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We present some fixed point theorems for the sumA+B of a weakly-strongly continuous map and
a nonexpansive map on a Banach space X. Our results cover several earlier works by Edmunds,
Reinermann, Singh, and others.

1. Introduction

Let M be a nonempty subset of a Banach space X and T : M → X a mapping. We say that
T is weakly-strongly continuous if for each sequence {xn} in M which converges weakly to x
inM, the sequence {Txn} converges strongly to Tx. The mapping T is called nonexpansive if
‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈M.

In [1], Edmunds proved the following fixed point theorem

Theorem 1.1. LetM be a nonempty bounded closed convex subset of a Hilbert spaceH andA,B two
maps fromM into X such that

(i) A is weakly-strongly continuous,

(ii) B is a nonexpansive mapping,

(iii) Ax + By ∈M for all x, y ∈M.

Then A + B has a fixed point inM.
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It is apparent that Theorem 1.1 is an important supplement to both Krasnoselskii’s
fixed point [2, Theorem 4.4.1] and Browder’s fixed point theorems [2, Theorem 5.1.3]. The
proof of Theorem 1.1 depends heavily upon the fact that F = I − A (where I is the identity
map) is monotone, that is, (Fx − Fy, x − y) ≥ 0 for all x, y, and uses the Krasnoselskii fixed
point theorem for the sum of a completely continuous and a strict contraction mapping [2,
3]. In [4], Reinermann extended the above result to uniform Banach spaces. The methods
used in the Hilbert space setting involving monotone operators do not apply in the more
general context of uniform Banach spaces. The author follows another strategy of proof which
is based on a demiclosedness principle for nonexpansive mapping defined on a uniformly
convex Banach space and uses the fact that every uniformly convex space is reflexive. In [5],
Singh extended Theorem 1.1 to reflexive Banach spaces by assuming further that I − B is
demiclosed. Notice that all the aforementioned extensions of Theorem 1.1 depend strongly
upon the geometry of the ambient Banach space. In this paper we propose an extension of
Theorem 1.1 to an arbitrary Banach space. Also, we discuss the existence of a fixed point for
the sum of a compact mapping and a nonexpansivemapping for both theweak and the strong
topology of a Banach space and under Krasnosel’skii-, Leray Schauder-, and Furi-Pera-type
conditions. First we recall the following well-known result.

Theorem 1.2 (see [2, Theorem 5.1.2]). LetM be a bounded closed convex subset of a Banach space
X and T a nonexpansive mapping of M into M. Then for each ε > 0, there is a xε ∈ M such that
‖Txε − xε‖ < ε.

Now, let us recall some definitions and results which will be needed in our further
considerations. Let X be a Banach space, Ω(X) the collection of all nonempty bounded
subsets of X, and W(X) the subset of Ω(X) consisting of all weakly compact subsets of X.
Let Br denote the closed ball in X centered at 0 with radius r > 0. In [6] De Blasi introduced
the following map w : Ω(X) → [0,∞) defined by

w(M) = inf{r > 0 : there exists a set N ∈ W(X) such that M ⊆N + Br}, (1.1)

for allM ∈ Ω(X). For completeness we recall some properties of w(·) needed below (for the
proofs we refer the reader to [6]).

Lemma 1.3. LetM1,M2 ∈ Ω(X), then one has the following:

(i) ifM1 ⊆M2, then w(M1) ≤ w(M2),

(ii) w(M1) = 0 if and only ifM1 is relatively weakly compact,

(iii) w(Mw
1 ) = w(M1), whereMw

1 is the weak closure ofM1,

(iv) w(λM1) = |λ|w(M1) for all λ ∈ R,

(v) w(co(M1)) = w(M1),

(vi) w(M1 +M2) ≤ w(M1) +w(M2),

(vii) if (Mn)n≥1 is a decreasing sequence of nonempty, bounded, and weakly closed subsets of X
with limn→∞w(Mn) = 0, then

⋂∞
n=1Mn /= ∅ and w(

⋂∞
n=1Mn) = 0, that is, w(

⋂∞
n=1Mn)

is relatively weakly compact.

Throughout this paper, a measure of weak noncompactness will be a mapping ψ :
Ω(X) → [0,∞)which satisfies assumptions (i)–(vii) cited in Lemma 1.3.
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Definition 1.4. Let X be a Banach space, and let ψ be a measure of weak noncompactness
on X. A mapping B : D(B) ⊆ X → X is said to be ψ-contractive if it maps bounded sets
into bounded sets and there is β ∈ [0, 1[ such that ψ(B(S)) ≤ βψ(S) for all bounded sets
S ⊆ D(B). The mapping B : D(B) ⊆ X → X is said to be ψ-condensing if it maps bounded
sets into bounded sets and ψ(B(S)) < ψ(S) whenever S is a bounded subset of D(B) such
that ψ(S) > 0.

Let J be a nonlinear operator from D(J) ⊆ X into X. In what follows, we will use the
following two conditions.

(H1) If (xn)n∈N
is a weakly convergent sequence in D(J), then

(Jxn)n∈N
has a strongly convergent subsequence in X.

(H2) If (xn)n∈N
is a weakly convergent sequence in D(J), then

(Jxn)n∈N
has a weakly convergent subsequence in X.

Remark 1.5. (1)Operators satisfying (H1) or (H2) are not necessarily weakly continuous (see
[7–9]).

(2) Every w-contractive map satisfies (H2).
(3) A mapping J satisfies (H2) if and only if it maps relatively weakly compact sets

into relatively weakly compact ones (use the Eberlein-Šmulian theorem [10], page 430).
(4) A mapping J satisfies (H1) if and only if it maps relatively weakly compact sets

into relatively compact ones.
(5) Condition (H2) holds true for every bounded linear operator.
(6) Condition (H1) holds true for the class of weakly compact operators acting on

Banach spaces with the Dunford-Pettis property.
(7) Continuous mappings satisfying (H1) are sometimes called (ws)-compact

operators (see [11, Definition 2]).

The following fixed point theorems are crucial for our purposes.

Theorem 1.6 (see [7, Theorem 2.3]). Let M be a nonempty closed bounded convex subset of a
Banach space X. Suppose that A :M → X and B : X → X such that

(i) A is continuous, AM is relatively weakly compact, and A satisfies (H1),

(ii) B is a strict contraction satisfying (H2),

(iii) Ax + By ∈M for all x, y ∈M.

Then there is a x ∈M such that Ax + Bx = x.

Theorem 1.7 (see [12, Theorem 2.1]). Let M be a nonempty closed bounded convex subset of a
Banach spaceX. Suppose thatA :M → X and B : X → X are sequentially weakly continuous such
that

(i) AM is relatively weakly compact,

(ii) B is a strict contraction,

(iii) Ax + By ∈M for all x, y ∈M.

Then there is a x ∈M such that Ax + Bx = x.
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Theorem 1.8 (see [13, 14]). LetX be a Banach space with C ⊆ X closed and convex. Assume thatU
is a relatively open subset of C with 0 ∈ U,F(U) bounded, and F : U → C a condensing map. Then
either F has a fixed point in U or there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λF(u), here U and
∂U denote the closure ofU in C and the boundary ofU in C, respectively.

Theorem 1.9 (see [13, 14]). Let X be a Banach space and Q a closed convex bounded subset of X
with 0 ∈ Q. In addition, assume that F : Q → X is a condensing map with

if
{(
xj , λj

)}∞
j=1is a sequence in∂Q × [0, 1]converging to(x, λ)with

x = λF(x) and 0 < λ < 1, then λjF
(
xj
) ∈ Q for j sufficiently large,

(FP)

holding. Then F has a fixed point.

2. Fixed Point Theorems

Now we are ready to state and prove the following result.

Theorem 2.1. Let M be a nonempty bounded closed convex subset of a Banach space X. Let A :
M → X and B : X → X satisfy the following:

(i) A is weakly-strongly continuous and AM is relatively weakly compact,

(ii) B is a nonexpansive mapping satisfying (H2),

(iii) if (xn) is a sequence of M such that ((I − B)xn) is weakly convergent, then the sequence
(xn) has a weakly convergent subsequence,

(iv) I − B is demiclosed,

(v) Ax + By ∈M, for all x, y ∈M.

Then there is an x ∈M such that Ax + Bx = x.

Proof. Suppose first that 0 ∈M. By hypothesis (v) we have for each λ ∈ (0, 1) and x, y ∈M

λAx + λBy ∈M. (2.1)

Thus the mappings λA and λB satisfy the conditions of Theorem 1.6. Thus, for all λ ∈ (0, 1)
there is an xλ ∈ M such that λAxλ + λBxλ = xλ. Now, choose a sequence {λn} in (0, 1) such
that λn → 1 and consider the corresponding sequence {xn} of elements ofM satisfying

λnAxn + λnBxn = xn. (2.2)

Using the fact thatAM is weakly compact and passing eventually to a subsequence, we may
assume that {Axn} converges weakly to some y ∈M. Hence

(I − λnB)xn ⇀ y. (2.3)
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Since {xn} is a sequence inM, then it is norm bounded and so is {Bxn}. Consequently

‖(xn − Bxn) − (xn − λnBxn)‖ = (1 − λn)‖Bxn‖ −→ 0. (2.4)

As a result

xn − Bxn ⇀ y. (2.5)

By hypothesis (iii) the sequence {xn} has a subsequence {xnk} which converges weakly to
some x ∈ M. Since A is weakly-strongly continuous, then {Axnk} converges strongly to Ax.
As a result

(I − λnkB)xnk −→ Ax. (2.6)

Arguing as above we get

xn − Bxn −→ Ax. (2.7)

The demiclosedness of I − B yields Ax + Bx = x.
To complete the proof it remains to consider the case 0/∈M. In such a case let us fix

any element x0 ∈ M, and let M0 = {x − x0, x ∈ M}. Define the maps A0 : M0 → X and
B0 :M0 → X byA0(x−x0) = Ax−(1/2)x0 and B0(x−x0) = Bx−(1/2)x0, for x ∈M.Applying
the result of the first case toA0 and B0 we get an x ∈M such thatA0(x−x0)+B0(x−x0) = x−x0,
that is, Ax + Bx = x.

Remark 2.2. (1) The new feature about the result of Theorem 2.1 is that no additional
assumption on the Banach space X is required.

(2) If X is reflexive, then the strong continuity plainly implies compactness. Moreover,
assumption (iii) of Theorem 2.1 is always verified. Also, every continuous mapping on X
satisfies condition (H2). If in additionwe suppose thatX is a uniformly convex Banach space,
then B is nonexpansive implying that I − B is demiclosed (see [4, 15]).

In the light of the aforementioned remarks we obtain the following consequences of
Theorem 2.1. The first is proved in [4] while the second in stated in [5].

Corollary 2.3. Let M be a nonempty bounded closed convex subset of a uniformly convex Banach
space X. Let A :M → X and B :M → X satisfy the following:

(i) A is weakly-strongly continuous,

(ii) B is nonexpansive,

(iii) Ax + By ∈M, for all x, y ∈M.

Then there is an x ∈M such thatAx + Bx = x.
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Corollary 2.4. LetM be a nonempty bounded closed convex subset of a reflexive Banach spaceX. Let
A :M → X and B :M → X satisfy the following:

(i) A is weakly-strongly continuous,

(ii) B is nonexpansive and I − B is demiclosed,

(iii) Ax + By ∈M, for all x, y ∈M.

Then there is an x ∈M such that Ax + Bx = x.

Our next result is the following.

Theorem 2.5. Let M be a nonempty bounded closed convex subset of a Banach space X. Let A :
M → X and B :M → X satisfy the following:

(i) A is sequentially weakly continuous, and AM is relatively weakly compact,

(ii) B is sequentially weakly continuous nonexpansive mapping,

(iii) if (xn) is a sequence of M such that ((I − B)xn) is weakly convergent, then the sequence
(xn) has a convergent subsequence,

(iv) Ax + By ∈M, for all x, y ∈M.

Then there is an x ∈M such that Ax + Bx = x.

Proof. Without loss of generality, we may assume that 0 ∈ M. By hypothesis (v) we have for
each λ ∈ (0, 1) and x, y ∈M

λAx + λBy ∈M. (2.8)

Thus the mappings λA and λB satisfy the conditions of Theorem 1.7. Thus, for all λ ∈ (0, 1)
there is an xλ ∈ M such that λAxλ + λBxλ = xλ. Now choose a sequence {λn} in (0, 1) such
that λn → 1 and consider the corresponding sequence {xn} of elements ofM satisfying

λnAxn + λnBxn = xn. (2.9)

Using the fact thatAM is weakly compact and passing eventually to a subsequence, we may
assume that {Axn} converges weakly to some y ∈M. As a result

(I − λnB)xn ⇀ y. (2.10)

Since {xn} is a sequence inM, then it is norm bounded and so is {Bxn}. Consequently

‖(xn − Bxn) − (xn − λnBxn)‖ = (1 − λn)‖Bxn‖ −→ 0. (2.11)

This amounts to

xn − Bxn ⇀ y. (2.12)
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By hypothesis (iii) the sequence {xn} has a subsequence {xnk} which converges weakly to
some x ∈ M. Since A and B are weakly sequentially continuous, then {Axnk} converges
weakly to Ax and {Bxnk} converges weakly to Bx.Hence, x = Ax + Bx.

We next establish the following result which is a sharpening of [16, Theorem 2.3]. This
result is of fundamental importance for our subsequent analysis.

Theorem 2.6. Let X be a Banach space, and let ψ be a measure of weak noncompactness on X. Let Q
and C be closed, bounded, convex subsets of X withQ ⊆ C. In addition, letU be a weakly open subset
of Q with 0 ∈ U, and F : Uw → C a weakly sequentially continuous and ψ-condensing map. Then
either

F has a fixed point, (2.13)

or

there is a point u ∈ ∂QU and λ ∈ (0, 1) with u = λFu, (2.14)

here ∂QU is the weak boundary ofU in Q.

Proof. Suppose that (2.14) does not occur and F does not have a fixed point on ∂QU
(otherwise we are finished since (2.13) occurs). Let

M =
{
x ∈ Uw : x = λFx for some λ ∈ [0, 1]

}
. (2.15)

The set M is nonempty since 0 ∈ U. Also M is weakly sequentially closed. Indeed let (xn)
be sequence of M which converges weakly to some x ∈ Uw, and let (λn) be a sequence of
[0, 1] satisfying xn = λnFxn. By passing to a subsequence if necessary, we may assume that
(λn) converges to some λ ∈ [0, 1]. Since F is weakly sequentially continuous, then Fxn ⇀
Fx. Consequently λnFxn ⇀ λFx. Hence x = λFx and therefore x ∈ M. Thus M is weakly
sequentially closed.We now claim thatM is relatively weakly compact. Suppose that ψ(M) >
0. SinceM ⊆ co(F(M) ∪ {0}), then

ψ(M) ≤ ψ(co(F(M) ∪ {0})) = ψ(F(M)) < ψ(M), (2.16)

which is a contradiction. Hence ψ(M) = 0 and therefore Mw is compact. This proves our
claim. Now let x ∈ Mw. Since Mw is weakly compact, then there is a sequence (xn) in M
which converges weakly to x. Since M is weakly sequentially closed we have x ∈ M. Thus
Mw = M. HenceM is weakly closed and therefore weakly compact. From our assumptions
we have M ∩ ∂QU = ∅. Since X endowed with the weak topology is a locally convex space,
then there exists a continuous mapping ρ : Uw → [0, 1] with ρ(M) = 1 and ρ(∂QU) = 0 (see
[17]). Let

T(x) =

⎧
⎨

⎩

ρ(x)F(x), x ∈ Uw,

0, x ∈ C \Uw.
(2.17)
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Clearly T : C → C is weakly sequentially continuous since F is weakly sequentially
continuous. Moreover, for any S ⊆ C we have

T(S) ⊆ co(F(S ∩U) ∪ {0}). (2.18)

This implies that

ψ(T(S)) ≤ ψ(co(F(S ∩U) ∪ {0})) = ψ(F(S ∩U)) ≤ ψ(F(S)) < ψ(S) (2.19)

if ψ(S) > 0. Thus T : C → C is weakly sequentially continuous and ψ-condensing. By [18,
Theorem 12] there exists x ∈ C such that Tx = x. Now x ∈ U since 0 ∈ U. Consequently
x = ρ(x)F(x) and so x ∈M. This implies that ρ(x) = 1 and so x = F(x).

Remark 2.7. In [16, Theorem 2.3],Uw is assumed to be weakly compact.

Lemma 2.8. Let X be a Banach space and B : X → X a k-Lipschitzian map, that is,

∀x, y ∈ X, ∥
∥Bx − By∥∥ ≤ k∥∥x − y∥∥. (2.20)

In addition, suppose that B verifies (H2). Then for each bounded subset S of X one has

w(BS) ≤ kw(S), (2.21)

here, w is the De Blasi measure of weak noncompactness.

Proof. Let S be a bounded subset of X and r > w(S). There exist 0 ≤ r0 < r and a weakly
compact subset K of X such that S ⊆ K + Br0 . Now we show that

BS ⊆ BK + Bkr0 ⊆ BKw + Bkr0 . (2.22)

To see this let x ∈ S. Then there is a y ∈ K such that ‖x − y‖ ≤ r0. Since B is k-Lipschizian,
then ‖Bx − By‖ ≤ k‖x − y‖ ≤ kr0. This proves (2.22). Further, since B satisfies (H2), then the
Eberlein-Šmulian theorem [10, page 430] implies that BKw is weakly compact. Consequently

w(BS) ≤ kr0 ≤ kr. (2.23)

Letting r → w(S)we get

w(BS) ≤ kw(S). (2.24)

Now we are in a position to prove our next result.

Theorem 2.9. Let Q and C be closed, bounded, convex subsets of a Banach space X with Q ⊆ C. In
addition, letU be a weakly open subset ofQ with 0 ∈ U. Suppose thatA : Uw → X and B : X → X
are two weakly sequentially continuous mappings satisfying the following:
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(i) A(Uw) is relatively weakly compact,

(ii) B is a nonexpansive map,

(iii) if (xn) is a sequence of M such that ((I − B)xn) is weakly convergent, then the sequence
(xn) has a convergent subsequence,

(iv) Ax + Bx ∈ C for all x ∈ Uw.

Then either

A + B has a fixed point, (2.25)

or

there is a point u ∈ ∂QU and λ ∈ (0, 1) with u = λ(A + B)u, (2.26)

here ∂QU is the weak boundary ofU in Q.

Proof. Let μ ∈ (0, 1). We first show that the mapping Fμ := μA + μB is w-contractive with
constant μ. To see this let S be a bounded subset of Uw. Using the homogeneity and the
subadditivity of the De Blasi measure of weak noncompactness we obtain

w
(
Fμ(S)

) ≤ w(
μAS + μBS

) ≤ μw(AS) + μw(BS). (2.27)

Keeping in mind that A is weakly compact and using Lemma 2.8 we deduce that

w
(
Fμ(S)

) ≤ μw(S). (2.28)

This proves that Fμ isw-contractive with constant μ.Moreover, taking into account that 0 ∈ U
and using assumption (iv) we infer that Fμ maps Uw into C. Next suppose that (2.26) does
not occur and Fμ does not have a fixed point on ∂QU (otherwise we are finished since (2.25)
occurs). If there exists a u ∈ ∂QU and λ ∈ (0, 1)with u = λFμu, then u = λμAu+λμBuwhich is
impossible since λμ ∈ (0, 1). By Theorem 2.6 there exists xμ ∈ Uw such that xμ = Fμ(xμ).Now
choose a sequence {μn} in (0, 1) such that μn → 1 and consider the corresponding sequence
{xn} of elements ofUw satisfying

Fμn(xn) = μnAxn + μnBxn = xn. (2.29)

Using the fact that A(Uw) is weakly compact and passing eventually to a subsequence, we
may assume that {Axn} converges weakly to some y ∈ Uw.Hence

(
I − μnB

)
xn ⇀ y. (2.30)

Since {xn} is a sequence inUw, then it is norm bounded and so is {Bxn}. Consequently
∥
∥(xn − Bxn) −

(
xn − μnBxn

)∥
∥ =

(
1 − μn

)‖Bxn‖ −→ 0. (2.31)
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As a result

xn − Bxn ⇀ y. (2.32)

By hypothesis (iii) the sequence {xn} has a subsequence {xnk} which converges weakly to
some x ∈ Uw. The weak sequential continuity of A and B implies that x = Bx +Ax.

The following result is a sharpening of [16, Theorem 2.4].

Theorem 2.10. Let X be a separable Banach space, C a closed bounded convex subset of X, and Q
a closed convex subset of C with 0 ∈ Q. Also, assume that F : Q → C is a weakly sequentially
continuous and a weakly compact map. In addition, assume that the following conditions are satisfied:

(i) there exists a weakly continuous retraction r : X → Q,

(ii) there exists a δ > 0 and a weakly compact setQδ withΩδ = {x ∈ X : d(x,Q) ≤ δ} ⊆ Qδ,
here d(x, y) = ‖x − y‖,

(iii) for anyΩε = {x ∈ X : d(x,Q) ≤ ε, 0 < ε ≤ δ}, if {(xj , λj)}∞j=1 is a sequence inQ× [0, 1]
with xj ⇀ x ∈ ∂ΩεQ, λj → λ, and x = λF(x), 0 ≤ λ < 1, then λjF(xj) ∈ Q for j
sufficiently large, here ∂ΩεQ is the weak boundary of Q relative to Ωε.

Then F has a fixed point in Q.

Proof. Consider

B = {x ∈ X : x = Fr(x)}. (2.33)

We first show that B /= ∅. To see this, consider rF : Q → Q. Clearly rF is weakly sequentially
continuous, since F is weakly sequentially continuous and r is weakly continuous. Also
rF(Q) is relatively weakly compact since F(Q) is relatively weakly compact and r is weakly
continuous. Applying the Arino-Gautier Penot fixed point theorem [19] we infer that there
exists y ∈ Q with rF(y) = y. Let z = F(y), so Fr(z) = Fr(F(y)) = F(y) = z. Thus z ∈ B and
B /= ∅. In addition B is weakly sequentially closed, since Fr is weakly sequentially continuous.
Moreover, since B ⊆ Fr(B) ⊆ F(Q), then B is relatively weakly compact. Now let x ∈ Bw.

Since Bw is weakly compact, then there is a sequence (xn) of elements of B which converges
weakly to some x. Since B is weakly sequentially closed, then x ∈ B. Thus, Bw = B. This
implies that B is weakly compact. We now show that B ∩Q/= ∅. Suppose that B ∩Q = ∅. Then,
since B is weakly compact and Q is weakly closed, we have from [20] that d(B,Q) > 0. Thus
there exists ε, 0 < ε < δ, with Ωε ∩ B = ∅, here Ωε = {x ∈ X : d(x,Q) ≤ ε}. Now Ωε is closed
convex and Ωε ⊆ Qδ. From our assumptions it follows that Ωε is weakly compact. Also since
X is separable, then the weak topology on Ωε is metrizable [3, 10]; let d∗ denote the metric.
For i ∈ {0, 1, . . .}, let

Ui =
{
x ∈ Ωε : d∗(x,Q) <

ε

i

}
. (2.34)

For each i ∈ {0, 1, . . .} fixed,Ui is open with respect to d and soUi is weakly open inΩε. Also

Uw
i = Ud

i =
{
x ∈ Ωε : d∗(x,Q) ≤ ε

i

}
, ∂ΩεUi =

{
x ∈ Ωε : d∗(x,Q) =

ε

i

}
. (2.35)
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Keeping in mind that Ωε ∩ B = ∅, Theorem 2.6 guarantees that there exist yi ∈ ∂ΩεUi and
λi ∈ (0, 1) with yi = λiFr(yi).We now consider

D = {x ∈ X : x = λFr(x), for some λ ∈ [0, 1]}. (2.36)

The same reasoning as above implies that D is weakly compact. Then, up to a subsequence,
we may assume that λi → λ∗ ∈ [0, 1] and yi ⇀ y∗ ∈ ∂ΩεUi. Hence λiFr(yi) ⇀ λ∗Fr(y∗)
and therefore y∗ = λ∗Fr(y∗). Notice that λ∗Fr(y∗)/∈Q since y∗ ∈ ∂ΩεUi. Thus λ∗ /= 1 since
B ∩Q = ∅. From assumption (iii) it follows that λiFr(yi) ∈ Q for j sufficiently large, which is
a contradiction. Thus B ∩Q/= ∅, so there exists x ∈ Q with x = Fr(x), that is, x = Fx.

Remark 2.11. In [16, Theorem 2.4], Q is assumed to be weakly compact.

Theorem 2.12. Let X be a separable Banach space, C a closed bounded convex subset of X, and Q
a closed convex subset of C with 0 ∈ Q. Suppose that A : Q → X and B : X → X are weakly
sequentially continuous mappings satisfying the following:

(i) A(Q) is relatively weakly compact,

(ii) B is a nonexpansive map and I − B is injective,

(iii) A(Q) ⊆ (I − B)(C),
(iv) if (xn) is a sequence of M such that ((I − B)xn) is weakly convergent, then the sequence

(xn) has a weakly convergent subsequence,

(v) there exists a weakly continuous retraction r : X → Q,

(vi) there exists a δ > 0 and a weakly compact setQδ withΩδ = {x ∈ X : d(x,Q) ≤ δ} ⊆ Qδ,
here d(x, y) = ‖x − y‖,

(vii) for any Ωε = {x ∈ X : d(x,Q) ≤ ε, 0 < ε ≤ δ}, if {(xj , λj)}∞j=1 is a sequence in Q × [0, 1]

with xj ⇀ x ∈ ∂ΩεQ, λj → λ and x ∈ λ(I − B)−1(Ax), 0 ≤ λ < 1 ((I − B)−1(Ax) is the
inverse image of Ax under I − B), then {λj(I − B)−1(Axj)} ⊆ Q for j sufficiently large,
here ∂ΩεQ is the weak boundary of Q relative to Ωε.

Then A + B has a fixed point in Q.

Proof. Let us denote by F the map which assigns to each y ∈ Q the point F(y) ∈ C such that
(I − B)F(y) = Ay. Since I − B is injective, then F : Q → C is well defined. Now we show
that F fulfills the conditions of Theorem 2.10. We first claim that F(Q) is relatively weakly
compact. Indeed let (xn) be a sequence of elements of Q. Since A(Q) is weakly compact,
then, by extracting a subsequence if necessary, we may assume that (Axn) converges weakly
to some x ∈ X. Hence (I − B)F(xn) converges weakly to x. By assumption (iv) we deduce
that F(xn) has a weakly convergent subsequence. This proves our claim. Now we show that
F : Q → C is weakly sequentially continuous. To see this let (xn)n be a sequence in Q which
converges weakly to x. Since F(Q) is relatively weakly compact, there is a subsequence (xnk)
of (xn) such that

F(xnk)⇀ z. (2.37)
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Since (I − B)F(xnk) = A(xnk), then the weak sequential continuity of A and B implies (I −
B)(z) = Ax. By the definition of F we have (I − B)F(x) = Ax. This gives z = F(x) since I − B
is injective. Thus,

F(xnk)⇀ F(x). (2.38)

Now we show that

F(xn)⇀ F(x). (2.39)

Suppose the contrary, then there exists a weak neighborhoodNw of F(x) and a subsequence
(xnj ) of (xn) such that F(xnj )/∈Nw for all j ≥ 1. Since (xnj ) converges weakly to x, then
arguing as before we may extract a subsequence (xnjk ) of (xnj ) such that F(xnjk ) ⇀ F(x).
This is not possible since F(xnjk )/∈Nw for all k ≥ 1. As a result F is weakly sequentially
continuous. Now let Ωε = {x ∈ X : d(x,Q) ≤ ε, 0 < ε ≤ δ}, and let {(xj , λj)}∞j=1 be a
sequence in Q × [0, 1] with xj ⇀ x ∈ ∂ΩεQ, λj → λ, and x = λF(x), 0 ≤ λ < 1. Then
(I −B)(x/λ) = (I −B)F(x) = Ax.Hence x ∈ λ(I − B)−1(Ax). By assumption (vii)we infer that
{λj(I − B)−1(Axj)} ⊆ Q for j sufficiently large. This implies that λjF(xj) ∈ Q for j sufficiently
large. The result follows from Theorem 2.10.

Theorem 2.13. Let M be a nonempty bounded closed convex subset of a Banach space X. Suppose
that A,B :M → X are two continuous mappings satisfying the following:

(i) the set

F :=
{
x ∈ E : x = Bx +Ay for some y ∈M}

(2.40)

is relatively compact,

(ii) B is nonexpansive,

(iii) if (xn) is a sequence of M such that ((I − B)xn) is weakly convergent, then the sequence
(xn) has a weakly convergent subsequence,

(iv) I − B is injective and demiclosed,

(v) Ax + By ∈M, for all x, y ∈M.

Then A + B has at least one fixed point inM.

Proof. Let z ∈ A(M). The map which assigns to each x ∈ M the value Bx + z defines a
nonexpansive mapping fromM intoM. In view of Theorem 1.2, there exists a sequence (xn)
inM such that

(I − B)xn − z −→ 0. (2.41)

By assumption (iii)we have that (xn) has a subsequence, say (xnk),which converges to some
x ∈ M. Since (I − B) is demiclosed, then z = (I − B)x. Hence z ∈ (I − B)M. Consequently
A(M) ⊆ (I − B)(M). Let us denote by τ the map which assigns to each y ∈ M the point
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τ(y) ∈ M such that (I − B)τ(y) = Ay. Since I − B is injective, then τ : M → M is well
defined. Notice that τ(M) ⊆ F, then from assumption (i) it follows that τ(M) is relatively
compact. Now we show that τ : M → M is continuous. To see this let (xn) be a sequence of
M which converges to some x ∈M. Since τ(M) is relatively compact, there is a subsequence
(xnk) of (xn) such that

τ(xnk) −→ u. (2.42)

By definition of τ we have

τ(xnk) = A(xnk) + Bτ(xnk). (2.43)

The continuity of A and B yields u = Bu +Ax. Since (I − B)τ(x) = Ax and I − B is injective,
then we have u = τ(x). As a result

τ(xnk) −→ τ(x). (2.44)

Now we show that

τ(xn) −→ τ(x). (2.45)

Suppose the contrary, then there exists a ε > 0 and a subsequence (xnj ) of (xn) such that
‖τ(xnj ) − τ(x)‖ > ε for all j ≥ 1. Since (xnj ) converges to x, then arguing as before we may
extract a subsequence (xnjk ) of (xnj ) such that τ(xnjk ) → τ(x). This is not possible since
‖τ(xnjk ) − τ(x)‖ > ε for all k ≥ 1. Consequently, τ : M → M is continuous. Applying the
Schauder fixed point theorem we infer that there exists x ∈M such that

x = τ(x) = B(τ(x)) +Ax = Bx +Ax. (2.46)

An easy consequence of Theorem 2.13 is the following.

Corollary 2.14. Let M be a nonempty bounded closed convex subset of a reflexive Banach space X.
Suppose that A,B :M → X are two continuous mappings satisfying the following:

(i) the set

F :=
{
x ∈ E : x = Bx +Ay for some y ∈M}

(2.47)

is relatively compact,

(ii) B is nonexpansive,

(iii) I − B is injective and demi-closed,

(iv) Ax + By ∈M, for all x, y ∈M.

Then A + B has at least one fixed point inM.
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Proof. Keeping in mind that every bounded subset in a reflexive Banach space is relatively
weakly compact, the result follows from Theorem 2.13.

Corollary 2.15. Let M be a nonempty bounded closed convex subset of a uniformly convex Banach
space X. Suppose that A,B :M → X are two continuous mappings satisfying the following:

(i) the set

F :=
{
x ∈ E : x = Bx +Ay for some y ∈M}

(2.48)

is relatively compact,

(ii) B is nonexpansive and I − B is injective,

(iii) Ax + By ∈M, for all x, y ∈M.

Then A + B has at least one fixed point inM.

Proof. Note that in a uniformly convex space we have that B is nonexpansive implying that
I −B is demiclosed (see [4, 15]). Moreover, every uniformly convex Banach space is reflexive.
The result follows from Corollary 2.14.

Recall also the following definition.

Definition 2.16 (see [2]). LetX be a Banach space,M a nonempty subset ofX and T :M → X
be a mapping. We will call T a shrinking mapping if for all x, y ∈M such that x /=y we have

∥
∥Tx − Ty∥∥ < ∥

∥x − y∥∥. (2.49)

Thus a shrinking mapping is nonexpansive but need not be a contraction mapping.
If T is a shrinking mapping, then (I − B)−1 exists but need not be continuous. The following
result is also an immediate consequence of Theorem 2.13.

Corollary 2.17. Let M be a nonempty bounded closed convex subset of a Banach space X. Suppose
that A,B :M → X are two continuous mappings satisfying:

(i) The set

F :=
{
x ∈ E : x = Bx +Ay for some y ∈M}

(2.50)

is relatively compact,

(ii) B is a shrinking map,

(iii) if (xn) is a sequence of M such that ((I − B)xn) is weakly convergent, then the sequence
(xn) has a weakly convergent subsequence,

(iv) I − B is demiclosed,

(v) Ax + By ∈M, for all x, y ∈M.

Then A + B has at least one fixed point inM.
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The following example, which is taken from [21], shows that condition (i) in
Theorem 2.13 and Corollary 2.15 cannot be replaced by the compactness of A.

Example 2.18. Let H be a separable Hilbert space and (en)n∈Z
an orthonormal basis for H.

Let M be the closed unit ball of H. Define A and B as follows. For x =
∑+∞

n=−∞ xnen, Bx =
∑+∞

n=−∞ xnen+1 and Ax = (1 − ‖x‖)e0. We have that A is nonexpansive and maps bounded
sets into relatively compact sets. The mapping B is weakly continuous and nonexpansive.
Moreover, I − B is injective and (A + B)M ⊆M.However, A + B has no fixed point inM.

In the case where A is compact and B is nonexpansive, we add an additional
assumption on B to guarantee the existence of a fixed point for the sum A + B as follows.

Theorem 2.19. Let M be a nonempty bounded closed convex subset of a Banach space X. Suppose
that A,B :M → X are two continuous mappings satisfying the following:

(i) A is compact,

(ii) B is nonexpansive,

(iii) if (xn) is a sequence ofM such that ((I − B)xn) is strongly convergent, then the sequence
(xn) has a strongly convergent subsequence,

(iv) Ax + By ∈M, for all x, y ∈M.

Then A + B has at least one fixed point inM.

Proof. Arguing exactly in the sameway as in the proof of Theorem 2.5 and using [22, Theorem
2] instead of Theorem 1.7 we get the desired result.

Now, we state the following fixed point theorem of Furi-Pera type.

Theorem 2.20. Let Q be a closed convex subset of a Banach space X and 0 ∈ Q. Suppose that
A : Q → X and B : X → X are continuous mapping satisfyingthe following:

(i) the set

F :=
{
x ∈ E : x = Bx +Ay for some y ∈ Q}

(2.51)

is relatively compact,

(ii) I − B is injective,

(iii) A(Q) ⊆ (I − B)(X),

(iv) if {(xj , λj)}+∞j=1 is a sequence of ∂Q × [0, 1] converging to (x, λ) with x = λ(I − B)−1(Ax)
and 0 ≤ λ < 1, then λj(I − B)−1(Axj) ∈ Q for j sufficiently large.

Then A + B has a fixed point in Q.

Proof. Let y ∈ Q be fixed. From assumptions (ii) and (iii) it follows that there is a unique
zy ∈ X such that Ay = (I − B)zy. Let us denote by H : Q → X the map which assigns to y
the unique point H(y) = zy. Notice that H(Q) ⊆ F, then from assumption (i) it follows that
H(Q) is relatively compact. Now we show thatH : Q → X is continuous. To see this let (xn)
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be a sequence of Q which converges to some x ∈ Q. Since H(Q) is relatively compact, then
there is a subsequence (xnk) of (xn) such that

H(xnk) −→ u. (2.52)

By definition ofH we have

H(xnk) = A(xnk) + BH(xnk). (2.53)

The continuity of A and B yields u = Bu +Ax. Since (I − B)H(x) = Ax and I − B is injective,
then we have u = H(x). As a result

H(xnk) −→ H(x). (2.54)

The reasoning in Theorem 2.13 shows that

H(xn) −→ H(x). (2.55)

Now let {(xj , λj)}+∞j=1 be a sequence of ∂Q × [0, 1] converging to (x, λ) with x = λH(x) and

0 ≤ λ < 1, then x = λ(I − B)−1(Ax). From our assumptions it follows that λj(I − B)−1(Axj) ∈ Q
for j sufficiently large. Thus λjH(xj) ∈ Q for j sufficiently large. Now Theorem 1.9 implies
that there is an x ∈ Q with x = Hx and so x = Ax + BHx = Ax + Bx.

Also, we give the following fixed point theorem of Leray-Schauder type.

Theorem 2.21. LetX be a Banach space with C ⊆ X closed and convex. Assume thatU is a relatively
open subset of C with 0 ∈ U. Suppose that A : U → X and B : X → X are continuous mapping
satisfying the following:

(i) the set

F :=
{
x ∈ E : x = Bx +Ay for some y ∈ U

}
(2.56)

is relatively compact,

(ii) I − B is injective,

(iii) A(U) ⊆ (I − B)(C).
Then either

A + B has a fixed point in U, (2.57)

or

there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λB
(u

λ

)
+ λAu. (2.58)
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Proof. Let y ∈ U be fixed. From assumptions (ii) and (iii) it follows that there is a unique
zy ∈ C such that Ay = (I − B)zy. Let us denote by H : U → C the map which assigns to
y the unique point H(y) = zy. Notice that H(Q) ⊆ F, then from assumption (i) it follows
thatH(Q) is relatively compact. The reasoning in Theorem 2.20 shows thatH is continuous.
Now Theorem 1.8 implies that either there is a u ∈ U such that u = Hu, that is, u = Bu +Au,
or there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λHu. Thus u = λ(I − B)−1Au which is

equivalent to u = λB
(u

λ

)
+ λAu.

Theorem 2.22. Let U be a bounded open convex set in a Banach space X with 0 ∈ U. Suppose that
A : U → X and B : X → X are continuous mapping satisfying the following:

(i) A(U) is compact and A is weakly-strongly continuous,

(ii) B is nonexpansive and I − B is demiclosed,

(iii) if (xn) is a sequence of U such that ((I − B)xn) is weakly convergent, then the sequence
(xn) has a weakly convergent subsequence.

Then either

A + B has a fixed point in U, (2.59)

or

there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λBu + λAu. (2.60)

Proof. Suppose that (2.60) does not occur, and let μ ∈ (0, 1). The mapping Fμ := μA+μB is the
sum of a compact map and a strict contraction. This implies that Fμ is a condensing map (see
[23]). By Theorem 1.8 we deduce that there is an xμ ∈ U such that Fμxμ = μAxμ + μBxμ = xμ.
Now, choose a sequence {μn} in (0, 1) such that μn → 1 and consider the corresponding
sequence {xn} of elements ofU satisfying

μnAxn + μnBxn = xn. (2.61)

Keeping in mind that A(U) is weakly compact and passing eventually to a subsequence, we
may assume that {Axn} converges weakly to some y ∈ U. Hence

(
I − μnB

)
xn ⇀ y. (2.62)

Since {xn} is a sequence inU, then it is norm bounded and so is {Bxn}. Consequently
∥
∥(xn − Bxn) −

(
xn − μnBxn

)∥
∥ =

(
1 − μn

)‖Bxn‖ −→ 0. (2.63)

As a result

xn − Bxn ⇀ y. (2.64)
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By hypothesis (iii) the sequence {xn} has a subsequence {xnk} which converges weakly to
some x ∈ U. Since A is weakly-strongly continuous, then {Axnk} converges strongly to Ax.
Consequently

(I − λnkB)xnk −→ Ax. (2.65)

Standard arguments yields

xnk − Bxnk −→ Ax. (2.66)

The demiclosedness of I − B implies Ax + Bx = x.

Theorem 2.23. Let Q be a closed convex bounded set in a Banach space X with 0 ∈ Q. Suppose that
A : Q → X and B : X → X are continuous mapping satisfying the following:

(i) A(Q) is compact and A is weakly-strongly continuous,

(ii) B is nonexpansive and I − B is demiclosed,

(iii) if (xn) is a sequence of Q such that ((I − B)xn) is weakly convergent, then the sequence
(xn) has a weakly convergent subsequence,

(iv) if {(xj , λj)}+∞j=1 is a sequence of ∂Q × [0, 1] converging to (x, λ) with x = λAx + λBx and
0 ≤ λ < 1, then λjAxj + λjBxj ∈ Q for j sufficiently large.

Then A + B has a fixed point in Q.

Proof. Let μ ∈ (0, 1) be fixed. Since Fμ := μA + μB is the sum of a compact map and a strict
contraction, then Fμ is a condensing map (see [23]). Now let {(xj , λj)}+∞j=1 be a sequence of
∂Q × [0, 1] converging to (x, λ) with x = λFμ(x) and 0 ≤ λ < 1. Then x = μλAx + μλBx. From
assumption (iv) it follows that μλjAxj + μλjBxj ∈ Q for j sufficiently large. Consequently
λjFμ(xj) ∈ Q for j sufficiently large. Applying Theorem 1.9 to Fμ we deduce that there is an
xμ ∈ Q such that Fμxμ = μAxμ + μBxμ = xμ. Now, choose a sequence {μn} in (0, 1) such that
μn → 1 and consider the corresponding sequence {xn} of elements of Q satisfying

μnAxn + μnBxn = xn. (2.67)

Keeping in mind that A(Q) is weakly compact and passing eventually to a subsequence, we
may assume that {Axn} converges weakly to some y ∈ Q. Hence

(
I − μnB

)
xn ⇀ y. (2.68)

As in Theorem 2.22 this implies that

xn − Bxn ⇀ y. (2.69)
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By hypothesis (iii) the sequence {xn} has a subsequence {xnk} which converges weakly to
some x ∈ Q. Since A is weakly-strongly continuous, then {Axnk} converges strongly to Ax.
Consequently

(I − λnkB)xnk −→ Ax. (2.70)

Standard arguments yield

xnk − Bxnk −→ Ax. (2.71)

The demiclosedness of I − B implies that Ax + Bx = x.

Definition 2.24 (see [18, Definition 14]). A mapping B : D(B) ⊆ X → X is said to be φ-
expansive if there exists a function φ : [0,+∞[→ [0,+∞[ satisfying the following:

(i) φ(0) = 0,

(ii) φ(r) > 0 for r > 0,

(iii) either it is continuous or it is nondecreasing, such that, for every x, y ∈ D(B), the
inequality ‖Bx − By‖ ≥ φ(‖x − y‖) holds.

It was proved in [18] that if M is a nonempty bounded closed and convex subset of
a Banach space X and B : M → X is a nonexpansive mapping such that I − B : M → X is
φ-expansive, then (I − B)−1 : (I − B)(M) → M exists and is continuous. In the light of this
fact we obtain the following result which is an immediate consequence of Theorem 2.19.

Corollary 2.25. Let M be a nonempty bounded closed convex subset of a Banach space X. Suppose
that A,B :M → X are two continuous mappings satisfying the following:

(i) A is compact,

(ii) B is nonexpansive and I − B is φ-expansive,

(iii) Ax + By ∈M, for all x, y ∈M.

Then A + B has at least one fixed point inM.
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