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Let X be a compact Hausdorff topological space and let C(X) and CR(X) denote the complex
and real Banach algebras of all continuous complex-valued and continuous real-valued functions
on X under the uniform norm on X, respectively. Recently, Fupinwong and Dhompongsa (2010)
obtained a general condition for infinite dimensional unital commutative real and complex Banach
algebras to fail the fixed-point property and showed that CR(X) and C(X) are examples of such
algebras. At the same time Dhompongsa et al. (2011) showed that a complex C∗-algebraA has the
fixed-point property if and only ifA is finite dimensional. In this paper we show that some complex
and real unital uniformly closed subalgebras ofC(X) do not have the fixed-point property by using
the results given by them and by applying the concept of peak points for those subalgebras.

1. Introduction and Preliminaries

We let C, R, N = {1, 2, 3, . . .}, T = {z ∈ C : |z| = 1}, D = {z ∈ C : |z| < 1}, D = {z ∈ C : |z| ≤ 1}
denote the fields of complex, real numbers, the set of natural numbers, the unit circle, the
open unit disc, and the closed unit disc, respectively. The symbol F denotes a field that can
be either C or R. The elements of F are called scalars.

Let X be a compact topological space. We denote by CF(X) the unital commutative
Banach algebra (over F) of continuous functions from X to F with pointwise addition, scalar
multiplication, and product with the uniform norm
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. (1.1)

For applying the usual notation, we write C(X) instead of CC(X).
Let T : E → E be a self-map on the nonempty set E. We denote {x ∈ E : T(x) = x} by

Fix(T) and call the fixed-points set of T .
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Let X be a normed space over the field F. A mapping T : E ⊆ X → X is nonexpansive
if ‖T(f) − T(g)‖ ≤ ‖f − g‖ for all f, g ∈ E. We say that the normed space X has the fixed-point
property if for every nonempty bounded closed convex subset E of X and every nonexpansive
mapping T : E → E we have Fix(T)/= ∅. One of the central goals in fixed point theory is to
find which Banach spaces have the fixed-point property.

Let A be a unital algebra (over F) with unit 1 and let G(A) denote the set of all
invertible elements of A. We define the spectrum of an element f of A to be the set {λ ∈
F : λ1 − f /∈ G(A)} and denote it by σ(f). The spectral radius of f , denoted by r(f), is
defined to be sup{|λ| : λ ∈ σ(f)}. Note that if A is a unital complex Banach algebra, then
r(f) = limn→∞‖fn‖1/n = inf{‖fn‖1/n : n ∈ N} (see [1, Theorem 10.13]).

A character on a unital algebra A over F is a nonzero homomorphism ϕ : A → F. We
denote by Ω(A) the set of all characters on A. If A is a unital commutative complex Banach
algebra, Ω(A)/= ∅ and σ(f) = {ϕ(f) : ϕ ∈ Ω(A)} for all f ∈ A (see [2, 3]). Note that if A is
real algebra, it may be the case that Ω(A) = ∅ (see [4, Example 2.4] and Example 3.9 below)
or Ω(A)/= ∅ and σ(f)/= {ϕ(f) : ϕ ∈ Ω(A)}(see Example 3.8 below).

Let A be a unital commutative real Banach algebra. A complex character on A is a
nonzero homomorphism ϕ : A → C, regarded as a real algebra. The set of all complex
character on A is called the carrier space of A and denoted by Car(A). Obviously, Ω(A) ⊆
Car(A).

LetX be a compact topological space and letA be a unital uniformly closed subalgebra
of CF(X). For each x ∈ X, the map εx : A → F defined by εx(f) = f(x), belongs to Ω(A)
which is called the evaluation character on A at x. It is known that Ω(C(X)) = {εx : x ∈ X}.

Let F be a collection of complex-valued functions on a nonempty set X. We say that:

(i) F separates the points of X if for each x, y ∈ X with x /=y, there is a function f in F
such that f(x)/= f(y);

(ii) F is self-adjoint if f ∈ F implies that f ∈ F;
(iii) F is inverse-closed if 1/f ∈ F whenever f ∈ F and f(x)/= 0 for all x ∈ X.

Let A be a unital commutative complex Banach algebra. It is known that each ϕ ∈
Ω(A) is continuous and ‖ϕ‖ = 1. For each f ∈ A, we define the map f̂ : Ω(A) → C by
f̂(ϕ) = ϕ(f) (ϕ ∈ Ω(A)) and say that f̂ is the Gelfand transform of f . We denote the set
{f̂ : f ∈ A} by Â. It is easy to see that Â separates the points of Ω(A). The Gelfand topology
of Ω(A) is the weakest topology on Ω(A) for which every f̂ ∈ Â is continuous. In fact, the
Gelfand topology of Ω(A) coincides with the relative topology on Ω(A) which is given by
weak∗ topology of A∗, the dual space of A. We know that Ω(A) with the Gelfand topology
is a compact Hausdorff topological space and Â is a complex subalgebra of C(Ω(A)) (see
[1, 3]). Clearly, the following statements are equivalent.

(i) Â is self-adjoint.

(ii) For each f ∈ A, there exists an element g ∈ A such that ϕ(g) = ϕ(f) for all ϕ ∈ Ω(A).

Let X be a topological space. A self-map τ : X → X is called a topological involution
on X if τ is continuous and τ(τ(x)) = x for all x ∈ X. Let X be a compact Hausdorff
topological space and τ be a topological involution on X. We denote by C(X, τ) the set of
all f ∈ C(X) for which f ◦ τ = f . Then C(X, τ) is a unital uniformly closed real subalgebra
of C(X) which separates the points of X, does not contain the constant function i and we
have C(X) = C(X, τ) ⊕ iC(X, τ). Moreover, C(X, τ) = CR(X) if and only if τ is the identity
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map on X. Let A be a unital uniformly closed real subalgebra of C(X, τ). For each x ∈ X the
map ex : A → C defined by ex(f) = f(x), is a complex character on A which is called the
evaluation complex character onA at x. We know that Car(C(X, τ)) = {ex : x ∈ X} (see [5]). The
algebra C(X, τ) was first introduced by Kulkarni and Limaye in [6]. We denote by CR(X, τ)
the set of all f ∈ C(X, τ) for which f is real-valued on X. Then CR(X, τ) is a unital uniformly
closed real subalgebra of C(X, τ).

Let X be a compact Hausdorff topological space and let A be a unital real or complex
subspace of C(X). A nonempty subset P ofX called a peak set for A if there exists a function f
in A such that P = {x ∈ X : f(x) = 1} and |f(y)| < 1 for all y ∈ X \ P , the function f is said to
peak on P . If the peak set P forA is the singleton {x}, we call x a peak point forA. The set of all
peak points for A is denoted by S0(A,X). A nonempty subset E of X is called a boundary for
A, if for each f ∈ A there is an element x of E such that ‖f‖X = |f(x)|. Clearly, S0(A,X) ⊆ E
whenever E is a boundary for A. It is known that, if X is a first countable compact Hausdorff
topological space then S0(C(X), X) = X (see [7]).

Let τ be a topological involution on a compact Hausdorff topological space X and let
A be a unital uniformly closed real subspace of C(X, τ). If P ⊆ X is a peak set for A, then
τ(P) = P .

Definition 1.1. Let τ be a topological involution on a compact Hausdorff topological space X
and A be a unital uniformly closed real subspace of C(X, τ). We say that x ∈ X is a τ-peak
point forA if {x, τ(x)} is a peak set forA. We denote by T0(A,X, τ) the set of all τ-peak points
for A.

Let X be a compact Hausdorff topological space and τ be a topological involution on
X. Let B be a unital uniformly closed subalgebra of C(X) such that f ◦ τ ∈ B for all f ∈ B

and define A = {f ∈ B : f ◦ τ = f}. Then A is a unital uniformly closed real subalgebra of
(C(X, τ)), B = A ⊕ iA, S0(A,X) = S0(B,X) ∩ Fix(τ) and T0(A,X, τ) = S0(B,X) (see [5]).

Fupinwong and Dhompongsa studied the fixed-point property of unital commutative
Banach algebras over field F in [4]. In the case F = R, they obtained the following results.

Theorem 1.2 (see [4, Theorem 3.1]). Let A be an infinite dimensional unital commutative real
Banach algebra satisfying each of the following:

(i) Ω(A)/= ∅ and σ(f) = {ϕ(f) : f ∈ Ω(A)},
(ii) if f, g ∈ A such that |ϕ(f)| ≤ |ϕ(g)| for each ϕ ∈ Ω(A), then ‖f‖ ≤ ‖g‖,
(iii) inf{r(f) : f ∈ A, ‖f‖ = 1} > 0.

Then A does not have the fixed-point property.

Theorem 1.3 (see [4, Corollary 3.2]). Let X be a compact Hausdorff topological space. If CR(X) is
infinite dimensional, then CR(X) fails to have the fixed-point property.

In the case F = C, they obtained the following result.

Theorem 1.4 (see [4, Theorem 4.3]). LetA be an infinite dimensional unital commutative complex
Banach algebra satisfying each of the following:

(i) Â is self-adjoint,

(ii) if f, g ∈ A such that |ϕ(f)| ≤ |ϕ(g)| for each ϕ ∈ Ω(A), then ‖f‖ ≤ ‖g‖,
(iii) inf{r(f) : f ∈ A, ‖f‖ = 1} > 0.

Then A does not have the fixed-point property.



4 Fixed Point Theory and Applications

By using the above theorem, we obtain the following result.

Theorem 1.5. Let X be a compact Hausdorff topological space. If C(X) is infinite dimensional, then
C(X) fails to have the fixed-point property.

Dhompongsa et al. studied the fixed-point property of complex C∗-algebras in [8] and
obtained the following result.

Theorem 1.6 (see [8, Theorem 1.4]). The following properties for a complex C∗-algebras A are
equivalent:

(i) A has the fixed-point property;

(ii) A has finite dimension.

In this paper, we give a general condition for some infinite dimensional unital
uniformly closed subalgebras of C(X) to fail the fixed-point property by applying Theorems
1.4 and 1.6. By using the concept of peak points for unital uniformly closed subalgebras of
C(X), we show that some of these algebras do not have the fixed-point property. We also
prove that CR(X, τ) and C(X, τ) fail to have the fixed-point property. By using the concept of
τ-peak points for unital uniformly closed real subalgebras of C(X, τ), we show that some of
these algebras do not have the fixed-point property.

2. FPP of Complex Subalgebras of C(X)

We first obtain a general condition for infinite dimensional unital uniformly closed
subalgebra of C(X) to fail the fixed-point property and give an infinite collection of these
algebras.

Theorem 2.1. Let X be a compact topological space. If A is a infinite dimensional self-adjoint
uniformly closed subalgebras of C(X), then A does not have the fixed-point property.

Proof. By hypothesises, A is an infinite dimensional complex C∗-algebra under the natural
involution f ↪→ f : A → A. Then, A does not have the fixed-point property by Theorem 1.6.

Example 2.2. Let m ∈ N and let Am be the uniformly closed subalgebra of C(T) generated by

1, Z2m and Z
2m

, where Z is the coordinate function on T. Then Am is an infinite dimensional
self-adjoint uniformly closed subalgebra of C(T) and so Am does not have the fixed-point
property.

Proof. It is easy to see that Am is self-adjoint. To complete the proof, it is enough to show that
Am is infinite dimensional. We define the sequence {fm, n}∞n=0 of elements of Am by

fm,0 = 1, fm,n = Z2nm − 1 (n ∈ N). (2.1)

We can prove that for each n ∈ N the set {fm,0, fm,1, . . . , fm,n} is a linearly independent set of
elements of Am. Therefore, Am is infinite dimensional.
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We now show that some of the unital uniformly closed subalgebras of C(X) fail to
have the fixed-point property by using the concept of peak points for these algebras.

Theorem 2.3. Let X be a compact Hausdorff topological space and let A be a unital uniformly closed
complex subalgebra of C(X). If S0(A,X) contains a limit point of X, then A does not have the fixed-
point property.

Proof. Let x0 ∈ S0(A,X) be a limit point of X. Then there exists a function f0 ∈ A with
f0(x0) = 0 and |f0(x)| < 1 for all x ∈ X \ {x0}, and there exists a net {xα}α in X \ {x0} such
that limαxα = x in X. We define E = {f ∈ A : ‖f‖X = f(x0) = 1}. Then E is a nonempty
bounded closed convex subset of A and f0f ∈ E for all f ∈ E. We define the map T : E → E
by T(f) = f0f . It is easy to see that T is a nonexpansive mapping on E.

We claim that Fix(T) = ∅. Suppose f1 ∈ Fix(T). Then f0f1 = f1 and so f1(x) = 0 for all
x ∈ X \{x0}. The continuity of f1 in x0 implies that limαf1(xα) = f1(x0). Therefore, f1(x0) = 0,
contradicting to f1 ∈ E. Hence, our claim is justified. Consequently, A does not have the
fixed-point property.

Corollary 2.4. Let X be a perfect compact Hausdorff topological space. If A is a unital uniformly
closed subalgebras of C(X) with S0(A,X)/= ∅, then A does not have the fixed-point property.

Example 2.5. Let A(D) denote the disk algebra, the complex Banach algebra of all continuous
complex-valued functions on D which are analytic on D under the uniform norm ‖f‖

D
=

sup{|f(z)| : z ∈ D} (f ∈ A(D)). Then A(D) does not have the fixed-point property.

Proof. Clearly D is a perfect compact Hausdorff topological space and A(D) is a unital
uniformly closed complex subalgebra of C(D). By the principle of maximum modulus,
S0(A(D),D) ⊆ T. Now let λ ∈ T. It is easy to see that the function f : D → C, defined by
f(z) = (1/2)(1 + λz), belongs to A(D) and peaks at λ. Therefore, S0(A(D),D) = T. It follows
that A(D) does not have the fixed-point property by Corollary 2.4.

Now by giving an examplewe show that the converse of Theorem 2.3 is not necessarily
true, in general.

Example 2.6. Let J be an uncountable set and let Xα be the unit closed interval [0, 1] with the
standard topology for each α ∈ J . Suppose X =

∏

α∈JXα with the product topology. Then
C(X) fails to have the fixed-point property but S0(C(X), X) = ∅ and so S0(C(X), X) does not
contain any limit points of X.

Proof. Clearly, X is an infinite compact Hausdorff topological space. Choose a sequence
{xn}∞n=1 in X such that xj /=xk, where j, k ∈ N and j /= k. By Urysohn’s lemma, there exists
a sequence {hn}∞n=1 in C(X) such that h1 = 1 and hn(x1) = · · · = hn(xn−1) = 0, hn(xn) = 1 for
all n ≥ 2. It is easy to see that the set {h1, . . . , hn} is a linearly independent set in C(X) for all
n ∈ N. Thus, C(X) is an infinite dimensional complex vector space. Therefore, C(X) does not
have the fixed-point property by Theorem 1.5.

We now show that S0(C(X), X) = ∅. We assume that E is the set of all x = (xα)α∈J ∈ X
for which there is a countable subset Ix of J such that xα = 0 for all α ∈ J \ Ix and F is the
set of all x = (xα)α∈J ∈ X for which there is a countable subset Jx of J such that xα = 1 for all
α ∈ J \ Jx. Clearly, E ∩F = ∅. It is easy to see that E and F are boundaries for C(X). Therefore,
S0(C(X), X) = ∅.
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Remark 2.7. Let X be an infinite first countable compact Hausdorff topological space. Then
S0(C(X), X) = X, and X has at least one limit point. Hence S0(C(X), X) contains a limit point
of X. Therefore, C(X) fails to have the fixed-point property by Theorem 2.3.

3. FPP of Real Subalgebras of C(X)

We first give a sufficient condition for unital uniformly closed real subalgebras of CR(X) to
fail the fixed-point property.

Lemma 3.1. If A is a unital commutative real Banach algebra with Ω(A)/= ∅, then {ϕ(f) : ϕ ∈
Ω(A)} ⊆ σ(f) for all f ∈ A.

Proof. Let f ∈ A. For each ϕ ∈ Ω(A), we define gϕ = ϕ(f)1 − f . Then gϕ ∈ A and ϕ(gϕ) = 0.
Therefore, gϕ /∈ G(A) and so ϕ(f) ∈ σ(f).

Lemma 3.2. Let X be a compact topological space. If A is an inverse closed unital uniformly closed
real subalgebra of CR(X), then Ω(A)/= ∅, Ω(A) = {εx : x ∈ X} and σ(f) = {ϕ(f) : ϕ ∈ Ω(A)} for
all f ∈ A.

Proof. Since A is a unital real subalgebra of CR(X), εx ∈ Ω(A) for all x ∈ X. Therefore,
Ω(A)/= ∅ and so {ϕ(f) : ϕ ∈ Ω(A)} ⊆ σ(f) for all f ∈ A by Lemma 3.1.

Now, let f ∈ A and let λ ∈ C \ {ϕ(f) : ϕ ∈ Ω(A)}. Then λ − ϕ(f)/= 0 for each ϕ ∈ Ω(A),
and so (λ1 − f)(x)/= 0 for all x ∈ X. Therefore, λ1 − f ∈ G(A) because A is inverse-closed. It
follows that λ ∈ C \ σ(f) and so σ(f) ⊆ {ϕ(f) : ϕ ∈ Ω(A)}. We now show that Ω(A) ⊆ {εx :
x ∈ X}. Suppose ϕ ∈ Ω(A) \ {εx : x ∈ X}. Let x ∈ X. Then there exists a function fx in A
such that ϕ(fx)/= fx(x). We define gx = fx − ϕ(fx)1. Then gx ∈ A, ϕ(gx) = 0 and gx(x)/= 0.
The continuity of gx on X implies that there exists a neighborhood Ux of x in X such that
gx(y)/= 0 for all y ∈ Ux. By compactness of X, there exist finite elements x1, . . . , xm of X such
that X =

⋃m
j=1 Uxj . Define g =

∑m
j=1(gxj )

2. Clearly, g ∈ A and ϕ(g) = 0. Moreover, g(y)/= 0
for all y ∈ X. Since A is inverse-closed, 1/g ∈ A. It follows that ϕ(g)/= 0. This contradiction
implies that Ω(A) ⊆ {εx : x ∈ X}.

Theorem 3.3. Let X be a compact topological space. If A is an infinite dimensional inverse-closed
unital uniformly closed real subalgebra of CR(X), then A does not have the fixed-point property.

Proof. Since A is a unital uniformly closed real subalgebras of CR(X), we have Ω(A)/= ∅,
Ω(A) = {εx : x ∈ X} and σ(f) = {ϕ(f) : ϕ ∈ Ω(A)} = {f(x) : x ∈ X} for all f ∈ A
by Lemma 3.2. Therefore, r(f) = sup{|f(x)| : x ∈ X} = ‖f‖X for all f ∈ A. It follows that
inf{r(f) : f ∈ A, ‖f‖X = 1} > 0. Now, let f, g ∈ A with |ϕ(f)| ≤ |ϕ(g)| for all ϕ ∈ Ω(A).
Then, |f(x)| ≤ |g(x)| for each x ∈ X and so ‖f‖X ≤ ‖g‖X . Since A is infinite dimensional, we
conclude that A does not have the fixed-point property by Theorem 1.2.

Proposition 3.4. Let X be an infinite compact Hausdorff topological space and let τ be a topological
involution on X. Then

(i) CR(X, τ) is infinite dimensional;

(ii) C(X, τ) is infinite dimensional.
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Proof. Choose a sequence {xn}∞n=1 inX such that xj /=xk, where j, k ∈ N and j /= k. By Urysohn’s
lemma, there exists a sequence {hn}∞n=1 in CR(X) such that h1 = 1 and hn(x1) = hn(τ(x1)) =
· · · = hn(xn−1) = hn(τ(xn−1)) = 0, hn(xn) = hn(τ(xn))=1 for all n ≥ 2. We define the sequence
{fn}∞n=1 in CR(X, τ) as the following:

f1 = 1, fn = (hn ◦ τ)hn (n ∈ N, n ≥ 2). (3.1)

It is easy to see that the set {f1, . . . , fn} is a linearly independent set in CR(X, τ) for all n ∈ N.
Therefore, CR(X, τ) is an infinite dimensional real vector space. (ii) Since CR(X, τ) is a real
linear subspace of C(X, τ), we conclude that C(X, τ) is infinite dimensional by (i).

Theorem 3.5. Let X be an infinite compact Hausdorff topological space and let τ be a topological
involution on X. Then CR(X, τ) does not have the fixed-point property.

Proof. By part (i) of Proposition 3.4, CR(X, τ) is an infinite dimensional real vector space.
On the other hand, CR(X, τ) is an inverse-closed unital uniformly closed real subalgebras
of CR(X). Therefore, CR(X, τ) does not have the fixed-point property by Theorem 3.3.

Corollary 3.6. Let X be an infinite compact Hausdorff topological space and let τ be a topological
involution on X. Then C(X, τ) does not have the fixed-point property.

Proof. By Theorem 3.5, CR(X, τ) does not have the fixed-point property. Since (C(X, τ), ‖ ·
‖X) is a real Banach space and CR(X, τ) is a uniformly closed real subspace of C(X, τ), we
conclude that C(X, τ) does not have the fixed-point property.

We now give a characterization of Ω(C(X, τ)) as the following.

Theorem 3.7. Let X be an infinite compact Hausdorff topological space and let τ be a topological
involution on X.

(i) If x ∈ Fix(τ), then εx ∈ Ω(C(X, τ)), where εx is evaluation character on C(X, τ) at x.

(ii) If ϕ ∈ Ω(C(X, τ)), there exists x ∈ Fix(τ) such that ϕ = εx.

(iii) Ω(C(X, τ)) = ∅ if and only if Fix(τ) = ∅.

Proof. (i) is obvious. To prove (ii), let ϕ ∈ Ω(C(X, τ)). Then ϕ ∈ Car(C(X, τ)) and so there
exists x ∈ X such that ϕ = ex, where ex is the complex character on C(X, τ) at x. Since
ϕ(C(X, τ)) ⊆ R, we conclude that f(x) ∈ R for all f ∈ C(X, τ). Therefore, f(τ(x)) = f(x) for
all f ∈ C(X, τ). It follows that x ∈ Fix(τ), because C(X, τ) separates the points of X. Thus
ex = εx and so ϕ = εx.

(iii) This follows from (i) and (ii).

Now by giving two examples, we show that there may be a unital commutative real
Banach algebra that fails to have the fixed-point property without satisfying any of the
conditions of Theorem 1.2.

Example 3.8. Let X be the closed unit interval [0, 1] with the standard topology and let τ be
the topological involution on X defined by τ(x) = 1 − x. Since Fix(τ) = {1/2}, we have
Ω(C(X, τ)) = {ε1/2} by Theorem 3.7. Define the function f : X → C by f(x) = |1/2 − x|.
Clearly, f ∈ C(X, τ) and f(X) = [0, 1/2]. If λ ∈ (−∞, 1/2) ∪ (1,∞), then λ1 − f ∈ G(C(X, τ))
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and so λ /∈ σ(f). On the other hand, λ1 − f /∈ G(C(X, τ)) for all λ ∈ [1/2, 1]. Therefore,
σ(f) = [1/2, 1]. But

{

ϕ
(

f
)

: ϕ ∈ Ω(C(X, τ))
}

=
{

ε1/2
(

f
)}

=
{

f

(
1
2

)}

= {0}. (3.2)

Thus σ(f)/= {ϕ(f) : ϕ ∈ Ω(C(X, τ))}. This shows thatC(X, τ) does not satisfy in the condition
(i) of Theorem 1.2, but C(X, τ) fail to have the fixed-point property by Corollary 3.6.

Example 3.9. Let X = [−2,−1] ∪ [1, 2] with standard topology and let τ be the topological
involution on X defined by τ(x) = −x. Since Fix(τ) = ∅, we have Ω(C(X, τ)) = ∅ by
Theorem 3.7. It shows that C(X, τ) does not satisfy the condition (i) of Theorem 1.2, but
C(X, τ) fails to have the fixed-point property by Corollary 3.6.

We now show that some of the unital closed real subalgebras of C(X, τ) fails to have
the fixed-point property by applying the concept of τ-peak points for these algebras.

Theorem 3.10. Let X be a compact Hausdorff topological space and let τ be a topological involution
on X. Suppose A is a unital uniformly closed real subalgebra of C(X, τ). If T0(A,X, τ) contains a
limit point of X, then A does not have the fixed-point property.

Proof. Let x0 ∈ To(A,X, τ) be a limit point of X. Then there exists a function f0 in A with
f0(x0) = f0(τ(x)) = 1 and |f0(x)| < 1 for all x ∈ X \ {x0, τ(x0)}, and there exists a net {xα}α in
X \ {x0, τ(x0)} such that limαxα = x0 in X. We define E = {f ∈ A : ‖f‖X = f(x0) = 1}. Then
E is a nonempty bounded closed convex subset of A and f0f ∈ E for all f ∈ E. We define the
map T : E → E by T(f) = f0f . It is easy to see that T is a nonexpansive mapping on E.

We claim that Fix(T) = ∅. Suppose f1 ∈ Fix(T). Then f0f1 = f1 and so f1(x) = 0 for
all x ∈ X \ {x0, τ(x0)}. The continuity of f1 in x0 implies that limαf1(xα) = f1(x0). Therefore,
f1(x0) = 0, contradicting to f1 ∈ E. Hence, our claim is justified. Consequently, A does not
have the fixed-point property.

Example 3.11. Let τ be the topological involution on D defined by τ(z) = z. We denote by
A(D, τ) the set all f ∈ A(D) for which f ◦ τ = f . ThenA(D, τ) is a unital uniformly closed real
subalgebra of C(D) and A(D) = A(D, τ) ⊕ iA(D, τ). By Example 2.5,

T0
(

A
(

D, τ
)

,D, τ
)

= S0

(

A
(

D

)

,D
)

= T. (3.3)

Therefore, A(D, τ) does not have the fixed-point property by Theorem 3.10.
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