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We present some new critical point theorems for nonlinear dynamical systems which are
generalizations of Dancš-Hegedüs-Medvegyev’s principle in uniform spaces and metric spaces
by applying an abstract maximal element principle established by Lin and Du. We establish
some generalizations of Ekeland’s variational principle, Caristi’s common fixed point theorem for
multivalued maps, Takahashi’s nonconvex minimization theorem, and common fuzzy fixed point
theorem for τ-functions. Some applications to the existence theorems of nonconvex versions of
variational inclusion and disclusion problems in metric spaces are also given.

1. Introduction

In 1983, Dancš et al. [1] proved the following existence theorem of critical point (or stationary
point or strict fixed point) for a nonlinear dynamical system.

Dancš-Hegedüs-Medvegyev’s Principle [1]

Let (X, d) be a complete metric space. Let Γ : X → 2X be a multivalued map with nonempty
values. Suppose that the following conditions are satisfied:

(i) for each x ∈ X, we have x ∈ Γ(x) and Γ(x) is closed,

(ii) x, y ∈ X with y ∈ Γ(x) implies that Γ(y) ⊆ Γ(x),

(iii) for each n ∈ N and each xn+1 ∈ Γ(xn), we have limn→∞d(xn, xn+1) = 0.

Then there exists v ∈ X such that Γ(v) = {v}.
The famous Dancš-Hegedüs-Medvegyev’s Principle is an important tool in various

fields of applied mathematical analysis and nonlinear analysis. A number of generalizations
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of these results have been investigated by several authors; for example, see [2, 3] and
references therein.

In 1963, Bishop and Phelps [4] proved a fundamental theorem concerning the density
of the set of support points of a closed convex subset of a Banach space by using a maximal
element principle in certain partially ordered complete subsets of a normed linear space.
Later, the famous Brézis-Browder’s maximal element principle [5] was established and
applied to deal with nonlinear problems. Many generalizations in various different directions
of maximal element principle have been studied in the past; for example, see [2, 3, 6–10] and
references therein. However, few literatures are concerned with how to define a sufficient
condition for a nondecreasing sequence on a quasiordered set to have an upper bound.
Recently, Du [7] and Lin and Du [3] defined the concepts of sizing-up function and μ-
bounded quasiordered set (see Definitions 1.1 and 1.3 below) to describe a rational condition
for a nondecreasing sequence on a quasiordered set to have an upper bound.

Definition 1.1 (see [3, 7]). Let X be a nonempty set. A function μ : 2X → [0,∞] defined on
the power set 2X of X is called sizing-up if it satisfies the following properties:

(μ1) μ(∅) = 0,

(μ2) μ(A) ≤ μ(B) if A ⊆ B.

Definition 1.2 (see [3, 7]). Let X be a nonempty set and μ : 2X → [0,∞] a sizing-up function.
A multivalued map T : X → 2X with nonempty values is said to be of type (μ) if, for each
x ∈ X and ε > 0, there exists a y = y(x, ε) ∈ T(x) such that μ(T(y)) ≤ ε.

Definition 1.3 (see [3, 7]). A quasiordered set (X,�) with a sizing-up function μ : 2X →
[0,∞], in short (X,�, μ), is said to be μ-bounded if every nondecreasing sequence x1 � x2 �
· · · � xn � xn+1 � · · · in X satisfying

lim
n→∞

μ({xn, xn+1, . . .}) = 0 (1.1)

has an upper bound.

In [7] (see also [3]), Lin and Du established the following abstract maximal element
principle in a μ-bounded quasiordered set with a sizing-up function μ.

Theorem LD [see [3, 7]]

Let (X,�, μ) be a μ-bounded quasiordered set with a sizing-up function μ : 2X → [0,∞]. For
each x ∈ X, let S : X → 2X be defined by S(x) = {y ∈ X : x � y}. If S is of type (μ), then, for
each x0 ∈ X, there exists a nondecreasing sequence x0 � x1 � x2 � · · · in X and v ∈ X such
that

(i) v is an upper bound of {xn}∞n=0,
(ii) S(v) ⊆ ⋂∞

n=0 S(xn),

(iii) μ(
⋂∞
n=0 S(xn)) = μ(S(v)) = 0.

It is well known that Ekeland’s variational principle is equivalent to Caristi’s fixed
point theorem, to Takahashi’s nonconvex minimization theorem, to the drop theorem, and
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to the petal theoerm. Many generalizations in various different directions of these results
in metric (or quasimetric) spaces and more general in topological vector spaces have been
investigated by several authors in the past; for detail, one can refer to [2, 3, 7–9, 11–23].
By applying Theorem LD, Du [7] gave a generalized Brézis-Browder principle, system
(vectorial) versions of Ekeland’s variational principle and maximal element principle and
a vectorial version of Takahashi’s nonconvex minimization theorem. Moreover, the author
investigated the equivalence between scalar versions and vectorial versions of these results.
For more detail, one can see [7].

The paper is divided into four sections. In Section 3, we establish some new critical
point theorems for nonlinear dynamical systems which are generalizations of Dancš,
Hegedüs and Medvegyev’s principles in uniform spaces and metric spaces by applying
an abstract maximal element principle established by Lin and Du. We also give some
generalizations of Ekeland’s variational principle, Caristi’s common fixed point theorem for
multivalued maps, Takahashi’s nonconvex minimization theorem, and common fuzzy fixed
point theorem for τ-functions. Some existence theorems of nonconvex versions of variational
inclusion and disclusion problems inmetric spaces are also given in Section 4. Our techniques
and some results are quite original in the literatures.

2. Preliminaries

Let us begin with some basic definitions and notation that will be needed in this paper. Let
X be a nonempty set. A fuzzy set in X is a function of X into [0, 1]. Let F(X) be the family of
all fuzzy sets in X. A fuzzy map on X is a map from X into F(X). This enables us to regard
each fuzzy map as a two-variable function of X ×X into [0, 1]. Let F be a fuzzy map onX. An
element x ofX is said to be a fuzzy fixed point of F if F(x, x) = 1 (see, e.g., [11, 12, 16, 24–26]).
Let Γ : X → 2X be a multivalued map. A point x ∈ X is called a critical point (or stationary
point or strict fixed point) [1, 3, 8, 27–29] of Γ if Γ(v) = {v}.

Let “�” be a quasiorder (preorder or pseudoorder, that is, a reflexive and transitive
relation) on X. Then (X,�) is called a quasiordered set. In a quasiordered set (X,�), recall
that an element v in X is called a maximal element of X if there is no element x of X,
different from v, such that v � x. Denote by R and N the set of real numbers and the set
of positive integers, respectively. A sequence {xn}n∈N

in X is called nondecreasing (resp.,
nonincreasing) if xn � xn+1 (resp., xn+1 � xn) for each n ∈ N.

Let X be a nonempty set andU, V any subsets of X ×X. Denote by

Δ = {(x, x) : x ∈ X} the diagonal of X ×X,
U[x] =

{
y ∈ X :

(
x, y

) ∈ U}
the entourage of x ∈ X,

U−1 =
{(
x, y

) ∈ X ×X :
(
y, x

) ∈ U}
,

U ◦ V =
{(
x, y

) ∈ X ×X :
(
z, y

) ∈ U, (x, z) ∈ V for some z ∈ X}
.

(2.1)

Recall that a uniform space (X,U) is a nonempty set X endowed of a uniformity U, with the
latter being a family of subsets of X ×X and satisfying the following conditions:

(u1) Δ ⊆ V for any V ∈ U,

(u2) If V1, V2 ∈ U, then there existsW ∈ U such thatW ⊂ V1 ∩ V2,
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(u3) If V ∈ U, then there existsW ∈ U such thatW ◦W−1 ⊂ V ,

(u4) If V ∈ U and V ⊂W ⊂ X ×X, thenW ∈ U.

Two points x and y of X are said to be V -close whenever (x, y) ∈ V and (y, x) ∈ V . A
sequence {xn}n∈N

in X is called a Cauchy sequence for U ((U)-Cauchy sequence, for short)
if, for any V ∈ U, there exists � ∈ N such that xn and xm are V -close for n,m ≥ �. A nonempty
subset C of X is said to be sequentially (U)-complete if every (U)-Cauchy sequence in C
converges. A uniformity U defines a unique topology τ(U) on X. A uniform space (X,U) is
said to be Hausdorff if and only if the intersection of all the V ∈ U reduces to the diagonal Δ
of X, that is, if (x, y) ∈ V for all V ∈ U implies that x = y. This guarantees the uniqueness of
limits of sequences.

Let (X, d) be a metric space. A real-valued function f : X → (−∞,∞] is said to be
proper if f /≡∞. Recall that a function p : X × X → [0,∞) is called a τ-function [9, 18], if the
following conditions hold:

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X,

(τ2) if x ∈ X and {yn} in X with limn→∞yn = y such that p(x, yn) ≤ M for some
M =M(x) > 0, then p(x, y) ≤M,

(τ3) for any sequence {xn} in X with limn→∞ sup{p(xn, xm) : m > n} = 0, if there exists
a sequence {yn} in X such that limn→∞p(xn, yn) = 0, then limn→∞d(xn, yn) = 0,

(τ4) for x, y, z ∈ X, p(x, y) = 0 and p(x, z) = 0 imply that y = z.

It is known that any w-distance [15, 18, 19, 21, 22, 30, 31] is a τ-function; see [18,
Remark 2.1].

The following result is crucial in this paper.

Lemma 2.1. Let (X, d) be a metric space and let p : X × X → [0,∞) be a function. Assume that
p satisfies condition (τ3). If a sequence {xn} in X with limn→∞ sup{p(xn, xm) : m > n} = 0, then
{xn} is a Cauchy sequence in X.

Proof. Let {xn} in X with limn→∞ sup{p(xn, xm) : m > n} = 0. We claim that {xn} is a
Cauchy sequence. For each n ∈ N, let εn = supi,j≥nd(xi, xj). Then {εn} is nonincreasing and so
limn→∞εn := ε∞ exists. If ε∞ > 0, then there exist sequences {in} and {jn} with in < jn such
that d(xin , xjn) > (1/2)ε∞ for n ∈ N. On the other hand, since limn→∞p(xin , xjn) = 0, by (τ3),
we have limn→∞d(xin , xjn) = 0, a contradiction. Therefore ε∞ = 0 which shows that {xn} is a
Cauchy sequence in X.

Remark 2.2. Notice that the function p was assumed a τ-function in [18, Lemma 2.1] and the
proof of [18, Lemma 2.1]was incomplete since only limn→∞d(xn, xn+1) = 0was demonstrated
if any sequence {xn} in X satisfied limn→∞ sup{p(xn, xm) : m > n} = 0.

3. New Critical Point Theorems in Uniform Spaces and Metric Spaces

In this section, we will establish some new critical point theorems for nonlinear dynamical
systems which are generalizations of Dancš-Hegedüs-Medvegyev’s principle with common
fuzzy fixed point in uniform spaces and metric spaces.
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Theorem 3.1. Let X be a nonempty set, and let ψ : X × X → (−∞,∞] and τ : X → [−∞,∞)
be functions. Let D be a nonempty subset of X and Γ : D → 2D a multivalued map with nonempty
values. Suppose the following:

(H1) 0 ≥ ψ(x, y) ≥ τ(x) for all x ∈ D and all y ∈ Γ(x),

(H2) for any x ∈ D and ε > 0, there exists y = y(x, ε) ∈ Γ(x) such that τ(z) ≥ −ε for all
z ∈ Γ(y).

Then there exists a sizing-up function μ : 2D → [0,∞] such that Γ is of type (μ).

Proof. Define μ(ψ,Γ) : 2D → [0,∞] by

μ(ψ,Γ)(A) =

⎧
⎨

⎩

0, if A = ∅,
sup

{−ψ(x, y) : x ∈ A,y ∈ Γ(x)
}
, if A/= ∅.

(3.1)

Then μ(ψ,Γ) is a sizing-up function. We will claim that Γ is of type (μ(ψ,Γ)). Let x ∈ D and ε > 0
be given. By (H1) and (H2), there exists y = y(x, ε) ∈ Γ(x) such that

μ(ψ,Γ)
(
Γ
(
y
))

= sup
{−ψ(a, b) : a ∈ Γ

(
y
)
, b ∈ Γ(a)

}

≤ sup
{−τ(a) : a ∈ Γ

(
y
)}

≤ ε.
(3.2)

Hence Γ is of type (μ(ψ,Γ)).

Theorem 3.2. Let (X,U) be a uniform space, and let ψ : X × X → (−∞,∞] and τ : X →
[−∞,∞) be functions. LetD be a sequentially (U)-complete nonempty subset ofX and Γ : D → 2D a
multivalued map with nonempty values. Suppose that conditions (H1) and (H2) in Theorem 3.1 hold
and further assume that

(H3) for each x ∈ D, x ∈ Γ(x) and Γ(x) is closed in D,

(H4) x, y ∈ D with y ∈ Γ(x) implies that Γ(y) ⊆ Γ(x),

(H5) for each V ∈ U, there exists δ = δ(V ) > 0 such that x, y ∈ D with y ∈ Γ(x) and
ψ(x, y) > −δ implies that (x, y) ∈ V .

Then there exist a quasiorder � on D and a sizing-up function μ : 2D → [0,∞] such that (D,�, μ)
is a μ-bounded quasiordered set.

Proof. Put a binary relation �(Γ) on D by

x�(Γ)y ⇐⇒ y ∈ Γ(x) (3.3)

and let S(Γ) : D → 2D be defined by S(Γ)(x) = {y ∈ D : x�(Γ)y}. Clearly, S(Γ)(x) = Γ(x) for
each x ∈ D and �(Γ) is a quasiorder from (H3) and (H4). Let μ(ψ,Γ) : 2D → [0,∞] be the
same as in Theorem 3.1. From the proof of Theorem 3.1, we know that μ(ψ,Γ) is a sizing-up
function and S(Γ) is of type (μ(ψ,Γ)). We want to show that (D,�(Γ), μ(ψ,Γ)) is a μ(ψ,Γ)-bounded
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quasiordered set. Let c1�(Γ)c2�(Γ) · · ·�(Γ)cn�(Γ)cn+1�(Γ) · · · be a nondecreasing sequence in D
satisfying

0 = lim
n→∞

μ(ψ,Γ)({cn, cn+1, · · · })

= lim
n→∞

sup
{−ψ(x, y) : x ∈ {cn, cn+1, · · · }, y ∈ S(Γ)(x)

}
.

(3.4)

Since cm ∈ S(Γ)(cn) for m, n ∈ N with m ≥ n, limn,m→∞ψ(cn, cm) = 0. Let V ∈ U and choose
W ∈ U such that W ◦W−1 ⊂ V . By (H5), there exists δ = δ(W) > 0 such that x, y ∈ D with
y ∈ Γ(x) and ψ(x, y) > −δ imply that (x, y) ∈ W . Since limn,m→∞ψ(cn, cm) = 0, there exists
n0 ∈ N such that ψ(cn, cm) > −δ for all m, n ∈ N with m ≥ n ≥ n0. It implies that (cn, cm) ∈ W
and hence (cm, cn) ∈ W−1 for all m, n ∈ N with m ≥ n ≥ n0. Since W ◦W−1 ⊂ V , we have
(cn, cm) ∈ V and (cm, cn) ∈ V for m ≥ n ≥ n0. Therefore, {cn}n∈N

is a nondecreasing (U)-
Cauchy sequence in D. By the sequential (U)-completeness of D, there exists ξ ∈ D such that
cn → ξ as n → ∞. For each n ∈ N, since S(Γ)(cn) is closed from (H3) and

cm ∈ S(Γ)(cm) ⊆ S(Γ)(cn) ∀m ≥ n, (3.5)

we obtain ξ ∈ S(Γ)(cn) or cn�(Γ)ξ. Hence ξ is an upper bound of {cn}. Therefore (D,�(Γ), μ(ψ,Γ))
is a μ(ψ,Γ)-bounded quasiordered set.

Theorem 3.3. Let (X,U) be a Hausdorff uniform space, and let ψ : X×X → (−∞,∞] and τ : X →
[−∞,∞) be functions. Let D be a sequentially (U)-complete nonempty subset of X, g : D → D a
map, and Γ : D → 2D a multivalued map with nonempty values. Let I be any index set. For each
i ∈ I, let Fi be a fuzzy map on D. Suppose the conditions (H1), (H2), (H3), and (H5) in Theorem 3.2
hold and further assume

(H4)S x, y ∈ D with y ∈ Γ(x) implies that g(y) ∈ Γ(x) and Γ(y) ⊆ Γ(x);

(H6) for any (i, x) ∈ I × D, there exists y(i,x) ∈ Γ(x) such that Fi(x, y(i,x)) = 1.

Then there exists z0 ∈ D such that

(a) Fi(z0, z0) = 1 for all i ∈ I,
(b) Γ(z0) = {g(z0)} = {z0}.

Proof. Applying Theorem 3.1 and Theorem 3.2, Γ ≡ S(Γ) is of type (μ(ψ,Γ)) and (D,�(Γ), μ(ψ,Γ))
is a μ(ψ,Γ)-bounded quasiordered set, where �(Γ), S(Γ), and μ(ψ,Γ) are the same as in Theorems
3.1 and 3.2. By Theorem LD, for each x ∈ D, there exists vx ∈ Γ(x) such that μ(ψ,Γ)(Γ(vx)) = 0.
Then it follows from the definition of μ(ψ,Γ), vx ∈ Γ(vx), and μ(ψ,Γ)(Γ(vx)) = 0 that ψ(vx, z) = 0
for all z ∈ Γ(vx). We want to prove that Γ(vx) = {vx}. Since ψ(vx, z) > −δ for all z ∈ Γ(vx) and
all δ > 0, by (H5), we have (vx, z) ∈ V for all z ∈ Γ(vx) and all V ∈ U. Since U is a Hausdorff
uniformity,

(vx, z) ∈
⋂

V∈U
V = Δ ∀z ∈ Γ(vx), (3.6)

and hence we have Γ(vx) = {vx}. For each i ∈ I, by (H6), Fi(vx, vx) = 1. On the other hand,
by (H4)S, we have g(vx) ∈ Γ(vx) = {vx}. Therefore Γ(vx) = {g(vx)} = {vx}. The proof is
completed.
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Theorem 3.4. Let (X,U),D, g,Γ, ψ, and τ be the same as in Theorem 3.3. Assume that the conditions
(H1), (H2), (H3), (H4)S, and (H5) in Theorem 3.3 hold. Let I be any index set. For each i ∈ I, let
Ti : D → 2D be a multivalued map with nonempty values. Suppose that, for each (i, x) ∈ I ×D, there
exists y(i,x) ∈ Ti(x) ∩ Γ(x). Then there exists z0 ∈ D such that

(a) z0 is a common fixed point for the family {Ti}i∈I (i.e., z0 ∈ Ti(z0) for all i ∈ I);
(b) Γ(z0) = {g(z0)} = {z0}.

Proof. For each i ∈ I, define a fuzzy map Fi on D by

Fi
(
x, y

)
= χTi(x)

(
y
)
, (3.7)

where χA is the characteristic function for an arbitrary set A ⊂ X. Note that y ∈ Ti(x) ⇔
Fi(x, y) = 1 for i ∈ I. Then for any (i, x) ∈ I × D, there exists yx ∈ Γ(x) such that Fi(x, yx) = 1.
So (H6) in Theorem 3.3 holds and hence all conditions in Theorem 3.3 are satisfied. Therefore
the result follows from Theorem 3.3.

Remark 3.5. Let (X, d) be a complete metric space. For each ε > 0, let

V (ε) =
{(
x, y

) ∈ X ×X : d
(
x, y

)
< ε

}
. (3.8)

It is easy to see that the family Ud := {V (ε) : ε > 0} is a Hausdorff uniformity on X and X is
(Ud)-complete.

Lemma 3.6. Let (X, d) be a metric space, g : X → X a map and Γ : X → 2X a multivalued map
with nonempty values. Suppose that

(h1) for each x ∈ X, x ∈ Γ(x),

(h2) x, y ∈ X with y ∈ Γ(x) implies that g(y) ∈ Γ(x) and Γ(y) ⊆ Γ(x),

(h3) if a sequence {xn} in X satisfies g(xn+1) ∈ Γ(xn) for each n ∈ N, then
limn→∞d(xn, xn+1) = 0.

Then there exist functions ψ : X × X → (−∞,∞] and τ : X → [−∞,∞) such that the conditions
(H1) and (H2) in Theorem 3.1 hold.

Proof. Define ψ : X ×X → (−∞,∞] and τ : X → [−∞,∞) by

ψ
(
x, y

)
= −d(x, y),

τ(x) = inf
y∈Γ(x)

[−d(x, y)]. (3.9)

Then (H1) in Theorem 3.1 holds with D ≡ X.
Let us verify (H2). Let x ∈ X and ε > 0 be given. Then there exists α ∈ N such that

2−α <
ε

4
. (3.10)
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Note first that τ(u) > −∞ for some u ∈ Γ(x). Indeed, on the contrary, suppose that τ(z) = −∞
for all z ∈ Γ(x). Take z1 ∈ Γ(x). Thus τ(z1) = infy∈Γ(z1)[−d(z1, y)] < −1. Hence there exists
z2 ∈ Γ(z1) such that d(z1, z2) > 1. Since τ(z2) < −2, there exists z3 ∈ Γ(z2) such that d(z2, z3) >
2. Continuing in the process, we can obtain a sequence {zn} ⊂ X such that, for each n ∈ N,

(i) zn+1 ∈ Γ(zn),

(ii) d(zn, zn+1) > n.

So, we have limn→∞d(zn, zn+1) = ∞ which contradicts condition (h3). Therefore there exists
u ∈ Γ(x) such that τ(u) > −∞. Let v1 = u. Choose v2 ∈ Γ(v1) = Γ(u) ⊆ Γ(x) such that

−d(v1, v2) ≤ τ(v1) + 1
2
. (3.11)

Let k ∈ N and assume that vk ∈ X is already known. Then, by induction, we obtain a sequence
{vn} in X such that vn+1 ∈ Γ(vn) and

−d(vn, vn+1) ≤ τ(vn) + 1
2n
, for each n ∈ N. (3.12)

It follows that

vn+1 ∈ Γ(vn) ⊆ Γ(vn−1) ⊆ · · · ⊆ Γ(v1) = Γ(u) ⊆ Γ(x), for each n ∈ N. (3.13)

By (h2) and (h3), we have limn→∞d(vn, vn+1) = 0. So there exists β ∈ N such that

d(vn, vn+1) <
ε

8
, ∀n ∈ N with n ≥ β. (3.14)

Since Γ(vn+1) ⊆ Γ(vn) for each n ∈ N, we have

τ(vn) = inf
y∈Γ(vn)

[−d(vn, y
)]

≤ inf
y∈Γ(vn+1)

[−d(vn+1, y
)
+ d(vn+1, vn)

]

= τ(vn+1) + d(vn, vn+1).

(3.15)

From (3.12) and (3.15), we obtain

−τ(vn+1) ≤ 2d(vn, vn+1) +
1
2n
, n ∈ N. (3.16)

Let γ = max{α, β}. Hence, combining (3.10), (3.14), and (3.16), we have

0 ≤ −τ(vn+1) < ε

2
, ∀n ∈ N with n ≥ γ. (3.17)
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Let yx = vγ+1. Thus, by (3.13) and (3.17), yx ∈ Γ(x) and 0 ≤ −τ(yx) < ε/2. On the other hand,
from the definition of τ , we have

0 ≤ d(yx, a
) ≤ −τ(yx

)
, ∀a ∈ Γ

(
yx

)
. (3.18)

Finally, in order to complete the proof, we need to show that τ(z) ≥ −ε for all z ∈ Γ(yx). Let
z ∈ Γ(yx). Then Γ(z) ⊆ Γ(yx) and d(yx, z) ≤ −τ(yx). For any w ∈ Γ(z), since Γ(z) ⊆ Γ(yx), we
get

d(z,w) ≤ d(z, yx
)
+ d

(
yx,w

) ≤ −2τ(yx
)
< ε, (3.19)

and hence it implies that τ(z) ≥ −ε. Therefore (H2) can be satisfied.

Theorem 3.7. Let (X, d) be a complete metric space, g : X → X a map, and Γ : X → 2X a
multivalued map with nonempty values. Let I be any index set. For each i ∈ I, let Fi be a fuzzy map
on X. Suppose that conditions (h2) and (h3) in Theorem 3.4 hold and further assume

(h1)S for each x ∈ X, x ∈ Γ(x) and Γ(x) is closed,

(h4) for any (i, x) ∈ I ×X, there exists y(i,x) ∈ Γ(x) such that Fi(x, y(i,x)) = 1.

Then there exists z0 ∈ X such that

(a) Fi(z0, z0) = 1 for all i ∈ I,
(b) Γ(z0) = {g(z0)} = {z0}.

Proof. For each ε > 0, define

V (ε) =
{(
x, y

) ∈ X ×X : d
(
x, y

)
< ε

}
,

Ud = {V (ε) : ε > 0}.
(3.20)

Then Ud is a Hausdorff uniformity on X and X is (Ud)-complete. Clearly, conditions (H3),
(H4)S, and (H6) in Theorem 3.3 hold. By Lemma 3.6, (H1) and (H2) in Theorem 3.1 holds. Let
V (ε) ∈ Ud for ε > 0. Take δ(V (ε)) := ε > 0. If x, y ∈ X with y ∈ Γ(x) and ψ(x, y) > −δ(V (ε)),
then d(x, y) < ε which means that (x, y) ∈ V (ε). So (H5) in Theorem 3.2 holds. Therefore the
conclusion follows from Theorem 3.3.

Theorem 3.8. Let (X, d), g, I, and Γ be the same as in Theorem 3.7. Assume that the conditions
(h1)S, (h2) and (h3) in Theorem 3.7 hold. Let I be any index set. For each i ∈ I, let Ti : X → 2X

be a multivalued map with nonempty values. Suppose that for each (i, x) ∈ I × X, there exists yx ∈
Ti(x) ∩ Γ(x). Then there exists z0 ∈ X such that

(a) z0 is a common fixed point for the family {Ti}i∈I ,
(b) Γ(z0) = {g(z0)} = {z0}.

Remark 3.9. Theorems 3.3–3.8 all generalize and improve the primitive Dancš-Hegedüs-
Medvegyev’s principle.
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4. Some Applications to Nonlinear Problems

The following result is a generalization of Ekeland’s variational principle and Takahashi’s
nonconvex minimization theorem for τ-functions with common fuzzy fixed point theorem.

Theorem 4.1. Let (X, d) be a complete metric space, f : X → (−∞,∞] a proper l.s.c. and bounded
from below function, ϕ : (−∞,∞] → (0,∞) a nondecreasing function, and p a τ-function on X with
p(x, ·) being l.s.c. for each x ∈ X. Let I be any index set. For each i ∈ I, let Fi be a fuzzy map on X.
Suppose that, for each (i, x) ∈ I ×X and any ε > 0, there exists y(i,x,ε) ∈ X such that Fi(x, y(i,x,ε)) = 1
and εp(x, y(i,x,ε)) ≤ ϕ(f(x))(f(x) − f(y(i,x,ε))). Then for each ε > 0 and any u ∈ X with f(u) < ∞
and p(u, u) = 0, there exists v ∈ X such that

(a) εp(u, v) ≤ ϕ(f(u))(f(u) − f(v)),
(b) εp(v, x) > ϕ(f(v))(f(v) − f(x)) for all x ∈ X with x /=v,

(c) Fi(v, v) = 1 for all i ∈ I.
Moreover, if one further assumes that

(H) for each ε > 0 and any x ∈ X with f(x) > infz∈Xf(z), there exists y ∈ X with y /=x such
that εp(x, y) ≤ ϕ(f(x))(f(x) − f(y)),

then f(v) = infz∈Xf(z).

Proof. Take g ≡ id as an identity map. Let ε > 0 be given and let u ∈ X with f(u) < ∞ and
p(u, u) = 0. Put

W =
{
x ∈ X : εp(u, x) ≤ ϕ(f(u))(f(u) − f(x))}. (4.1)

By the lower semicontinuity of f and p(u, ·), W is a nonempty closed set in X. So (W, d) is a
complete metric space. Define Γ : W → 2W by

Γ(x) =
{
y ∈ W : x = y or εp

(
x, y

) ≤ ϕ(f(x))(f(x) − f(y))}. (4.2)

Then for each x ∈ W, we have x ∈ Γ(x) and Γ(x) is closed. It is easy to see that if x, y ∈ Wwith
y ∈ Γ(x), then Γ(y) ⊆ Γ(x). By our hypothesis, for each (i, x) ∈ I ×W, there exists y(i,x) ∈ Γ(x)
such that Fi(x, y(i,x)) = 1.

We will prove that if a sequence {xn} in W satisfies xn+1 ∈ Γ(xn) for each n ∈ N, then
limn→∞d(xn, xn+1) = 0. Let {xn} ⊂ W satisfy xn+1 ∈ Γ(xn) for each n ∈ N. Then {f(xn)} is a
nonincreasing sequence. Since f is bounded below, r ≡ limn→∞f(xn) = infn∈Nf(xn) exists.
We claim that limn→∞ sup{p(xn, xm) : m > n} = 0. Let αn = (1/ε)ϕ(f(x1))(f(xn) − r), n ∈ N.
Form,n ∈ N withm > n, since ϕ is nondecreasing, we have

p(xn, xm) ≤
m−1∑

j=n

p
(
xj , xj+1

) ≤ αn. (4.3)

Then sup{p(xn, xm) : m > n} ≤ αn for each n ∈ N. Since limn→∞f(xn) = r, we
obtain limn→∞αn = 0 and limn→∞ sup{p(xn, xm) : m > n} = 0. By Lemma 2.1, {xn} is a
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Cauchy sequence in W, and hence we have limn→∞d(xn, xn+1) = 0. So all the conditions of
Theorem 3.7 are satisfied. Applying Theorem 3.7, there exists v ∈ W such that

Fi(v, v) = 1, ∀i ∈ I, (4.4)

Γ(v) = {v}. (4.5)

Since v ∈ W, we have the conclusion (a). From (4.5), εp(v, x) > ϕ(f(v))(f(v) − f(x))
for all x ∈ Wwith x /=v. For any x ∈ X \ W, since

ε
[
p(u, v) + p(v, x)

] ≥ εp(u, x)
> ϕ

(
f(u)

)(
f(u) − f(x))

≥ εp(u, v) + ϕ(f(v))(f(v) − f(x)),
(4.6)

it follows that εp(v, x) > ϕ(f(v))(f(v) − f(x)) for all x ∈ X \ W. So the conclusion (b) holds.
Moreover, assume that condition (H) holds. On the contrary, if f(v) > infx∈Xf(x), then

there existsw ∈ X withw/=v such that εp(v,w) ≤ ϕ(f(v))(f(v)−f(w)). But, by (b), we have

εp(v,w) > ϕ
(
f(v)

)(
f(v) − f(w)

) ≥ εp(v,w), (4.7)

a contradiction. Therefore f(v) = infz∈Xf(z). The proof is completed.

By using Theorem 4.1, we can immediately obtain the following τ-function version of
generalized Ekeland’s variational principle, generalized Takahashi’s nonconvex minimiza-
tion theorem, and generalized Caristi’s common fixed point theorem for multivalued maps.

Theorem 4.2. Let (X, d), f , ϕ, and p be the same as in Theorem 4.1. Let I be any index set. For each
i ∈ I, let Ti : X → 2X be a multivalued map with nonempty values such that, for each (i, x) ∈ I ×X
and any ε > 0, there exists y(i,x) ∈ Ti(x) such that εp(x, y(i,x)) ≤ ϕ(f(x))(f(x)−f(y(i,x))). Then for
each ε > 0 and u ∈ X with f(u) <∞ and p(u, u) = 0, there exists v ∈ X such that

(a) εp(u, v) ≤ ϕ(f(u))(f(u) − f(v)),
(b) εp(v, x) > ϕ(f(v))(f(v) − f(x)) for all x ∈ X with x /=v,

(c) v is a common fixed point for the family {Ti}i∈I .

Moreover, if one further assumes that

(H) for each ε > 0 and any x ∈ X with f(x) > infz∈Xf(z), there exists y ∈ X with y /=x such
that εp(x, y) ≤ ϕ(f(x))(f(x) − f(y)),

then f(v) = infz∈Xf(z).

Remark 4.3. Theorem 4.2 extends some results in [2, 8, 14, 15, 19, 22] and references therein.

The following result is an existence theorem of nonconvex version of variational
disclusion problem with common fuzzy fixed point theorem in metric spaces.
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Theorem 4.4. Let (X, d) be a complete metric space, E a nonempty set with α ∈ E, and L : X ×X →
2E a multivalued map. Let I be any index set. For each i ∈ I, let Fi be a fuzzy map on X. Assume that

(D1) for each x ∈ X, the set {y ∈ X : x = y or α ∈ L(x, y)} is a closed subset of X,

(D2) x, y, z ∈ X with α ∈ L(x, y) and α ∈ L(y, z) implies that α ∈ L(x, z),
(D3) if a sequence {xn}n∈N

in X satisfies α ∈ L(xn, xn+1) for each n ∈ N, then d(xn, xn+1) → 0
as n → ∞,

(D4) for any (i, x) ∈ I ×X, there exists y(i,x) ∈ X such that α ∈ L(x, y(i,x)) and Fi(x, y(i,x)) = 1.

Then there exists v ∈ X such that

(a) Fi(v, v) = 1 for all i ∈ I,
(b) α/∈L(v, x) for all x ∈ X \ {v}.

Proof. Take g ≡ id as an identity map. Define Γ : X → 2X by

Γ(x) =
{
y ∈ X : x = y or α ∈ L(x, y)}. (4.8)

Clearly, (h1)S, (h3), and (h4) in Theorem 3.7 hold. To see (h2), let x, y ∈ X with y ∈
Γ(x). We need to consider the following two possible cases:

Case 1. If x = y, then Γ(y) = Γ(x) ⊆ Γ(x) is obvious.

Case 2. If x /=y, then α ∈ L(x, y). For any z ∈ Γ(y), if z = y, one has z ∈ Γ(x). Otherwise, if
α ∈ L(y, z), then it follows from α ∈ L(x, y) and (D2) that α ∈ L(x, z). So z ∈ Γ(x). Therefore
Γ(y) ⊆ Γ(x).

By Cases 1 and 2, we prove that (h2) holds. Applying Theorem 3.7, there exists v ∈ X
such that

(1) Fi(v, v) = 1 for all i ∈ I,
(2) Γ(v) = {v}.

From (2), we obtain α/∈L(v, x) for all x ∈ X \ {v}.

Remark 4.5. Theorem 4.4 generalizes [17, Theorems 3.1] which is one of the main results of
Lin and Chuang [17].

Here, we give an example illustrating Theorem 4.4.

Example 4.6. Let X = [0, 3] with the metric d(x, y) = |x − y| for x, y ∈ X. Then (X, d) is
a complete metric space. Let E = (−1000,−500) ∪ {−360} ∪ {−210} ∪ [−100,∞) and let L :
X ×X → 2E be defined by

L
(
x, y

)
=
[
9
(
x − y) + 5,∞)

. (4.9)
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Let C0 = {0} and Cn = (n − 1, n], for every n ∈ {1, 2, 3}, and define a fuzzy map F : X × X →
[0, 1] by

F
(
x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
(
x, y

) ∈ C0 × C0,

1
4
, if

(
x, y

) ∈ X × C1,

1
2
, if

(
x, y

) ∈ X × C2,

1, if
(
x, y

) ∈ X × C3.

(4.10)

Clearly, 5 ∈ L(x, x) for each x ∈ X. Note that, for each x ∈ X, {y ∈ X : x = y or 5 ∈ L(x, y)} =
{y ∈ X : 5 ∈ L(x, y)} = [x, 3] is nonempty and closed in X. So (D1) and (D4) hold. To see
(D2), let x, y, z ∈ X with 5 ∈ L(x, y) and 5 ∈ L(y, z). It is easy to see that 5 ∈ L(x, z) holds.
Finally, let {xn}n∈N

be a sequence in X satisfing 5 ∈ L(xn, xn+1) for each n ∈ N. So {xn} is a
nondecreasing sequence and xn ≤ 3 for each n ∈ N. Thus {xn} converges in X and hence
d(xn, xn+1) → 0 as n → ∞. So (D3) also holds. By Theorem 4.4, there exists v ∈ X (in fact,
we take v = 3) such that F(v, v) = 1 and 5/∈L(v, y) for all y ∈ X \ {v}.

The following conclusion is immediate from Theorem 4.4.

Theorem 4.7. Let (X, d), E, α, L, (D1), (D2), and (D3) be the same as in Theorem 4.4. Let I be any
index set. For each i ∈ I, let Ti : X → 2X be a multivalued map with nonempty values. Suppose that
for each (i, x) ∈ I ×X, there exists y(i,x) ∈ Ti(x) such that α ∈ L(x, y(i,x)).

Then there exists v ∈ X such that

(a) v is a common fixed point for the family {Ti}i∈I ,
(b) α/∈L(v, x) for all x ∈ X \ {v}.

Following a similar argument as in Theorem 4.4, we can easily obtain the following
existence theorem of nonconvex version of variational inclusion problem in metric spaces.

Theorem 4.8. In Theorem 4.4, if conditions (D1) and (D2) are replaced by the condition (D1)′ and
(D2)′, where

(D1)′ for each x ∈ X, the set {y ∈ X : x = y or α/∈L(x, y)} is a closed subset of X,

(D2)′ x, y, z ∈ X with α/∈L(x, y) and α/∈L(y, z) implies that α/∈L(x, z),

then there exists v ∈ X such that

(a) Fi(v, v) = 1 for all i ∈ I,
(b) α ∈ L(v, x) for all x ∈ X \ {v}.

Theorem 4.9. Let (X, d), E, α, L, (D1)′, (D2)′, and (D3) be the same as in Theorem 4.8. Let I be
any index set. For each i ∈ I, let Ti : X → 2X be a multivalued map with nonempty values. Suppose
that for each (i, x) ∈ I ×X, there exists y(i,x) ∈ Ti(x) such that α ∈ L(x, y(i,x)).
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Then there exists v ∈ X such that

(a) v is a common fixed point for the family {Ti}i∈I ,
(b) α ∈ L(v, x) for all x ∈ X \ {v}.

The following existence theorem of nonconvex version of variational inclusion and
disclusion problem in the Ekeland’s sense is immediate from Theorem 4.4.

Theorem 4.10. Let (X, d) be a complete metric space, p a τ-function on X with p(x, ·) being l.s.c. for
each x ∈ X, V a topological vector space with origin θ, G : X × X → 2V a multivalued maps, and
k0 ∈ V \ {θ}. Let I be any index set. For each i ∈ I, let Fi be a fuzzy map on X. Assume that

(S1) for each x ∈ X, the set {y ∈ X : x = y or θ ∈ G(x, y) + p(x, y)k0} is closed in X,

(S2) x, y, z ∈ X with θ ∈ G(x, y) + p(x, y)k0 and θ ∈ G(y, z) + p(y, z)k0 implies that
θ ∈ G(x, z) + p(x, z)k0,

(S3) if a sequence {xn}n∈N
in X satisfies θ ∈ G(xn, xn+1) + p(xn, xn+1)k0 for each n ∈ N, then

d(xn, xn+1) → 0 as n → ∞,

(S4) for any (i, x) ∈ I ×X, there exists y(i,x) ∈ X such that θ ∈ G(x, y(i,x)) + p(x, y(i,x))k0 and
Fi(x, y(i,x)) = 1.

Then for each u ∈ X with θ ∈ G(u, u) and p(u, u) = 0, there exists v ∈ X such that

(i) θ ∈ G(u, v) + p(u, v)k0,
(ii) θ /∈G(v, x) + p(v, x)k0 for all X \ {v},
(iii) Fi(v, v) = 1 for all i ∈ I.

Proof. Let u ∈ X be given and L : X × X → 2V defined by L(x, y) := G(x, y) + p(x, y)k0
for (x, y) ∈ X × X. Put M := {x ∈ X : θ ∈ L(u, x)}. Since u ∈ M, M/= ∅. By (S1), (M, d) be
a complete metric space. It is not hard to see that all conditions in Theorem 4.4 are satisfied
from (S1)–(S4). Applying Theorem 4.4, there exists v ∈ M such that Fi(v, v) = 1 for all i ∈ I
and θ /∈L(v, x) for all x ∈ M \ {v} or, equivalently,

(a) θ ∈ G(u, v) + p(u, v)k0,
(b) θ /∈G(v, x) + p(v, x)k0 for all M\ {v}.

For any x ∈ X \M, if θ ∈ G(v, x) + p(v, x)k0, then, by (S2) and (a), we have x ∈ M, which is
a contradiction. Therefore θ /∈G(v, x) + p(v, x)k0 for all X \ {v}.

Remark 4.11. Theorem 3.2 in [17] is a special case of Theorem 4.10.
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operators,” Acta Universitatis Sapientiae. Mathematica, vol. 1, no. 2, pp. 151–159, 2009.


