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We establish some new coupled fixed point theorems for various types of nonlinear contractive
maps in the setting of quasiordered conemetric spaces which not only obtain several coupled fixed
point theorems announced by many authors but also generalize them under weaker assumptions.

1. Introduction

The existence of fixed point in partially ordered sets has been studied and investigated
recently in [1–13] and references therein. Since the various contractive conditions are
important in metric fixed point theory, there is a trend to weaken the requirement on
contractions. Nieto and Rodrı́guez-López in [8, 10] used Tarski’s theorem to show the
existence of solutions for fuzzy equations and fuzzy differential equations, respectively. The
existence of solutions for matrix equations or ordinary differential equations by applying
fixed point theorems are presented in [2, 6, 9, 11, 12]. In [3, 13], the authors proved some
fixed point theorems for a mixed monotone mapping in a metric space endowed with partial
order and applied their results to problems of existence and uniqueness of solutions for some
boundary value problems.

In 2006, Bhaskar and Lakshmikantham [2] first proved the following interesting
coupled fixed point theorem in partially ordered metric spaces.

Theorem BL (Bhaskar and Lakshmikantham). Let (X,�) be a partially ordered set and d a metric
onX such that (X, d) is a complete metric space. Let F : X×X → X be a continuous mapping having
the mixed monotone property on X. Assume that there exists a k ∈ [0, 1) with

d
(
F
(
x, y

)
, F(u, v)

)
≤ k

2
[
d(x, u) + d

(
y, v

)]
, ∀u � x, y � v. (1.1)
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If there exist x0, y0 ∈ X such that x0 � F(x0, y0) and F(y0, x0) � y0, then, there exist x̂, ŷ ∈ X,
such that x̂ = F(x̂, ŷ) and ŷ = F(ŷ, x̂).

Let E be a topological vector space (t.v.s. for short) with its zero vector θE. A nonempty subset
K of E is called a convex cone if K + K ⊆ K and λK ⊆ K for λ ≥ 0. A convex cone K is said to be
pointed if K ∩ (−K) = {θE}. For a given proper, pointed, and convex cone K in E, we can define a
partial ordering �K with respect to K by

x�K y ⇐⇒ y − x ∈ K. (1.2)

x≺K y will stand for x�K y and x /=y while x�K y will stand for y−x ∈ intK, where intK denotes
the interior of K.

In the following, unless otherwise specified, we always assume that Y is a locally convex
Hausdorff t.v.s. with its zero vector θ,K a proper, closed, convex, and pointed cone in Y with intK/= ∅,
�K a partial ordering with respect to K, and e ∈ intK.

Very recently, Du [14] first introduced the concepts of TVS-cone metric and TVS-cone metric
space to improve and extend the concept of cone metric space in the sense of Huang and Zhang [15].

Definition 1.1 (see [14]). LetX be a nonempty set. A vector-valued function p : X2 := X×X →
Y is said to be a TVS-cone metric if the following conditions hold:

(C1) θ�K p(x, y) for all x, y ∈ X and p(x, y) = θ if and only if x = y;

(C2) p(x, y) = p(y, x) for all x, y ∈ X;

(C3) p(x, z)�K p(x, y) + p(y, z) for all x, y, z ∈ X.

The pair (X, p) is then called a TVS-cone metric space.

Definition 1.2 (see [14]). Let (X, p) be a TVS-cone metric space, x ∈ X, and {xn}n∈N
a sequence

in X.

(i) {xn} is said to TVS-cone converge to x if for every c ∈ Y with θ�K c there exists a
natural number N0 such that p(xn, x)�K c for all n ≥ N0. We denote this by cone-
limn→∞xn = x or xn

cone−−−−→ x as n → ∞ and call x the TVS-cone limit of {xn}.

(ii) {xn} is said to be a TVS-cone Cauchy sequence if for every c ∈ Y with θ�K c there is
a natural number N0 such that p(xn, xm)�K c for all n, m ≥ N0.

(iii) (X, p) is said to be TVS-cone complete if every TVS-cone Cauchy sequence in X is
TVS-cone convergent in X.

In [14], the author proved the following important results.

Theorem 1.3 (see [14]). Let (X, p) be a TVS-cone metric space. Then dp : X2 → [0,∞) defined by
dp := ξe ◦ p is a metric, where ξe : Y → R is defined by

ξe
(
y
)
= inf{r ∈ R : y ∈ re − K}, ∀y ∈ Y. (1.3)
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Theorem 1.4 (see [14]). Let (X, p) be a TVS-cone metric space, x ∈ X, and {xn}n∈N
a sequence in

X. Then the following statements hold:

(a) if {xn} TVS-cone converges to x (i.e., xn
cone−−−−→ x as n → ∞), then dp(xn, x) → 0 as

n → ∞ (i.e., xn

dp−−→ x as n → ∞);

(b) if {xn} is a TVS-cone Cauchy sequence in (X, p), then {xn} is a Cauchy sequence (in usual
sense) in (X, dp).

In this paper, we establish some new coupled fixed point theorems for various types
of nonlinear contractive maps in the setting of quasiordered cone metric spaces. Our results
generalize and improve some results in [2, 4, 9, 11] and references therein.

2. Preliminaries

Let X be a nonempty set and “�” a quasiorder (preorder or pseudoorder, i.e., a reflexive and
transitive relation) onX. Then (X,�) is called a quasiordered set. A sequence {xn}n∈N

is called
�-nondecreasing (resp., �-nonincreasing) if xn � xn+1 (resp., xn+1 � xn) for each n ∈ N. In this
paper, we endow the product space X2 := X ×X with the following quasiorder �:

(u, v) �
(
x, y

)
⇐⇒ u � x, y � v for any

(
x, y

)
, (u, v) ∈ X2. (2.1)

Recall that the nonlinear scalarization function ξe : Y → R is defined by

ξe
(
y
)
= inf

{
r ∈ R : y ∈ re −K

}
, ∀y ∈ Y. (2.2)

Theorem 2.1 (see [14, 16, 17]). For each r ∈ R and y ∈ Y , the following statements are satisfied:

(i) ξe(y) ≤ r ⇔ y ∈ re −K;

(ii) ξe(y) > r ⇔ y /∈ re −K;

(iii) ξe(y) ≥ r ⇔ y /∈ re − intK;

(iv) ξe(y) < r ⇔ y ∈ re − intK;

(v) ξe(·) is positively homogeneous and continuous on Y ;

(vi) if y1 ∈ y2 +K, then ξe(y2) ≤ ξe(y1);

(vii) ξe(y1 + y2) ≤ ξe(y1) + ξe(y2) for all y1, y2 ∈ Y .

Remark 2.2. (a) Clearly, ξe(θ) = 0.
(b) The reverse statement of (vi) in Theorem 2.1 (i.e., ξe(y2) ≤ ξe(y1) ⇒ y1 ∈ y2 + K)

does not hold in general. For example, let Y = R2, K = R2
+ = {(x, y) ∈ R2 : x, y ≥ 0}, and
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e = (1, 1). Then K is a proper, closed, convex, and pointed cone in Y with intK = {(x, y) ∈
R2 : x, y > 0}/= ∅ and e ∈ intK. For r = 1, it is easy to see that y1 = (6,−25)/∈ re − intK, and
y2 = (0, 0) ∈ re − intK. By applying (iii) and (iv) of Theorem 2.1, we have ξe(y2) < 1 ≤ ξe(y1)
but indeed y1 /∈y2 +K.

For any TVS-cone metric space (X, p), we can define the map ρ : X2 ×X2 → Y by

ρ
((
x, y

)
, (u, v)

)
= p(x, u) + p

(
y, v

)
for any

(
x, y

)
, (u, v) ∈ X2. (2.3)

It is obvious that ρ is also a TVS-cone metric on X2 × X2, and if xn
cone−−−−→ a and yn

cone−−−−→ b as
n → ∞, then (xn, yn)

cone−−−−→ (a, b) (i.e., {(xn, yn)} TVS-cone converges to (a, b)).
By Theorem 1.3, we know that dp := ξe ◦ p is a metric on X. Hence the function σp:

X2 ×X2 → [0,∞), defined by

σp

((
x, y

)
, (u, v)

)
= dp(x, u) + dp

(
y, v

)
for any

(
x, y

)
, (u, v) ∈ X2, (2.4)

is a metric on X2 ×X2.
A map F : X2 → X is said to be dp-continuous at (x̂, ŷ) ∈ X2 if any sequence

{(xn, yn)} ⊂ X2 with (xn, yn)
σp−−→ (x̂, ŷ) implies that F(xn, yn)

dp−−→ F(x̂, ŷ). F is said to be
dp-continuous on (X2, σp) if F is continuous at every point of X2.

Definition 2.3 (see [2, 4]). Let (X,�) be a quasiordered set and F : X×X → X a map. one says
that F has the mixed monotone property on X if F(x, y) is monotone nondecreasing in x ∈ X
and is monotone nonincreasing in y ∈ X, that is, for any x, y ∈ X,

x1, x2 ∈ X with x1 � x2 =⇒ F
(
x1, y

)
� F

(
x2, y

)
,

y1, y2 ∈ X with y1 � y2 =⇒ F
(
x, y2

)
� F

(
x, y1

)
.

(2.5)

Definition 2.4 (see [2, 4]). Let X be a nonempty set and F : X × X → X a map. One calls an
element (x, y) ∈ X2 a coupled fixed point of F if

F
(
x, y

)
= x, F

(
y, x

)
= y. (2.6)

Definition 2.5. Let (X, p,�) be a TVS-cone metric space with a quasi-order � ((X, p,�) for
short). A nonempty subset M of X is said to be

(i) TVS-cone sequentially �↑-complete if every �-nondecreasing TVS-cone Cauchy
sequence inM converges,

(ii) TVS-cone sequentially �↓-complete if every �-nonincreasing TVS-cone Cauchy
sequence inM converges,

(iii) TVS-cone sequentially �↑
↓-complete if it is both TVS-cone sequentially �↑-complete

and TVS-cone sequentially �↓-complete.
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Definition 2.6 (see [4, 18]). A function ϕ : [0,∞) → [0, 1) is said to be a MT-function if it
satisfies Mizoguchi-Takahashi’s condition (i.e., lim sups→ t+0 ϕ(s) < 1 for all t ∈ [0,∞)).

Clearly, if ϕ : [0,∞) → [0, 1) is a nondecreasing function, then ϕ is a MT-function.
Notice that ϕ : [0,∞) → [0, 1) is a MT-function if and only if for each t ∈ [0,∞) there exist
rt ∈ [0, 1) and εt > 0 such that ϕ(s) ≤ rt for all s ∈ [t, t + εt); for more detail, see [4, Remark 2.5
(iii)].

Very recently, Du and Wu [5] introduced and studied the concept of functions of
contractive factor.

Definition 2.7 (see [5]). One says that ϕ : [0,∞) → [0, 1) is a function of contractive factor if for
any strictly decreasing sequence {xn}n∈N

in [0,∞), one has

0 ≤ sup
n∈N

ϕ(xn) < 1. (2.7)

The following result tells us the relationship between MT-functions and functions of
contractive factor.

Theorem 2.8. Any MT-function is a function of contractive factor.

Proof. Let ϕ : [0,∞) → [0, 1) be a MT-function, and let {xn}n∈N
be a strictly decreasing

sequence in [0,∞). Then t0 := limn→∞ xn = infn∈N xn ≥ 0 exists. Since ϕ is a MT-function,
there exist rt0 ∈ [0, 1) and εt0 > 0 such that ϕ(s) ≤ rt0 for all s ∈ [t0, t0 + εt0). On the other hand,
there exists 	 ∈ N, such that

t0 ≤ xn < t0 + εt0 (2.8)

for all n ∈ N with n ≥ 	. Hence ϕ(xn) ≤ rt0 for all n ≥ 	. Let

η := max
{
ϕ(x1), ϕ(x2), . . . , ϕ(x	−1), rt0

}
< 1. (2.9)

Then ϕ(xn) ≤ η for all n ∈ N, and hence 0 ≤ supn∈N
ϕ(xn) ≤ η < 1. Therefore ϕ is a function of

contractive factor.

3. Coupled Fixed Point Theorems for Various Types of
Nonlinear Contractive Maps

Definition 3.1. One says that κ : [0,∞) → (0, 1) is a function of strong contractive factor if for
any strictly decreasing sequence {xn}n∈N

in [0,∞), one has

0 < sup
n∈N

κ(xn) < 1. (3.1)
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It is quite obvious that if κ is a function of strong contractive factor, then κ is a function
of contractive factor but the reverse is not always true.

The following results are crucial to our proofs in this paper.

Lemma 3.2. A function of strong contractive factor can be structured by a function of contractive
factor.

Proof. Let ϕ : [0,∞) → [0, 1) be a function of contractive factor. Define κ(t) = (1 + ϕ(t))/2,
t ∈ [0,∞). We claim that κ is a function of strong contractive factor. Clearly, 0 ≤ ϕ(t) < κ(t) < 1
for all t ∈ [0,∞). Let {xn}n∈N

be a strictly decreasing sequence in [0,∞). Since ϕ is a function
of contractive factor, 0 ≤ supn∈N

ϕ(xn) < 1. Thus it follows that

0 < sup
n∈N

κ(xn) =
1
2

[

1 + sup
n∈N

ϕ(xn)

]

< 1. (3.2)

Hence κ is a function of strong contractive factor.

Lemma 3.3. Let E be a t.v.s.,K a convex cone with intK/= ∅ in E, and a, b, c ∈ E. Then the following
statements hold.

(i) If a�Kb and b�Kc, then a�Kc;

(ii) If a�Kb and b�Kc, then a�Kc;

(iii) If a�Kb and b�Kc, then a�Kc.

Proof. To see (i), since the set intK +K is open in E and K is a convex cone, we have

intK +K = int(intK +K) ⊆ intK. (3.3)

Since a�K b ⇐⇒ b − a ∈ K and b�K c ⇐⇒ c − b ∈ intK, it follows that

c − a = (c − b) + (b − a) ∈ intK +K ⊆ intK, (3.4)

which means that a�K c. The proofs of conclusions (ii) and(iii) are similar to (i).

Lemma 3.4 (see [4]). Let (X,�) be a quasiordered set and F : X2 → X a multivalued map having
the mixed monotone property on X. Let x0, y0 ∈ X. Define two sequences {xn} and {yn} by

xn = F
(
xn−1, yn−1

)
,

yn = F
(
yn−1, xn−1

) (3.5)

for each n ∈ N. If x0 � x1 and y1 � y0, then {xn} is �-nondecreasing and {yn} is �-nonincreasing.
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In this section, we first present the following new coupled fixed point theorem for
functions of contractive factor in quasiordered cone metric spaces which is one of the main
results of this paper.

Theorem 3.5. Let (X, p,�) be a TVS-cone sequentially �↑
↓-complete metric space, F : X2 → X a

map having the mixed monotone property on X, and dp := ξe ◦ p. Assume that there exists a function
of contractive factor ϕ : [0,∞) → [0, 1) such that for any (x, y), (u, v) ∈ X2 with (u, v) � (x, y),

p
(
F
(
x, y

)
, F(u, v)

)
�K

1
2
ϕ
(
dp(x, u) + dp

(
y, v

))
ρ
((
x, y

)
, (u, v)

)
, (3.6)

and there exist x0, y0 ∈ X such that x0 � F(x0, y0) and F(y0, x0) � y0. Define the iterative sequence
{(xn, yn)}n∈N∪{0} in X2 by xn = F(xn−1, yn−1) and yn = F(yn−1, xn−1) for n ∈ N. Then the following
statements hold.

(a) There exists a nonempty subset D of X, such that (D, dp) is a complete metric space.

(b) There exists a nonempty subsetΩ ofX2, such that (Ω, σp) is a complete metric space, where
σp((x, y), (u, v)) := dp(x, u) + dp(y, v) for any (x, y), (u, v) ∈ X2. Moreover, if F is dp-
continuous on (Ω, σp), then {(xn, yn)}n∈N∪{0} TVS-cone converges to a coupled fixed point
in Ω of F.

Proof. Since Y is a locally convex Hausdorff t.v.s. with its zero vector θ, let τ denote the
topology of Y and let Uτ be the base at θ consisting of all absolutely convex neighborhood of
θ. Let

L = {	 : 	 is a Minkowski functional of U for U ∈ Uτ}. (3.7)

Then L is a family of seminorms on Y . For each 	 ∈ L, let

V (	) =
{
y ∈ Y : 	

(
y
)
< 1

}
, (3.8)

and let

UL = {U : U = r1V (	1) ∩ r2V (	2) ∩ · · · ∩ rnV (	n), rk > 0, 	k ∈ L, 1 ≤ k ≤ n, n ∈ N}. (3.9)

Then UL is a base at θ, and the topology ΓL generated by UL is the weakest topology for Y
such that all seminorms in L are continuous and τ = ΓL. Moreover, given any neighborhood
Oθ of θ, there exists U ∈ UL such that θ ∈ U ⊂ Oθ (see, e.g., [19, Theorem 12.4 in II.12, Page
113]).

By Lemma 3.2, we can define a function of strong contractive factor κ : [0,∞) → [0, 1)
by κ(t) = (ϕ(t) + 1)/2. Then 0 ≤ ϕ(t) < κ(t) < 1 for all t ∈ [0,∞). For any n ∈ N, let
xn = F(xn−1, yn−1) and yn = F(yn−1, xn−1). Then, by Lemma 3.4, {xn} is �-nondecreasing and
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{yn} is �-nonincreasing. So (xn, yn) � (xn+1, yn+1) and (yn+1, xn+1) � (yn, xn) for each n ∈ N.
By (3.6), we obtain

p(x2, x1) = p
(
F
(
x1, y1

)
, F

(
x0, y0

))

�K

1
2
ϕ
(
dp(x1, x0) + dp

(
y1, y0

))
σ
((
x1, y1

)
,
(
x0, y0

))

=
1
2
ϕ
(
dp(x1, x0) + dp

(
y1, y0

))[
p(x1, x0) + p

(
y1, y0

)]
,

(3.10)

p
(
y2, y1

)
= p

(
y1, y2

)

= p
(
F
(
y0, x0

)
, F

(
y1, x1

))

�K

1
2
ϕ
(
dp

(
y0, y1

)
+ dp(x0, x1)

)[
p
(
y0, y1

)
+ p(x0, x1)

]

=
1
2
ϕ
(
dp(x1, x0) + dp

(
y1, y0

))[
p(x1, x0) + p

(
y1, y0

)]
.

(3.11)

By (3.10) and Theorem 2.1,

dp(x2, x1) = ξe
(
p(x2, x1)

)

≤ ξe

(
1
2
ϕ
(
dp(x1, x0) + dp

(
y1, y0

))[
p(x1, x0) + p

(
y1, y0

)]
)

=
1
2
ϕ
(
dp(x1, x0) + dp

(
y1, y0

))[
dp(x1, x0) + dp

(
y1, y0

)]

<
1
2
κ
(
dp(x1, x0) + dp

(
y1, y0

))[
dp(x1, x0) + dp

(
y1, y0

)]
.

(3.12)

Similarly, by (3.11) and Theorem 2.1, we also have

dp

(
y2, y1

)
= ξe

(
p(x2, x1)

)

≤ 1
2
ϕ
(
dp(x1, x0) + dp

(
y1, y0

))[
dp(x1, x0) + dp

(
y1, y0

)]

<
1
2
κ
(
dp(x1, x0) + dp

(
y1, y0

))[
dp(x1, x0) + dp

(
y1, y0

)]
.

(3.13)

Combining (3.12) and (3.13), we get

dp(x2, x1) + dp

(
y2, y1

)
< κ

(
dp(x1, x0) + dp

(
y1, y0

))[
dp(x1, x0) + dp

(
y1, y0

)]
. (3.14)
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For each n ∈ N, let ξn = dp(xn, xn−1) + dp(yn, yn−1). Then ξ2 < κ(ξ1)ξ1. By induction, we can
obtain the following. For each n ∈ N,

p(xn+1, xn)�K

1
2
ϕ(ξn)

[
p(xn, xn−1) + p

(
yn, yn−1

)]
; (3.15)

p
(
yn+1, yn

)
�K

1
2
ϕ(ξn)

[
p(xn, xn−1) + p

(
yn, yn−1

)]
; (3.16)

dp(xn+1, xn) <
1
2
κ(ξn)ξn; (3.17)

dp

(
yn+1, yn

)
<

1
2
κ(ξn)ξn; (3.18)

ξn+1 < κ(ξn)ξn. (3.19)

Since 0 < κ(t) < 1 for all t ∈ [0,∞), the sequence {ξn} is strictly decreasing in [0,∞)
from (3.19). Since κ is a function of strong contractive factor, we have

0 < λ := sup
n∈N

κ(ξn) < 1. (3.20)

So ϕ(ξn) < κ(ξn) ≤ λ for all n ∈ N. We want to prove that {xn} is a �-nondecreasing TVS-cone
Cauchy sequence and {yn} is a �-nonincreasing TVS-cone Cauchy sequence in X. For each
n ∈ N, by (3.15), we have

p(xn+2, xn+1)�K

1
2
λ
[
p(xn+1, xn) + p

(
yn+1, yn

)]
. (3.21)

Similarly, by (3.16), we obtain

p
(
yn+2, yn+1

)
�K

1
2
λ
[
p(xn+1, xn) + p

(
yn+1, yn

)]
. (3.22)

From (3.21) and (3.22), we get

p(xn+2, xn+1) + p
(
yn+2, yn+1

)
�K λ

[
p(xn+1, xn) + p

(
yn+1, yn

)]
for each n ∈ N. (3.23)
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Hence it follows from (3.21), (3.22), and (3.23) that

p(xn+2, xn+1)�K

1
2
λ
[
p(xn+1, xn) + p

(
yn+1, yn

)]

�K

1
2
λ2
[
p(xn, xn−1) + p

(
yn, yn−1

)]

�K · · ·

�K

1
2
λn

[
p(x2, x1) + p

(
y2, y1

)]
,

p
(
yn+2, yn+1

)
�K

1
2
λn

[
p(x2, x1) + p

(
y2, y1

)]
for n ∈ N.

(3.24)

Therefore, for m,n ∈ N with m > n, we have

p(xm, xn)�K

m−1∑

j=n

p
(
xj+1, xj

)
�K

λn−1

2(1 − λ)
[
p(x2, x1) + p

(
y2, y1

)]
, (3.25)

p
(
ym, yn

)
�K

m−1∑

j=n

p
(
yj+1, yj

)
�K

λn−1

2(1 − λ)
[
p(x2, x1) + p

(
y2, y1

)]
. (3.26)

Given c ∈ Y with θ�K c (i.e., c ∈ intK = int(intK)), there exists a neighborhood Nθ of θ
such that c + Nθ ⊆ intK. Therefore, there exists Uc ∈ UL with Uc ⊆ Nθ such that c + Uc ⊆
c +Nθ ⊆ intK, where

Uc = r1V (	1) ∩ r2V (	2) ∩ · · · ∩ rsV (	s), (3.27)

for some ri > 0 and 	i ∈ L, 1 ≤ i ≤ s. Let

δc = min{ri : 1 ≤ i ≤ s} > 0,

η = max
{
	i
(
p(x2, x1) + p

(
y2, y1

))
: 1 ≤ i ≤ s

}
.

(3.28)

If η = 0, since each 	i is a seminorm, we have 	i(p(x2, x1) + p(y2, y1)) = 0 and

	i

(

− λn−1

2(1 − λ)
[
p(x2, x1) + p

(
y2, y1

)]
)

=
λn−1

2(1 − λ)
	i
(
p(x2, x1) + p

(
y2, y1

))
= 0 < ri (3.29)
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for all 1 ≤ i ≤ s and all n ∈ N. If η > 0, since λ ∈ (0, 1), limn→∞(λn−1/2(1 − λ)) = 0, and hence
there exists n0 ∈ N such that λn−1/2(1 − λ) < δc/η for all n ≥ n0. So, for each i ∈ {1, 2, . . . , s}
and any n ≥ n0, we obtain

	i

(

− λn−1

2(1 − λ)
[
p(x2, x1) + p

(
y2, y1

)]
)

=
λn−1

2(1 − λ)
	i
(
p(x2, x1) + p

(
y2, y1

))

<
δc
η
	i
(
p(x2, x1) + p

(
y2, y1

))

≤ δc

≤ ri.

(3.30)

Therefore for any n ≥ n0, −(λn−1/2(1 − λ))[p(x2, x1) + p(y2, y1)] ∈ riV (	i) for all 1 ≤ i ≤ s, and
hence −(λn−1/2(1 − λ))[p(x2, x1) + p(y2, y1)] ∈ Uc. So we obtain

c − λn−1

2(1 − λ)
[
p(x2, x1) + p

(
y2, y1

)]
∈ c +Uc ⊆ intK (3.31)

or

λn−1

2(1 − λ)
[
p(x2, x1) + p

(
y2, y1

)]
�K c (3.32)

for all n ≥ n0. For m,n ∈ N with m > n ≥ n0, by (3.25), (3.26), (3.32), and Lemma 3.3, we
obtain

p(xm, xn)�K c,

p
(
ym, yn

)
�K c.

(3.33)

Hence {xn} is a �-nondecreasing TVS-cone Cauchy sequence and {yn} is a �-nonincreasing
TVS-cone Cauchy sequence in X. By the TVS-cone sequential �↑

↓-completeness of X, there
exist x̂, ŷ ∈ X such that {xn} TVS-cone converges to x̂ and {yn} TVS-cone converges to ŷ.
Therefore {(xn, yn)} TVS-cone converges to (x̂, ŷ).

On the other hand, applying Theorem 1.4, we have the following:

{xn} is a � -nondecreasing Cauchy sequence in
(
X, dp

)
; (3.34)

{
yn

}
is a � -nonincreasing Cauchy sequence in

(
X, dp

)
; (3.35)

dp(xn, x̂) −→ 0
(
or xn

dp−−→ x̂

)
as n −→ ∞; (3.36)

dp

(
yn, ŷ

)
−→ 0

(
or yn

dp−−→ ŷ

)
as n −→ ∞. (3.37)



12 Fixed Point Theory and Applications

Since σp((xn, yn), (x̂, ŷ) = dp(xn, x̂) + dp(yn, ŷ) for all n ∈ N, by (3.36) and (3.37), we

have (xn, yn)
σp−−→ (x̂, ŷ) as n → ∞. Let D1 = {xn}n∈N∪{0} ∪ {x̂}, D2 = {yn}n∈N∪{0} ∪ {ŷ}, and

Ω = D1 × D2. Then (D1, dp), (D2, dp), and (Ω, σp) are also complete metric spaces. Hence
conclusion (a) holds.

Finally, in order to complete the proof of conclusion (b), we need to verify that (x̂, ŷ) ∈
Ω is a coupled fixed point of F. Let ε > 0 be given. Since F is dp-continuous on (Ω, σp) and
(x̂, ŷ) ∈ Ω, F is dp-continuous at (x̂, ŷ). So there exists δ > 0 such that

dp

(
F
(
x̂, ŷ

)
, F(u, v)

)
<

ε

2
(3.38)

whenever (u, v) ∈ Ω with σp((x̂, ŷ), (u, v)) < δ. Since xn

dp−−→ x̂ and yn

dp−−→ ŷ as n → ∞, for
ζ = min{ε/2, δ/2} > 0, there exists v0 ∈ N such that

dp(xn, x̂) < ζ, dp

(
yn, ŷ

)
< ζ ∀n ∈ N with n ≥ v0. (3.39)

So, for each n ∈ N with n ≥ v0, by (3.39),

σp

((
x̂, ŷ

)
,
(
xn, yn

))
= dp(xn, x̂) + dp

(
yn, ŷ

)
< δ, (3.40)

and hence we have from (3.38) that

dp

(
F
(
x̂, ŷ

)
, F

(
xn, yn

))
<

ε

2
. (3.41)

Therefore

dp

(
F
(
x̂, ŷ

)
, x̂

)
≤ dp

(
F
(
x̂, ŷ

)
, xv0+1

)
+ dp(xv0+1, x̂)

= dp

(
F
(
x̂, ŷ

)
, F

(
xv0 , yv0

))
+ dp(xv0+1, x̂)

<
ε

2
+ ζ

(
by (3.39) and (3.41)

)

≤ ε.

(3.42)

Since ε is arbitrary, dp(F(x̂, ŷ), x̂) = 0 or F(x̂, ŷ) = x̂. Similarly, we can also prove that F(ŷ, x̂) =
ŷ. So (x̂, ŷ) ∈ Ω is a coupled fixed point of F. The proof is finished.

The following conclusions are immediate from Theorems 2.8 and 3.5.

Theorem 3.6. Let (X, p,�) be a TVS-cone sequentially �↑
↓-complete metric space, F : X2 → X a map

having the mixed monotone property on X, and dp := ξe ◦ p. Assume that there exists aMT-function
ϕ : [0,∞) → [0, 1) such that for any (x, y), (u, v) ∈ X2 with (u, v) � (x, y),

p
(
F
(
x, y

)
, F(u, v)

)
�K

1
2
ϕ
(
dp(x, u) + dp

(
y, v

))
ρ
((
x, y

)
, (u, v)

)
, (3.43)
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and there exist x0, y0 ∈ X such that x0 � F(x0, y0) and F(y0, x0) � y0. Define the iterative sequence
{(xn, yn)}n∈N∪{0} in X2 by xn = F(xn−1, yn−1) and yn = F(yn−1, xn−1) for n ∈ N. Then the following
statements hold.

(a) There exists a nonempty subset D of X, such that (D, dp) is a complete metric space.

(b) There exists a nonempty subset Ω of X2, such that (Ω, σp) is a complete metric space.
Moreover, if F is dp-continuous on (Ω, σp), then {(xn, yn)}n∈N∪{0} TVS-cone converges to
a coupled fixed point in Ω of F.

Theorem 3.7. Let (X, p,�) be a TVS-cone sequentially �↑
↓-complete metric space, F : X2 → X a map

having the mixed monotone property on X, and dp := ξe ◦ p. Assume that there exists a nonnegative
number γ < 1 such that for any (x, y), (u, v) ∈ X2 with (u, v) � (x, y),

p
(
F
(
x, y

)
, F(u, v)

)
�K

γ

2
ρ
((
x, y

)
, (u, v)

)
, (3.44)

and there exist x0, y0 ∈ X such that x0 � F(x0, y0) and F(y0, x0) � y0. Define the iterative sequence
{(xn, yn)}n∈N∪{0} in X2 by xn = F(xn−1, yn−1) and yn = F(yn−1, xn−1) for n ∈ N. Then the following
statements hold.

(a) There exists a nonempty subset D of X, such that (D, dp) is a complete metric space.

(b) There exists a nonempty subset Ω of X2, such that (Ω, σp) is a complete metric space.
Moreover, if F is dp-continuous on (Ω, σp), then {(xn, yn)}n∈N∪{0} TVS-cone converges to
a coupled fixed point in Ω of F.

Remark 3.8. (a) Theorems 3.5 and 3.6 all generalize and improve [4, Theorem 2.8] and some
results in [2, 9, 11].

(b) Theorems 3.5–3.7 all generalize Bhaskar-Lakshmikantham’s coupled fixed points
theorem (i.e., Theorem BL).

Finally, we focus our research on TVS-cone metric spaces.

Theorem 3.9. Let (X, p) be a TVS-cone complete metric space, F : X2 → X a map, and dp := ξe ◦p.
Assume that there exists a function of contractive factor ϕ : [0,∞) → [0, 1) such that for any
(x, y), (u, v) ∈ X2

p
(
F
(
x, y

)
, F(u, v)

)
�K

1
2
ϕ
(
dp(x, u) + dp

(
y, v

))
ρ
((
x, y

)
, (u, v)

)
. (3.45)

Let x0, y0 ∈ X. Define the iterative sequence {(xn, yn)}n∈N∪{0} in X2 by xn = F(xn−1, yn−1) and
yn = F(yn−1, xn−1) for n ∈ N. Then the following statements hold.

(a) There exists a nonempty subset D of X, such that (D, dp) is a complete metric space.

(b) There exists a nonempty subset Ω of X2, such that (Ω, σp) is a complete metric space.

(c) F has a unique coupled fixed point in Ω. Moreover, {(xn, yn)}n∈N∪{0} TVS-cone converges
to the coupled fixed point of F.
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Proof. For any (x, y), (u, v) ∈ X2, by (3.45) and Theorem 2.1, we obtain

dp

(
F
(
x, y

)
, F(u, v)

)
≤ 1

2
ϕ
(
dp(x, u) + dp

(
y, v

))[
dp(x, u) + dp

(
y, v

)]

=
1
2
ϕ
(
σp

((
x, y

)
, (u, v)

))
σp

((
x, y

)
, (u, v)

)

<
1
2
σp

((
x, y

)
, (u, v)

)
.

(3.46)

From (3.46), we know that F is dp-continuous on (X2, σp). Following the same argument as
in the proof of Theorem 3.5, we can prove that conclusions (a) and (b) hold and there exists
(x̂, ŷ) ∈ Ω, such that {(xn, yn)}n∈N∪{0} TVS-cone converges to (x̂, ŷ) and (x̂, ŷ) is a coupled
fixed point of F. To complete the proof, it suffices to show the uniqueness of the coupled fixed
point of F. On the contrary, suppose that there exists (û, v̂) ∈ X ×X, such that û = F(û, v̂) and
v̂ = F(v̂, û). By (3.46), we have

dp(x̂, û) = dp

(
F
(
x̂, ŷ

)
, F(û, v̂)

)
<

1
2
[
dp(x̂, û) + dp

(
ŷ, v̂

)]
,

dp

(
ŷ, v̂

)
= dp

(
F
(
ŷ, x̂

)
, F(v̂, û)

)
<

1
2
[
dp(x̂, û) + dp

(
ŷ, v̂

)]
.

(3.47)

So, it follows from (3.47) that

dp(x̂, û) + dp

(
ŷ, v̂

)
< dp(x̂, û) + dp

(
ŷ, v̂

)
, (3.48)

which leads to a contradiction. The proof is completed.

The following results are immediate from Theorem 3.9.

Theorem 3.10. Let (X, p) be a TVS-cone complete metric space, F : X2 → X a map, and dp := ξe◦p.
Assume that there exists a MT-function ϕ : [0,∞) → [0, 1) such that for any (x, y), (u, v) ∈ X2,

p
(
F
(
x, y

)
, F(u, v)

)
�K

1
2
ϕ
(
dp(x, u) + dp

(
y, v

))
ρ
((
x, y

)
, (u, v)

)
. (3.49)

Let x0, y0 ∈ X. Define the iterative sequence {(xn, yn)}n∈N∪{0} in X2 by xn = F(xn−1, yn−1) and
yn = F(yn−1, xn−1) for n ∈ N. Then the following statements hold.

(a) There exists a nonempty subset D of X, such that (D, dp) is a complete metric space.

(b) There exists a nonempty subset Ω of X2, such that (Ω, σp) is a complete metric space.

(c) F has a unique coupled fixed point in Ω. Moreover, {(xn, yn)}n∈N∪{0} TVS-cone converges
to the coupled fixed point of F.
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Theorem 3.11. Let (X, p) be a TVS-cone complete metric space and F : X2 → X a map. Assume
that there exists a nonnegative number γ < 1 such that for any (x, y), (u, v) ∈ X2,

p
(
F
(
x, y

)
, F(u, v)

)
�K

γ

2
ρ
((
x, y

)
, (u, v)

)
. (3.50)

Let x0, y0 ∈ X. Define the iterative sequence {(xn, yn)}n∈N∪{0} in X2 by xn = F(xn−1, yn−1) and
yn = F(yn−1, xn−1) for n ∈ N. Then the following statements hold.

(a) There exists a nonempty subset D of X, such that (D, dp) is a complete metric space.

(b) There exists a nonempty subset Ω of X2, such that (Ω, σp) is a complete metric space.

(c) F has a unique coupled fixed point in Ω. Moreover, {(xn, yn)}n∈N∪{0} TVS-cone converges
to the coupled fixed point of F.

Remark 3.12. (a) Theorems 3.9 and 3.10 all generalize and improve [4, Theorem 2.12].
(b) Theorems 3.9–3.11 all generalize some results in [2, 9, 11].
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