satisfies all the assumptions of Theorem 2.1 and in particular condition (2.1).
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In the previous results, F is a contraction or has to satisfy a type of contractive
condition in some direction, namely,

∀y ∈ F(x) \ {x}, ∃u ∈ K \ {x} such that d
(
y, F(u)

) ≤ kd(x, u). (2.16)

A careful look at their proofs permits to realize that a wider class of maps can be considered.
Indeed, it is easy to see that the previous results are corollaries of the following theorem
which is a direct consequence of Theorem 1.3.

Theorem 2.7. Let K be a closed subset of X and let F : K → X be a multivalued map with
nonempty values and closed graph. Assume that there exists d̃ an equivalent metric on graphF such
that for every x ∈ K and every y ∈ F(x) \ {x},

∃u ∈ K \ {x}, ∃v ∈ F(u) such that d̃
((
x, y

)
, (u, v)

)
+ d(u, v) ≤ d

(
x, y

)
. (2.17)

Then F has a fixed point.

Corollary 2.8. LetK be a closed subset ofX and let F : K → X be a multivalued map with nonempty
values and closed graph. Assume that there exists α, β > 0 such that for every x ∈ K,

F(x) ⊂ {x} ∪ {
y ∈ X : ∃u ∈ K \ {x}, ∃v ∈ F(u)

such that αd(x, u) +d(u, v) + βd
(
v, y

) ≤ d
(
x, y

)}
.

(2.18)

Then F has a fixed point.

Corollary 2.9. Let K be a closed subset of X, and let f : K → X be a continuous map. Assume that
there exists α, β > 0 such that for every x /= f(x), there exists u ∈ K \ {x} such that

αd(x, u) + d
(
u, f(u)

)
+ βd

(
f(u), f(x)

) ≤ d
(
x, f(x)

)
. (2.19)

Then f has a fixed point.

Example 2.10. Let f : [0, 1] → R be defined by f(x) = −2x. Obviously, f is expansive and
satisfies the assumptions of the previous corollary. It does not satisfies (2.1) and (2.11).

3. Intersection Conditions

Observe that even though Theorem 2.7 generalizes Theorems 2.1 and 2.3, Condition (2.17) is
quite restrictive in the multivalued context since every y ∈ F(x) \ {x} has to satify a suitable
condition. Here is a fixed point result where at least one element of F(x) has to be in a suitable
set.

Theorem 3.1. Let K be a closed subset of X, and let F : K → X be a multivalued contraction with
constant k ∈ [0, 1[. Assume that there exits θ ∈]k, 1] such that for every x ∈ K,

∅/=F(x) ∩ ({x} ∪ {
y ∈ X : ∃u ∈ K \ {x} such that θd(x, u) + d

(
u, y

) ≤ d(x, F(x))
})

. (3.1)

Then F has a fixed point.
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Proof. Assume that F has no fixed point. Let x ∈ K. By assumption, there exist y ∈ F(x) and
x ∈ K \ {x} such that

θd(x, x) + d
(
x, y

) ≤ d(x, F(x)). (3.2)

Therefore,

(θ − k)d(x, x) + d(x, F(x)) ≤ (θ − k)d(x, x) + d
(
x, y

)
+ d

(
y, F(x)

)
≤ (θ − k)d(x, x) + d

(
x, y

)
+D(F(x), F(x))

≤ θd(x, x) + d
(
x, y

)
≤ d(x, F(x)).

(3.3)

Defining f : K → K and φ : K → R, respectively, by

f(x) = x, φ(x) =
d(x, F(x))

θ − k
, (3.4)

we deduce from Caristi’s Theorem (Theorem 1.3) that f has a fixed point which is a
contradiction since x /=x. So, F has a fixed point.

Example 3.2. Let X = {(a, b) ∈ R
2 : ab = 0}, K = [(0, 0), (1, 0)], F : K → X defined by

F(t, 0) = {(t − 1)/2, 0), (0, t/2)}. Observe that (2.1) is not satisfied. Indeed, for x = (0, 0) and
y = (−1/2, 0), we have y ∈ F(x) \ {x} and d(u, y) > d(x, y) for every u ∈ K \ {x}.

Choose θ = (
√
5 − 1)/2. Let x = (t, 0) ∈ K with t ∈]0, 1], then one has

d(x, F(x)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t
√
5

2
, if t ≤ 1√

5 − 1
,

1 + t

2
, otherwise.

(3.5)

Choose y = (0, t/2) if t ≤ 1/(
√
5 − 1), and y = ((t − 1)/2, 0) otherwise. So, taking u = (0, 0),

one has

θd(x, u) + d
(
u, y

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
θ +

1
2

)
t, if t ≤ 1√

5 − 1
,

θt +
1 − t

2
, otherwise,

≤ d(x, F(x)).

(3.6)

Thus F satisfies all assumptions of Theorem 3.1, and in particular it satisfies (3.1) but does
not satisfy (2.1).
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Corollary 3.3. Let K be a closed subset of X, and let F : K → X be a multivalued contraction with
constant k ∈ [0, 1[. Assume that there exits θ ∈]k, 1] such that for every x ∈ K,

∅/=
{
y ∈ F(x) : d

(
x, y

)
= d(x, F(x))

}
∩ ({x} ∪ {

y ∈ X : ∃u ∈ K \ {x} such that θd(x, u) + d
(
u, y

) ≤ d
(
x, y

)})
.

(3.7)

Then F has a fixed point.

The previous theorem generalizes a result of Downing and Kirk [15].

Corollary 3.4 (Downing and Kirk [15]). LetK be a closed subset of a Banach space E and F : K →
E a multivalued contraction such that for every x ∈ K,

∅/=
{
y ∈ F(x) :

∥∥x − y
∥∥ = d(x, F(x))

} ∩ {
y = x + h(u − x) : u ∈ K,h ≥ 1

}
. (3.8)

Then F has a fixed point.

Proof. Let k ∈ [0, 1[ be a constant of contraction of F. Fix θ ∈]k, 1[. For x ∈ K such that
d(x, F(x))/= 0, there exists y ∈ F(x) such that ‖x − y‖ = d(x, F(x)) and there exist sequences
{hn} in [1,∞[ and {un} in K such that x + hn(un − x) → y. Choose n big enough such that
‖x + hn(un − x) − y‖ < (1 − θ)‖x − y‖/(1 + θ). So un ∈ K \ {x} and

θ‖x − un‖ +
∥∥un − y

∥∥ ≤ θ

hn

∥∥x − y
∥∥ + (θ + 1)

∥∥∥∥un −
(
x +

1
hn

(
y − x

))∥∥∥∥

+
(
1 − 1

hn

)∥∥x − y
∥∥

=
∥∥x − y

∥∥ − 1 − θ

hn

∥∥x − y
∥∥ +

θ + 1
hn

∥∥x + hn(un − x) − y
∥∥

≤ ∥∥x − y
∥∥.

(3.9)

So, (3.7) is satisfied and the conclusion follows from Corollary 3.3.

Example 3.5. Let X = R
2, K = [(0, 0), (1, 0)], and

F(t, 0) =
[(

0,
t

4

)
,

(
0,

2 + t

4

)]
∪
[(

0,
2 + t

4

)
,

(
1,

2 + t

4

)]
. (3.10)
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Observe that F is a contraction with constant k = 1/4. For t ∈]0, 1],

d((t, 0), F(t, 0)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t
√
17
4

, if t ∈
[
0,

2√
17 − 1

]
,

2 + t

4
, if t ∈

]
2√

17 − 1
, 1
]
,

{
y ∈ F(t, 0) : ‖(t, 0) − y‖ = d((t, 0), F(t, 0))

}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
0,

t

4

)}
if t ∈

[
0,

2√
17 − 1

[
,

{(
0,

t

4

)
,

(
t,
2 + t

4

)}
if t =

2√
17 − 1

,

{(
t,
2 + t

4

)}
if t ∈

]
2√

17 − 1
, 1
]
.

(3.11)

Observe that for every u ∈ K \ {(1, 0)}, ‖u − (1, 3/4)‖ > 3/4. So (3.7) and hence (3.8) are
not satisfied. Now, fix θ = 1/2. For (t, 0) ∈ K, choose y = (0, t/4) ∈ F(t, 0). Observe that
‖(t, 0) − y‖ > d((t, 0), F(t, 0)) if t ∈]2/(

√
17 − 1), 1]. However, for every t ∈ [0, 1], choosing

u = (0, 0), one has

θ‖(t, 0) − u‖ + ∥∥u − y
∥∥ =

3
4
t ≤ d((t, 0), F(t, 0)). (3.12)

Thus, Condition (3.1) is satisfied.

Observe that if f : K → X is a single-valued contraction satisfying (2.1) then for every
x ∈ K, such that x /= f(x),

f(x) ∈ {
y ∈ X : ∃u ∈ K \ {x} such that θd(x, u) + d

(
u, y

) ≤ d
(
x, y

)}
. (3.13)

An analogous condition in the multivalued context leads to the following result.

Theorem 3.6. Let K be a closed subset of X, and let F : K → X be a multivalued contraction with
constant k ∈ [0, 1[. Assume that there exits θ ∈]k, 1] such that for every x ∈ K, x ∈ F(x) or

F(x) ∈ {Y ⊂ X nonempty and closed : ∃u ∈ K \ {x} such that θd(x, u) + d(u, Y ) ≤ d(x, Y )}.
(3.14)

Then F has a fixed point.

Proposition 3.7. Theorems 3.1 and 3.6 are equivalent.

Proof. It is clear that if (3.1) is satisfied, then (3.14) is also satisfied. Thus, Theorem 3.6 implies
Theorem 3.1.
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Now, if assumptions of Theorem 3.6 are satisfied with some θ ∈]k, 1]. Fix ε > 0 such
that θ − ε > k. Let x ∈ K. If x /∈F(x), there exists u ∈ K \ {x} such that

θd(x, u) + d(u, F(x)) ≤ d(x, F(x)). (3.15)

Choose y ∈ F(x) such that d(u, y) ≤ d(u, F(x)) + εd(x, u). So

θ̂d(x, u) + d
(
u, y

) ≤ d(x, F(x)), (3.16)

where θ̂ = θ − ε. Hence assumptions of Theorem 3.1 are satisfied with θ̂.

As before, looking at the proof of Theorem 3.1, we see that we can relax the assumption
that F is a contraction.

Theorem 3.8. LetK be a closed subset ofX and let F : K → X be a multivalued map with nonempty,
closed values such that the map x �→ d(x, F(x)) is lower semicontinuous. Assume that there exist
k ∈ [0, 1[ and θ ∈]k, 1] such that for every x ∈ K,

∅/=F(x) ∩ ({x} ∪ {
y ∈ X : ∃u ∈ K \ {x} such that d

(
y, F(u)

) ≤ kd(x, u)

≤ θd(x, u)+d
(
u, y

) ≤ d(x, F(x))
})

.
(3.17)

Then F has a fixed point.

We obtain as corollary a result due to Song [5] which generalizes a fixed point result
due to Clarke [16].

Corollary 3.9 (Song [5]). Let K be a closed nonempty subset of X, and let F : K → X be a
multivalued with nonempty, closed, bounded values such that

(i) F is H-upper semicontinuous, that is, for every ε > 0 and every x ∈ K there exists r > 0
such that supy∈F(x′)d(y, F(x)) < ε for every x′ ∈ B(x, r);

(ii) there exist α ∈]0, 1], and k ∈ [0, α[ such that for every x ∈ K with x /∈F(x), there exists
u ∈ K \ {x} satisfying

αd(x, u) + d(u, F(x)) ≤ d(x, F(x)),

sup
y∈F(x)

d
(
y, F(u)

) ≤ kd(x, u). (3.18)

Then F has a fixed point.

Uderzo [6] generalized Song’s result introducing the notion of directional multi-
valued k(·)-contraction (this means that F satisfies the following condition (ii)). This notion
generalizes the notion of directional contractions used by Song [5] (Condition (ii) in
Corollary 3.9). We show how Uderzo’s result can be obtained from Theorem 3.8.
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Corollary 3.10 (Uderzo [6]). Let K be a closed nonempty subset of X, and let F : K → X be a
multivalued with nonempty, closed, bounded values such that

(i) F isH-upper semicontinuous;

(ii) there exist α ∈]0, 1], a : ]0,∞[→ [α, 1] and k : ]0,∞[→ [0, 1[ such that for every
x ∈ K with x /∈F(x), there exists u ∈ K \ {x} satisfying

a(d(x, u))d(x, u) + d(u, F(x)) ≤ d(x, F(x)),

sup
y∈F(x)

d
(
y, F(u)

) ≤ k(d(x, u))d(x, u); (3.19)

(iii) there exist x0 ∈ K and δ > 0 such that d(x0, F(x0)) ≤ αδ;

(iv) supt∈]0,δ]k(t) < inft∈]0,δ]a(t).

Then F has a fixed point.

Proof. It is known that theH-upper semicontinuity of F implies that x �→ d(x, F(x)) is lower
semicontinuous. Let K̂ = {x ∈ K : d(x, F(x)) ≤ αδ}. This set is closed and nonempty.

Let x ∈ K̂ be such that x /∈F(x). Assumption (ii) implies that there exists u ∈ K \ {x}
such that

αd(x, u) ≤ a(d(x, u))d(x, u) + d(u, F(x)) ≤ d(x, F(x)) ≤ αδ. (3.20)

So d(x, u) ≤ δ. This inequality with (ii) and (iv) implies that

d(u, F(u)) ≤ d(u, F(x)) + sup
y∈F(x)

d
(
y, F(u)

)

≤ d(x, F(x)) − a(d(x, u))d(x, u) + k(d(x, u))d(x, u)

≤ αδ.

(3.21)

So u ∈ K̂ \ {x}.
Denote

k = sup
t∈]0,δ]

k(t), a = inf
t∈]0,δ]

a(t). (3.22)

Fix θ ∈]k, a[. Since x /=u, choose y ∈ F(x) such that

d
(
u, y

) ≤ d(u, F(x)) + (a − θ)d(x, u). (3.23)

So, by (ii),

d
(
y, F(u)

) ≤ kd(x, u) ≤ θd(x, u) + d
(
u, y

) ≤ ad(x, u) + d(u, F(x))

≤ d(x, F(x)).
(3.24)
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So, the restriction F : K̂ → X satisfies the assumptions of Theorem 3.8, and hence F has a
fixed point.

4. Local Fixed Point Theorems for Generalized Inward Contractions

In this section, we present local versions of fixed point theorems for generalized inward
contractions.

Theorem 4.1. Let K be a closed subset of X, x0 ∈ K, r > 0, and let F : B(x0, r) ∩ K → X be a
multivalued map with nonempty values and closed graph. Assume that there exist c > 0 and d̃ an
equivalent metric on K ×X such that

(i) cd(x1, x2) ≤ d̃((x1, y1), (x2, y2)) for every x1, x2 ∈ K, and y1, y2 ∈ X;

(ii) d(x0, F(x0)) < cr;

(iii) for every x ∈ B(x0, r) ∩K and every y ∈ F(x) \ {x},

∃u ∈ K \ {x}, ∃v ∈ X such that d̃
((
x, y

)
, (u, v)

)
+ d(u, v) ≤ d

(
x, y

)
, and

v ∈ F(u) if u ∈ B(x0, r).
(4.1)

Then F has a fixed point.

Proof. Choose r̃ ∈]0, r[ and such that d(x0, F(x0)) < cr̃. Fix y0 ∈ F(x0) such that

d
(
x0, y0

)
< cr̃. (4.2)

Consider

Y =
{(

x, y
) ∈

(
B(x0, r̃) ×X

)
∩ graph F : d̃

((
x0, y0

)
,
(
x, y

))
+ d

(
x, y

) ≤ d
(
x0, y0

)}
. (4.3)

This space endowedwith themetric d̃ is a nonempty complete metric space since (x0, y0) ∈ Y .
Applying the Bisholp-Phelps Theorem (Theorem 1.4) insures the existence of (x∗, y∗) ∈

Y satisfying

d̃
((
x, y

)
,
(
x∗, y∗)) + d

(
x, y

)
> d

(
x∗, y∗) ∀(x, y) ∈ Y \ {(x∗, y∗)}. (4.4)

If y∗ = x∗ then x∗ is a fixed point of F.
If not, by assumption (iii), there exists x ∈ K \ {x∗} and y ∈ X such that

d̃
((
x, y

)
,
(
x∗, y∗)) + d

(
x, y

) ≤ d
(
x∗, y∗). (4.5)
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This inequality combined with the fact that (x∗, y∗) ∈ Y implies that

d̃
((
x0, y0

)
,
(
x, y

)) ≤ d̃
((
x0, y0

)
,
(
x∗, y∗)) + d̃

((
x, y

)
,
(
x∗, y∗))

≤ d
(
x0, y0

) − d
(
x∗, y∗) + d

(
x∗, y∗) − d

(
x, y

)
= d

(
x0, y0

) − d
(
x, y

)
.

(4.6)

From (4.2), (4.6) and Assumption (i) we deduce

cd(x, x0) ≤ d̃
((
x0, y0

)
,
(
x, y

)) ≤ d
(
x0, y0

) − d
(
x, y

) ≤ cr̃. (4.7)

So, x ∈ B(x0, r̃) ∩K, and by (iii), y ∈ F(x). Thus, by (4.6), (x, y) ∈ Y .
Therefore, (4.5) contracdicts (4.4). So, F has a fixed point.

Corollary 4.2. Let K be a closed subset of X, x0 ∈ K, r > 0, and let F : B(x0, r) ∩ K → X be a
multivalued map with nonempty values and closed graph. Assume that there exist α, β > 0 such that

(i) d(x0, F(x0)) < αr;

(ii) for every x ∈ B(x0, r) ∩K and every y ∈ F(x) \ {x},

∃u ∈ K \ {x}, ∃v ∈ X such that αd(x, u) + d(u, v) + βd
(
v, y

) ≤ d
(
x, y

)
, and

v ∈ F(u) if u ∈ B(x0, r).
(4.8)

Then F has a fixed point.

As corollaries, we obtain local versions of Theorems 2.1 and 2.3.

Theorem 4.3. Let K be a closed subset of X, x0 ∈ K, r > 0, and let F : B(x0, r) ∩ K → X be a
multivalued map with nonempty values and closed graph. Assume that there are constants k ∈ [0, 1[
and θ ∈]k, 1] such that

(i) d(x0, F(x0)) < (θ − k)r;

(ii) for all x ∈ B(x0, r) ∩K,

F(x) ⊂ {x} ∪ {
y ∈ X : ∃u ∈ K \ {x} such that θd(x, u) + d

(
u, y

) ≤ d
(
x, y

)
, and if

u ∈ B(x0, r), d
(
y, F(u)

) ≤ kd(x, u)
}
.

(4.9)

Then F has a fixed point.

Proof. Choose k̃ > k such that d(x0, F(x0)) < (θ− k̃)r. Let δ ∈]0, (k̃/k)−1[. Consider onK×X
the metric

d̃
((
x1, y1

)
,
(
x2, y2

))
=
(
θ − k̃

)
d(x1, x2) + δd

(
y1, y2

)
. (4.10)
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The conclusion follows from Theorem 4.1 if we show that Condition (iii) holds. Let x ∈
B(x0, r)∩K and y ∈ F(x)\{x}, and let u ∈ K\{x} be given by Assumption (ii). If u/∈B(x0, r),
choose v = y, and if u ∈ B(x0, r), choose v ∈ F(u) such that d(y, v) ≤ k̃d(x, u)/(1 + δ). So,

d̃
((
x, y

)
, (u, v)

)
+ d(u, v) ≤

(
θ − k̃

)
d(x, u) + δd

(
y, v

)
+ d

(
u, y

)
+ d

(
y, v

)
≤ θd(x, u) + d

(
u, y

)
≤ d

(
x, y

)
.

(4.11)

In the case where F is a contraction, the previous result can be stated more simply.

Corollary 4.4. LetK be a closed subset ofX, x0 ∈ K, and r > 0. Assume that F : B(x0, r)∩K → X
is a multivalued contraction with constant k ∈ [0, 1[ for which there exits θ ∈]k, 1] such that

(i) d(x0, F(x0)) < (θ − k)r;

(ii) F(x) ⊂ {x} ∪ {y ∈ X : ∃u ∈ K \ {x} such that θd(x, u) + d(u, y) ≤ d(x, y)} for all
x ∈ B(x0, r) ∩K.

Then F has a fixed point.

We obtain as corollary the following result due to Maciejewski [4].

Corollary 4.5. LetK be a closed subset ofX, x0 ∈ K, and r > 0. Assume that F : B(x0, r)∩K → X
is a multivalued contraction with constant k ∈ [0, 1[ such that

(i) d(x0, F(x0)) < (1 − k)r;

(ii) F(x) ⊂ ĨK(x) for all x ∈ B(x0, r) ∩K, where ĨK(x) is defined in (2.8).

Then F has a fixed point.

Proof. Choose δ ∈]0, (1 − k)/(1 + k)[ and θ ∈]k, (1 − δ)(1 + δ)[ be such that d(x0, F(x0)) <
(θ − k)r. Arguing as in the proof of Corollary 2.2, one sees that Assumption (ii) implies that
for every x ∈ B(x0, r) ∩K,

F(x) ⊂ {x} ∪ {
y ∈ X : ∃u ∈ K \ {x} such that θd(x, u) + d

(
u, y

) ≤ d
(
x, y

)}
. (4.12)

The conclusion follows from Corollary 4.4.

Fixed point results can also be obtained for multivalued maps defined on a ball of K
and satisfying an intersection condition. Here is a local version of Theorem 3.8.

Theorem 4.6. Let K be a closed subset of X, x0 ∈ K, r > 0, and let F : B(x0, r) ∩ K → X be a
multivalued map with nonempty, closed values such that x �→ d(x, F(x)) is lower semicontinuous.
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Assume that there exist k ∈ [0, 1[ and θ ∈]k, 1] such that
(i) d(x0, F(x0)) < (θ − k)r;

(ii) for every x ∈ B(x0, r) ∩K,

∅/=F(x) ∩ ({x} ∪ {
y ∈ X : ∃u ∈ K \ {x}
such that θd(x, u) + d

(
u, y

) ≤ d(x, F(x)) and if

u∈ B(x0, r), d
(
y, F(u)

) ≤ kd(x, u)
})

.

(4.13)

Then F has a fixed point.

Proof. Choose r̃ ∈]0, r[ such that d(x0, F(x0)) < (θ − k)r̃. Consider

Z =
{
x ∈ B(x0, r̃) ∩K : (θ − k)d(x0, x) + d(x, F(x)) ≤ d(x0, F(x0))

}
. (4.14)

The space Z is a nonempty closed subset of X since x0 ∈ Z and x �→ d(x, F(x)) is lower
semicontinuous.

Applying the Bisholp-Phelps Theorem to φ(x) = d(x, F(x)) insures the existence of
x∗ ∈ Z such that

(θ − k)d(x, x∗) > d(x∗, F(x∗)) − d(x, F(x)) ∀x ∈ Z \ {x∗}. (4.15)

If x∗ is not a fixed point of F, by Assumption (ii), there exist y∗ ∈ F(x∗) and x ∈ K\{x∗}
such that

θd(x∗, x) + d
(
x, y∗) ≤ d(x∗, F(x∗)), and

d
(
y∗, F(x)

) ≤ kd(x, x∗) if x ∈ B(x0, r).
(4.16)

By Assumption (i) and since x∗ ∈ Z,

(θ − k)d(x, x0) ≤ (θ − k)d(x∗, x0) + (θ − k)d(x, x∗)

≤ d(x0, F(x0)) − d(x∗, F(x∗)) + d(x∗, F(x∗)) − d
(
x, y∗) − kd(x∗, x)

≤ d(x0, F(x0)) ≤ (θ − k)r̃.

(4.17)

So, x ∈ B(x0, r̃) ∩K ⊂ B(x0, r). From (4.16), we deduce

(θ − k)d(x, x0) + d(x, F(x)) ≤ (θ − k)d(x0, x
∗) + (θ − k)d(x∗, x)

+ d
(
x, y∗) + d

(
y∗, F(x)

)
≤ (θ − k)d(x0, x

∗) + d(x∗, F(x∗))

≤ d(x0, F(x0)).

(4.18)

Hence, x ∈ Z.
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By (4.16),

(θ − k)d(x, x∗) + d(x, F(x)) ≤ (θ − k)d(x, x∗) + d
(
x, y∗) + d

(
y∗, F(x)

)
≤ d(x∗, F(x∗));

(4.19)

this contradicts (4.15) since x /=x∗. So F has a fixed point.

5. Continuation Principle for Generalized Inward Contractions

In this section, we obtain continuation principles for families of contractions satisfying a
generalized inwardness condition. ForK ⊂ X andU open inK, we denote ∂KU the boundary
ofU relative to K. Here is a generalization of Theorem 4.3 in [17]. The proof is analogous.

Theorem 5.1. Let K be a closed subset of X, U open in K, k ∈ [0, 1[, θ ∈]k, 1], and φ : [0, 1] → R

continuous and increasing. AssumeH : U× [0, 1] → X is a multivalued map with nonempty values
and closed graph such that

(i) x /∈H(x, t) ∀x ∈ ∂KU and for all t ∈ [0, 1];

(ii) D(H(x, t),H(x, s)) < |φ(t) − φ(s)| for all x ∈ U and all t, s ∈ [0, 1];

(iii) for all x ∈ U, and all t ∈ [0, 1],

H(x, t) ⊂ {x} ∪ {
y ∈ X : ∃u ∈ K \ {x} such that θd(x, u) + d

(
u, y

) ≤ d
(
x, y

)
,

and if u ∈ U, d
(
y,H(u, t)

) ≤ kd(x, u)
}
.

(5.1)

ThenH(·, 0) has a fixed point if and only ifH(·, 1) has a fixed point.

Proof. Consider

Q =
{
(x, t) ∈ U × [0, 1] : x ∈ H(x, t)

}
, (5.2)

endowed with the partial order

(x, s) ≤ (
y, t

) ⇐⇒ s ≤ t, d
(
x, y

) ≤ 2
(
φ(t) − φ(s)

)
θ − k

. (5.3)

Assuming that H(·, 0) has a fixed point implies that Q is nonempty. It is easy to show that
every totally ordered subset of Q has a an upper bound. Hence, by Zorn’s Lemma, Q has a
maximal element (x0, t0). By (i), x0 ∈ U. To conclude we need to show that t0 = 1. If not,
there is r > 0 such that B(x0, r) ∩ K ⊂ U, and there exist t̂ ∈]t0, 1] and r0 ∈]0, r[ such that
2(φ(t̂) − φ(t0)) = (θ − k)r0. Therefore,

d
(
x0,H

(
x0, t̂

))
≤ d(x0,H(x0, t0)) +D

(
H(x0, t0),H

(
x0, t̂

))
≤ φ

(
t̂
)
− φ(t0) < (θ − k)r0.

(5.4)
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Thus, H(·, t̂) satisfies the assumptions of Theorem 4.3, and hence has a fixed point x̂. This
contradicts the maximality of (x0, t0) since (x0, t0) < (x̂, t̂).

Corollary 5.2. Let E be a uniformly convex Banach space,U ⊂ E open, bounded, convex, andK ⊂ E

closed, convex such that 0 ∈ U ∩K. Assume that f : U ∩K → E is a nonexpansive map such that

(i) x /=λf(x) ∀x ∈ ∂KU and for all λ ∈]0, 1[;
(ii) there exists a lower semicontinuous map λ �→ θλ defined on [0, 1[with θλ > λ and such that

for every x ∈ U, x = λf(x) or there exists u ∈ K\{x} such that θλ‖x−u‖+‖u−λf(x)‖ ≤
‖x − λf(x)‖.

Then f has a fixed point.

Proof. Observe that for λ1, λ2 ∈ [0, 1],

∥∥λ1f(x) − λ2f(x)
∥∥ ≤ |λ1 − λ2|

(∥∥f(x) − f(0)
∥∥ +

∥∥f(0)∥∥)
≤ |λ1 − λ2|

(‖x‖ + ∥∥f(0)∥∥)
≤ M|λ1 − λ2|

(5.5)

for every x ∈ U ∩K since U is bounded.
Assumption (ii) implies that for every λ ∈ [0, 1[, there exists δλ ∈]0, (θλ − λ)/4[ such

that for every γ ∈]λ − 2δλ, λ + 2δλ[ ∩[0, 1[,

θγ ≥ θ̂λ > λ + 2δλ, (5.6)

where θ̂λ = θλ−(θλ−λ)/4. So, {]λ−δλ, λ+δλ[ : λ ∈ [0, 1[ } is an open cover of [0, 1[. Thus, there
exists an increasing sequence {λn} in [0, 1[ converging to 1 such that {]λn−δλn , λn+δλn[ : n ∈
N} is an open cover of [0, 1[. Denote λ−n = λn − δλn , λ

+
n = λn + δλn and θn = θ̂λn . By construction

and by Assumption (ii), for every n ∈ N and every λ ∈ [λ−n, λ
+
n], we have that for every x ∈ U

such that x /=λf(x), there exists u ∈ K \ {x} such that

θn‖x − u‖ + ∥∥u − λf(x)
∥∥ ≤ ∥∥x − λf(x)

∥∥. (5.7)

The previous theorem applied inductively toHn(x, t) = ((1−t)λ−n+tλ+n)f(x) insures the
existence of xn ∈ U ∩K such that xn = λ+nf(xn). The sequence {xn} has a weakly converging
subsequence still denoted {xn} such that xn − f(xn) → 0. The demi-closedness of I − f (see
[18, Theorem 3]) implies that f has a fixed point.

Similarly to Theorem 5.1, we can prove the following continuation principles using
Theorems 4.1 and 4.6, respectively.

Theorem 5.3. LetK be a closed subset ofX,U open inK, φ : [0, 1] → R continuous and increasing,
and H : U × [0, 1] → X a multivalued map with nonempty values and closed graph. Assume that
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there exist c > 0 and d̃ an equivalent metric on K ×X such that

(i) x /∈H(x, t) ∀x ∈ ∂KU and for all t ∈ [0, 1];

(ii) D(H(x, t),H(x, s)) < |φ(t) − φ(s)| for all x ∈ U and all t, s ∈ [0, 1];

(iii) cd(x1, x2) ≤ d̃((x1, y1), (x2, y2)) for every x1, x2 ∈ K, and y1, y2 ∈ X;

(iv) for every (x, t) ∈ U × [0, 1] and every y ∈ H(x, t) \ {x},

∃u ∈ K \ {x}, ∃v ∈ X such that d̃
((
x, y

)
, (u, v)

)
+ d(u, v) ≤ d

(
x, y

)
and

v ∈ H(u, t) if u ∈ U.
(5.8)

ThenH(·, 0) has a fixed point if and only ifH(·, 1) has a fixed point.

Theorem 5.4. LetK be a closed subset of X,U open inK, k ∈ [0, 1[, θ ∈]k, 1] and and φ : [0, 1] →
R continuous and increasing. Assume H : U × [0, 1] → X is a multivalued with nonempty, closed
values such that

(i) x /∈H(x, t) for all x ∈ ∂KU and all t ∈ [0, 1];

(ii) D(H(x, t),H(x, s)) < |φ(t) − φ(s)| for all x ∈ U and all t, s ∈ [0, 1];

(iii) x �→ d(x,H(x, t)) is lower semicontinuous for all t ∈ [0, 1];

(iv) for all x ∈ U, and all t ∈ [0, 1],

∅/=H(x, t) ∩ {x} ∪ {
y ∈ X : ∃u ∈ K \ {x}
such that θd(x, u) + d

(
u, y

) ≤ d(x,H(x, t)) and if

u ∈ U, d
(
y,H(u, t)

) ≤ kd(x, u)
}
.

(5.9)

ThenH(·, 0) has a fixed point if and only ifH(·, 1) has a fixed point.
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