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We introduce an iterative method for a pair of hemirelatively nonexpansive mappings. Strong
convergence of the purposed iterative method is obtained in a Banach space.

1. Introduction and Preliminaries

Let E be a Banach space with the dual E*. We denote by ] the normalized duality mapping
from E to 2F defined by

Jx={f B o) = 1P = 717} (L)

where (-,-) denotes the generalized duality pairing. A Banach space E is said to be strictly
convex if ||(x + y)/2|| < 1 for all x,y € E with ||x|| = |ly]| = 1 and x#y. It is said to be
uniformly convex if lim,, _, ;||x, — x| = O for any two sequences {x,} and {y,} in E such
that ||x,]| = |yal = 1 and lim,—, oo ||(xn + v,) /2|l = 1. Let Ug = {x € E : ||x|| = 1} be the unit
sphere of E. Then the Banach space E is said to be smooth provided that

i P2 Y1 = Dl (1.2)
t—0 t
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exists for each x,y € Ug. It is also said to be uniformly smooth if the limit (1.2) is attained
uniformly for x, y € Ug. It is well known that if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on each bounded subset of E. It is also well known that E is
uniformly smooth if and only if E* is uniformly convex.

Recall that a Banach space E has the Kadec-Klee property if for any sequences {x,} C E
and x € E with x, — x and ||x,|| — ||x]|, then ||x, — x| — 0asn — oo; for more details
on Kadec-Klee property, the readers is referred to [1, 2] and the references therein. It is well
known that if E is a uniformly convex Banach space, then E enjoys the Kadec-Klee property.

Let C be a nonempty closed and convex subset of a Banach space E and T:C —
C a mapping. The mapping T is said to be closed if for any sequence {x,} C C such that
limy, o x, = x9 and lim,, o, Tx, = yo, then Txy = yo. A point x € C is a fixed point of T
provided Tx = x. In this paper, we use F(T) to denote the fixed point set of T and use — and
— to denote the strong convergence and weak convergence, respectively.

Recall that the mapping T is said to be nonexpansive if

|Tx-Ty| < ||lx-y|, VxyeC (1.3)

It is well known that if C is a nonempty bounded closed and convex subset of a uniformly
convex Banach space E, then every nonexpansive self-mapping T on C has a fixed point.
Further, the fixed point set of T is closed and convex.

As we all know that if C is a nonempty closed convex subset of a Hilbert space H and
Pc:H — C is the metric projection of H onto C, then Pc is nonexpansive. This fact actually
characterizes Hilbert spaces and consequently, it is not available in more general Banach
spaces. In this connection, Alber [3] recently introduced a generalized projection operator
Ilc in a Banach space E which is an analogue of the metric projection in Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional defined by

(e, y) = %I - 2(x, Jy) + |ly|* for x,y € E. (1.4)

Observe that, in a Hilbert space H, (1.4) is reduced to ¢(x,y) = |lx — y|? x,y € H. The
generalized projection [Ic:E — C is a map that assigns to an arbitrary point x € E, the
minimum point of the functional ¢(x,y), that is, [Tcx = x, where X is the solution to the
minimization problem

$(X,x) = minp(y, x). (1.5)

Existence and uniqueness of the operator Ilc follow from the properties of the functional
¢(x, y) and strict monotonicity of the mapping J (see, e.g., [1-4]). In Hilbert spaces, Ilc = Pc.
It is obvious from the definition of function ¢ that

Iyl = N1 < ¢y x) < (lyll + lIxl1)?, Vx,y € E. (1.6)

Remark 1.1. If E is a reflexive, strictly convex and smooth Banach space, then for x,y € E,
¢(x,y) = 0if and only if x = y. It is sufficient to show that if ¢(x,y) = 0 then x = y. From
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(1.6), we have ||x|| = ||y||. This implies that (x, Jy) = ||x||*> = ||Jy||*>. From the definition of J,
we have Jx = Jy. Therefore, we have x = y; see [1, 2] for more details.

Let C be a nonempty closed convex subset of E and T a mapping from C into itself.
A point p in C is said to be an asymptotic fixed point of T [5] if C contains a sequence {x,}
which converges weakly to p such that lim,_,||x, — Tx,|| = 0. The set of asymptotic fixed
points of T will be denoted by F(T). A mapping T from C into itself is said to be relatively
nonexpansive [3, 6,7] if F(T) = F(T) # 0 and ¢(p, Tx) < p(p,x) forallx € Candp € F(T). The
mapping T is said to be hemirelatively nonexpansive [8-12] if F(T) #@ and ¢(p, Tx) < ¢(p, x)
for all x € C and p € F(T). The asymptotic behavior of a relatively nonexpansive mappings
was studied in [3, 6, 7].

Remark 1.2. The class of hemirelatively nonexpansive mappings is more general than the
class of relatively nonexpansive mappings which requires the restriction: F(T) = F(T).
From Su etal. [11], we see that every hemirelatively nonexpansive mapping is relatively
nonexpansive, but the inverse is not true. Hemirelatively nonexpansive mapping is also said
to be quasi-¢-nonexpansive; see [13-17].

Recently, fixed point iterations of relatively nonexpansive mappings and hemirela-
tively nonexpansive mappings have been considered by many authors; see, for example [14-
25] and the references therein. In 2005, Matsushita and Takahashi [8] considered fixed point
problems of a single relatively nonexpansive mapping in a Banach space. To be more precise,
they proved the following theorem.

Theorem MT. Let E be a uniformly convex and uniformly smooth Banach space; let C be a nonempty
closed convex subset of E; let T be a relatively nonexpansive mapping from C into itself; let {a,} be a
sequence of real numbers such that 0 < a, < 1 and limsup, _, _ a, < 1. Suppose that {x,} is given

by
xgo=x€C,

Yn = ]71 (anJxn + (1 - an)JTxy),
H,={zeC:¢(z,yn) <Pz, x4)}, (1.7)
Wy={z€C:(x,~2zJx~]Jxu) >0},

Xn+1 = Praw,x0, n=0,1,2,...,

where | is the duality mapping on E. If F(T) is nonempty, then {x,} converges strongly to Pr(r)x,
where Pr(ry is the generalized projection from C onto F(T).

In 2007, Plubtieng and Ungchittrakool [9] further improved Theorem MT by
considering a pair of relatively nonexpansive mappings. To be more precise, they proved
the following theorem.
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Theorem PU. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a

nonempty closed convex subset of E. Let S and T be two relatively nonexpansive mappings from C
into itself with F := F(T) N F(S) being nonempty. Let a sequence {x,} be defined by

xo=x€C,
Yn = ]71 (anJxn + (1 - an)]zy),

zn= T (BLT 0 + BT Tn + BT S%0),

H,={z€C:¢(z,yn) <Pz, x4)},
Wy={zeC:(x,—2z Jx-]x,) >0},

(1.8)

Xn+l = HHnﬂan/ Vn > O/

with the following restrictions:

(1) 0< a, < 1foreachn >0and limsup, ,  a,<1;

(2 0<pL B2, B <1, BL+p2+p> =1foreachn > 0,1im,_, o, B = 0and lim inf, _,, f2f5 >
0.

Then the sequence {x,} converges strongly to I1px, where ITF is the generalized projection from C
onto F.

Very recently, Su etal. [11] improved Theorem PU partially by considering a pair of
hemirelatively nonexpansive mappings. To be more precise, they obtained the following results.

Theorem SWX. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let S and T be two closed hemirelatively nonexpansive mappings
from C into itself with F := F(T) N F(S) being nonempty. Let a sequence {x,} be defined by

xo=x€C,
Y =T (@] xn + (1 - )] Z0),
20 = ] (BT xn + BT T + BTS2,
Ch={z2€Ch1NQua:P(z,yn) <Pz, %)}, (1.9)
Co=1{z€CNQu1:$(z. 1) < p(zx0)),
Qn={z€CpanNQu1:(xn—zJx—Jx5) 20},
Qo =C,

Xn+1 = chﬁanOI Vn > 01
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with the following restrictions:
(1) iminf, _, o ﬂ}iﬁfl >0;
(2) liminf, o BLB3 > 0;
(3)0<a, <a<1forsomeac(0,1).

Then the sequence {x,} converges strongly to I1px, where I1f is the generalized projection from C
onto F.

In this paper, motivated by Theorems MT, PU, and SWX, we consider the problem
of finding a common fixed point of a pair of hemirelatively nonexpansive mappings by
shrinking projection methods which were introduced by Takahashi et al. [26] in Hilbert
spaces. Strong convergence theorems of common fixed points are established in a Banach
space. The results presented in this paper mainly improve the corresponding results
announced in Matsushita and Takahashi [8], Nakajo and Takahahsi [27], and Su et al. [11].

In order to prove our main results, we need the following lemmas.

Lemma 1.3 (see [3]). Let C be a nonempty closed convex subset of a smooth Banach space E and
x € E. Then, xq = Ilcx if and only if

(xo—y,Jx—Jx0) >0 VyeC. (1.10)

Lemma 1.4 (see [3]). Let E be a reflexive, strictly convex and smooth Banach space, C a nonempty
closed convex subset of E, and x € E. Then

d(y,Tex) + ¢(Ilex, x) < p(y,x) VyeC. (1.11)

The following lemma can be deduced from Matsushita and Takahashi [8].

Lemma 1.5. Let E be a strictly convex and smooth Banach space, C a nonempty closed convex subset
of Eand T : C — C a hemirelatively nonexpansive mapping. Then F(T) is a closed convex subset of

C.

Lemma 1.6 (see [28]). Let E be a uniformly convex Banach space and B, (0) a closed ball of E. Then
there exists a continuous strictly increasing convex function g : [0,00) — [0, 00) with g(0) = 0 such
that

[1oc + ey + vzl < Ml + plly1” + vl2IP = dag (flx = ) (112)

forallx,y,z € B,(0)and A, p,y € [0, 1] with A+ p+y =1

2. Main Results

Theorem 2.1. Let E be a uniformly smooth and strictly convex Banach space which enjoys the Kadec-
Klee property and C a nonempty closed and convex subset of E. Let T : C — Cand S : C — C be
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two closed and hemirelatively nonexpansive mappings such that ¢ = F(T) N F(S) is nonempty. Let
{xn} be a sequence generated in the following manner:

xo € E chosen arbitrarily,
Ci=C,
x1 = Ilc, xo,
zn =] (Buo ) Xn + PuaJTon + Pu2] Sxn), (2.1)
Y = J 7 @] X0 + (1= @) ] z),
Cui1 ={z€Cp:9(z,yn) < P(z,x0)},
xo, Vn>0,

xXne1 = 1lc

n+l

where {an}, {Pno}, {Pn1), and {Pno} are real sequences in [0, 1] satisfying the following restrictions:

(@) limsup, , _ a,<1;

(b) ﬂn,O + ﬂn,l + ﬁn,Z =1;
(c) iminf, , o BuoPu1 > 0 and liminf, _, o By oPfn2 > 0.

Then {x,} converges strongly to I1gxg, where Ilg is the generalized projection from E onto .

Proof. First, we show that C,, is closed and convex for each n > 1. It is obvious that C; = C is
closed and convex. Suppose that Cj, is closed and convex for some h. For z € Cj,, we see that
(2, yn) < P(z, xp) is equivalent to

2z, Jxn = Jyn) < llxnl® = |lval)- (22)

It is easy to see that Cj.; is closed and convex. Then, for each n > 1, C,, is closed and convex.
Now, we are in a position to show that ¥ C C, for each n > 1. Indeed, ¥ C C; = C is obvious.
Suppose that ¢ C Cj, for some h. Then, for all w € ¢ C Cj, we have
P(w, zp) = ¢<w, T (BroJxn + PrnaJTxy + ﬂh,z]SXh)>
= |lwl® = 2(w, roJ xn + Pu1 JT Xk + P2 ] Sxn)
+ ||BroJxn + Pua JTxp + ProJ Sxn ||2
< [wl? = 2Bno{w, Jxn) = 2 (w, JTxn) = 2pn2(w, ] Sxn) (2.3)
+ Brollxnll® + BrallTxnl* + Brallsxnll®
= Pnop(w, xn) + PriP(w, Txp) + Prad(w, Sxp)
< Prod(w, xn) + Puap(w, xn) + Prad(w, xn)
= p(w, xp).
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It follows that

d(w,yn) = ¢<wr J N anJxn + (1 - ‘Xh)]zh)>

= l[wl* 2w, anJxn + (1= an)Jz) + llanxn + (1= an) [zl

< [lw|® = 2an(w, Jxn) = 2(1 = an)(w, Jzn) + anllxn|* + (1 = an) || za]* (2.4)
= apP(w, xp) + (1 — an)p(w, zn)

< anp(w, xp) + (1 — an)p(w, xn)

= ¢(wl .X'h),

which shows that w € Cp.;. This implies that ¢ C C, for each n > 1. On the other hand, we
obtain from Lemma 1.4 that

b (xn, x0) = (Tlc, X0, X0) < P(w, x0) = p(w, xu) < P(w, X0), (2.5)

for each w € ¢ C C,, and for each n > 1. This shows that the sequence ¢(x,, xy) is bounded.
From (1.6), we see that the sequence {x,} is also bounded. Since the space is reflexive, we
may, without loss of generality, assume that x,, — X. Note that C, is closed and convex for
each n > 1. It is easy to see that x € C,, for each nn > 1. Note that

¢ (xn, x0) < P(, x0)- (2.6)
It follows that
¢ (x, x0) < lim inf P (x,, x0) < limsup ¢(x,, x0) < P(X, x0). (2.7)
This implies that
Hm ¢ (xn, x0) = P(X, X0)- (2.8)

Hence, we have ||x,|| — [|X|| as n — oo. In view of the Kadec-Klee property of E, we obtain
thatx,, — xasn — oo.

Next, we show that x € F(T'). By the construction of C,, we have that C,4; C C,, and
Xn1 = Ic,,, x0 € Cp. It follows that

¢(xn+1/ Xn) = ¢(xn+1/ Ic, x0)
< P(xp41,x0) — P(Ic, x0, x0) (2.9)
= ¢(xn+1/ Xp) — ¢(xn/ X0)-
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Letting n — oo in (2.9), we obtain that ¢(x,+1,x,) — 0.In view of x,.1 € Cy4q, we arrive at
@ (X1, Yn) < P(Xn41, x,). 1t follows that

lim ¢ (xn1,yn) = 0. (2.10)
From (1.6), we can obtain that
lynll — 1% as n— oo. (2.11)
It follows that
1Tyl — I as n— oo. (2.12)

This implies that {Jy,} is bounded. Note that E is reflexive and E* is also reflexive. We may
assume that Jy, — x* € E*. In view of the reflexivity of E, we see that J(E) = E*. This shows
that there exists an x € E such that Jx = x*. It follows that

3Gt ) = [naa |2 = 2(xet, Jyn) + ||y’

, (2.13)
= ||xn+1||2 - 2<xn+1/ ]]/n> + ”]yn” .
Taking liminf, _, ., the both sides of equality above yield that
02 [ - 2(x, x") + [|x"|
= I%]1* - 2(%, Jx) + 1] x|
(2.14)

= |IxX)1* - 2(x, Jx) + [|x|?

=¢(x,x).

That is, X = x, which in turn implies that x* = Jx. It follows that Jy, — Jx € E* .From (2.12)
and since E* enjoys the Kadec-Klee property, we obtain that

Jyn,—Jx —0 asn— oo. (2.15)

Note that J7! : E* — E is demicontinuous. It follows that v, — X. From (2.11) and since E
enjoys the Kadec-Klee property, we obtain that

Yp — X as n—> oo. (2.16)
Note that

1% =yl < N2 =% + || = Y| 2.17)
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It follows that
nlif;lo ||2cn = v || = 0. (2.18)
Since J is uniformly norm-to-norm continuous on any bounded sets, we have
Tim [T = Jyal| = 0. (2.19)
On the other hand, we see from the definition of y, that
1Ty = Jxall = (1= au)llJza = Jxall (2.20)
In view of the assumption on {a,} and (2.19), we see that
Jim [|Jon = Jzall = 0. (2.21)
On the other hand, since | : E — E* is demicontinuous, we have Jx, — Jx € E*. In view of

T 2nll = 1T = Mxall = 1% < ll2n = X, (2.22)

we arrive at ||Jx,|| — ||JX| asn — oo. By virtue of the Kadec-Klee property of E*, we obtain
that ||Jx, — Jx|| — 0asn — oo. Note that

1z = JxI| < [[J2n = Jxull + 20 = x| (2.23)

In view of (2.21), we arrive at lim, o, ||Jz, — JX|| = 0. Since J™' : E* — E is demicontinuous,
we have z, — x. Note that

Wznll = llxalll = 1Tzl = 1JX < 120 = Jx]|. (2.24)

It follows that ||z,|| — ||x|| as n — oo. Since E enjoys the Kadec-Klee property, we obtain that
lim,,_, ||z» — X|| = 0. Note that

1zn = 2xnll < 120 = || + [ = x]- (2.25)
It follows that

lim |z, = x,[| = 0. (2.26)
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Let 7 = max{sup,u, (12all}, 5up,oy (1T}, 5up,. (S ]1} ). Fixing q € ¥, we have from
Lemma 1.6 that

¢(q/ Zﬂ) = ¢<q/ J! (ﬁn,ijn + PurJTxn + ﬂn,zjsxn)>
= ”q”2 - 2( q, ﬂn,O]xn + ﬂn,l]Txn + ﬂn,2]5xn)>
+1B0) Xn + Bt JT X + P2 ] Sxal|”

< 4ll” = 2Pno(q, Jxu) = 26n1(q, T Tx) = 2p2(d, Sx0n) 02
+ Buoll Jxull® + Bull I Txull* + Pu2 | TSxull* = Buofn1 (1] xn = JT]l)

= B0 (q,%n) + Bu1d(q, Txn) + P2 (q, Sxn) = ProPrig(1J2xn = JTx4|)

< Puod(q,%n) + BuaP(q, Xn) + Pu2®(q, Xn) = ProPu1 g1 T3n = JTxnl])

= (9, %) = PuoPri&IJxn — JTxn]).

It follows that
ﬁn,Oﬁn,lg(”]xn - ]Txn”) < 4’(‘]/ xn) - (;b(q; Zn)' (2-28)
On the other hand, we have

¢(q,%n) = (4, 20) = 1%al* = l12all* = 2(q, JXn = J 2n)

(2.29)
< llxn = zall Qlall + zall) +2[[q][11J 20 = Tzall-
It follows from (2.21) and (2.26) that
Jim ($(q,xn) = $(q,2n)) = 0. (2.30)
In view of (2.28) and the assumption lim inf,, _, o Br,08n,1 > 0, we see that
lim g(|lJxn = JTxn]) = 0. (2.31)
It follows from the property of g that
Hm [|Joey = JTxa[| = 0. (2.32)

Note that

lim [T, = J]| = 0. (2.33)
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On the other hand, we have
IJTxn = Jx|| < |JTxn = Jxull + 1] 20 = J||. (2.34)
From (2.32) and (2.33), we arrive at

lim [|JTx, = Jx|| = 0. (2.35)

Note that J™! : E* — E is demicontinuous. It follows that Tx,, — X. On the other hand, we
have

WTxull = XN = T TxAll = 1] < 1T T2 = J]|- (2.36)

In view of (2.35), we obtain that ||Tx,| — |[|x|| as n — oo. Since E enjoys the Kadec-Klee
property, we obtain that

Jim [[Tx, - x| = 0. (2.37)

It follows from the closedness of T; that Tx = Xx. By repeating (2.27)—(2.37), we can obtain that
x € F(S). This shows that x € ¢.
Finally, we show that x = Ilgxg. From x,, = Ilc,xo, we have

(xp—w, Jxo— Jx,) >0, YweFcCC,. (2.38)

Taking the limit as n — oo in (2.38), we obtain that
(x—w, Jxg-Jx) >0, YweSF, (2.39)

and hence x = I'Tf(1)xo by Lemma 1.3. This completes the proof. O

Remark 2.2. Theorem 2.1 improves Theorem SWX in the following aspects:

(a) from the point of view on computation, we remove the set “Q,” in Theorem SWX;

(b) from the point of view on the framework of spaces, we extend Theorem SWX from
a uniformly smooth and uniformly convex Banach space to a uniformly smooth
and strictly convex Banach space which enjoys the Kadec-Klee property. Note that
every uniformly convex Banach space enjoys the Kadec-Klee property.
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If a,, = 0 for each n > 0, then Theorem 2.1 is reduced to the following.

Corollary 2.3. Let E be a uniformly smooth and strictly convex Banach space which enjoys the Kadec-
Klee property and C a nonempty closed and convex subset of E. Let T:C — Cand S:C — C be two
closed and hemirelatively nonexpansive mappings such that F = F(T) N F(S) is nonempty. Let {x,}
be a sequence generated in the following manner:

xo € E chosen arbitrarily,
C =C
x1 = e, xo,
Yn = T (BuoJXn + Bua J T2 + Bu2J Sxn),
Coni={z€Ch:¢(z,yn) <P(z,x)},

xne1 = 1l¢

(2.40)

xo, Vn>0,

n+l

where {Pno}, {Pna}, and { P} are real sequences in [0, 1] satisfying the following restrictions:

(a) ﬂn,O + ﬂn,l + ﬁn,Z =1;

(b) iminf,, _, o Brofn1 > 0 and iminf, _, o By oPfu2 > 0.

Then {x,} converges strongly to I1gxg, where Ilg is the generalized projection from E onto .
If T = S, then Corollary 2.3 is reduced to the following.

Corollary 2.4. Let E be a uniformly smooth and strictly convex Banach space which enjoys the
Kadec-Klee property and C a nonempty closed and convex subset of E. Let T : C — C be a closed
and hemirelatively nonexpansive mapping with a nonempty fixed point set. Let {x,} be a sequence
generated in the following manner:

xo € E chosen arbitrarily,
C;=C,
x1 = Ile, xo,
Yn =] (BuTxn+ (1= Pu)JTxy),
Cui1 = {2 € Cn: §(2,yn) < P(z,2n)},

xg, Yn>0,

(2.41)

Xn+l = HC

n+l

where {P,} is a real sequence in [0,1] satisfying liminf, o, Bn(1 — B,) > 0. Then {x,} converges
strongly to Ilgxo, where Ilg is the generalized projection from E onto .
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