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We introduce an iterative algorithm for finding a common element of the set of solutions of
quasivariational inclusion problems and of the set of fixed points of strict pseudocontractions
in the framework Hilbert spaces. The results presented in this paper improve and extend the
corresponding results announced by many others.

1. Introduction and Preliminaries

Throughout this paper, we always assume that H is a real Hilbert space with the inner
product 〈·, ·〉 and the norm ‖ · ‖. Let S : H → H be a nonlinear mapping. In this paper,
we use F(S) to denote the fixed point set of S.

Recall the following definitions.

(1) The mapping S is said to be contractivewith the coefficient α ∈ (0, 1) if

∥
∥Sx − Sy

∥
∥ ≤ α

∥
∥x − y

∥
∥, ∀x, y ∈ H. (1.1)

(2) The mapping S is said to be nonexpansive if

∥
∥Sx − Sy

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ H. (1.2)
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(3) The mapping S is said to be strictly pseudocontractivewith the coefficient k ∈ [0, 1) if

∥
∥Sx − Sy

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + k

∥
∥(I − S)x − (I − S)y

∥
∥
2
, ∀x, y ∈ H. (1.3)

(4) The mapping S is said to be pseudocontractive if

∥
∥Sx − Sy

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 +

∥
∥(I − S)x − (I − S)y

∥
∥
2
, ∀x, y ∈ H. (1.4)

Clearly, the class of strict pseudocontractions falls into the one between classes
of nonexpansive mappings and pseudocontractions. Iterative methods for nonexpansive
mappings have recently been applied to solve convex minimization problems. See, for
example, [1–6] and the references therein.

A typical problem is to minimize a quadratic function over the set of the fixed points
of a nonexpansive mapping S on a real Hilbert space H:

min
x∈F(S)

1
2
〈Ax, x〉 − h(x), (1.5)

where A is a linear bounded and strongly positive operator and h is a potential function for
γf (i.e., h′(x) = γf(x) for x ∈ H).

Recently, Marino and Xu [2] studied the following iterative scheme:

x0 ∈ H, xn+1 = (I − αnA)Sxn + αnγf(xn), n ≥ 0. (1.6)

They proved that the sequence {xn} generated in the above iterative scheme converges
strongly to the unique solution of the variational inequality:

〈(

A − γf
)

x∗, x − x∗〉 ≥ 0, x ∈ F(S), (1.7)

which is the optimality condition for the minimization problem (1.5).
Next, let B : H → H be a nonlinear mapping. Recall the following definitions.

(1) The mapping B is said to be monotone if for each x, y ∈ H, we have

〈

Bx − By, x − y
〉 ≥ 0. (1.8)

(2) B is said to be μ-strongly monotone if

〈

Bx − By, x − y
〉 ≥ μ

∥
∥x − y

∥
∥
2
, ∀x, y ∈ H. (1.9)

(3) The mapping B is said to be μ-inverse-strongly monotone if there exists a constant
μ > 0 such that

〈

Bx − By, x − y
〉 ≥ μ

∥
∥Bx − By

∥
∥
2
, ∀x, y ∈ H. (1.10)
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(4) The mapping B is said to be relaxed δ-cocoercive if there exists a constant δ > 0 such
that

〈

Bx − By, x − y
〉 ≥ (−δ)∥∥Bx − By

∥
∥
2
, ∀x, y ∈ H. (1.11)

(5) The mapping B is said to be relaxed (δ, r)-cocoercive if there exist two constants δ, r >
0 such that

〈

Bx − By, x − y
〉 ≥ (−δ)∥∥Bx − By

∥
∥
2 + r

∥
∥x − y

∥
∥
2
, ∀x, y ∈ H. (1.12)

(6) Recall also that a set-valued mapping M : H → 2H is called monotone if for all
x, y ∈ H, f ∈ Mx and g ∈ My imply 〈x − y, f − g〉 ≥ 0. The monotone mapping
M : H → 2H is maximal if the graph of G(M) of T is not properly contained in the
graph of any other monotone mapping.

The so-called quasi-variational inclusion problem is to find a u ∈ H for a given element
f ∈ H such that

f ∈ Bu +Mu, (1.13)

where B : H → H and M : H → 2H are two nonlinear mappings. See, for example, [7–12].
A special case of the problem (1.13) is to find an element u ∈ H such that

0 ∈ Bu +Mu. (1.14)

In this paper, we use V I(H,B,M) to denote the solution of the problem (1.14). A
number of problems arising in structural analysis, mechanics, and economic can be studied
in the framework of this class of variational inclusions.

Next, we consider two special cases of the problem (1.14).

(A) If M = ∂φ : H → 2H , where φ : H → R ∪ {+∞} is a proper convex lower
semicontinuous function and ∂φ is the subdifferential of φ, then the variational
inclusion problem (1.14) is equivalent to finding u ∈ H such that

〈Bu, v − u〉 + φ(v) − φ(u) ≥ 0, ∀v ∈ H, (1.15)

which is said to be the mixed quasi-variational inequality. See, for example, [7, 8] for
more details.

(B) If φ is the indicator function of C, then the variational inclusion problem (1.14) is
equivalent to the classical variational inequality problem, denoted by V I(C,B), to
find u ∈ C such that

〈Bu, v − u〉 ≥ 0, ∀v ∈ C. (1.16)
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For finding a common element of the set of fixed points of a nonexpansive mapping
and of the set of solutions to the variational inequality (1.16), Iiduka and Takahashi [13]
proved the following theorem.

Theorem IT. Let C be a closed convex subset of a real Hilbert space H. Let B be an α-inverse-
strongly monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such
that F(S) ∩ V I(C,B)/= ∅. Suppose that x1 = x ∈ C and {xn} is given by

xn+1 = αnx + (1 − αn)SPC(xn − λnBxn) (1.17)

for every n = 1, 2, . . . , where {αn} is a sequence in [0, 1) and {λn} is a sequence in [a, b]. If {αn} and
{λn} are chosen so that {λn} ∈ [a, b] for some a, b with 0 < a < b < 2α,

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞,
∞∑

n=1

|αn+1 − αn| < ∞,
∞∑

n=1

|λn+1 − λn| < ∞, (1.18)

then {xn} converges strongly to PF(S)∩V I(C,B)x.

Recently, Zhang et al. [11] considered the problem (1.14). To be more precise, they
proved the following theorem.

Theorem ZLC. Let H be a real Hilbert space, B : H → H an α-inverse-strongly monotone
mapping, M : H → 2H a maximal monotone mapping, and S : H → H a nonexpansive mapping.
Suppose that the set F(S)∩V I(H,B,M)/= ∅, where V I(H,B,M) is the set of solutions of variational
inclusion (1.14). Suppose that x0 = x ∈ H and {xn} is the sequence defined by

xn+1 = αnx0 + (1 − αn)Syn,

yn = JM,λ(xn − λBxn, ) n ≥ 0,
(1.19)

where λ ∈ (0, 2α) and {αn} is a sequence in [0, 1] satisfying the following conditions:

(a) limn→∞αn = 0,
∑∞

n=1 αn = ∞;

(b)
∑∞

n=0 |αn+1 − αn| < ∞.

Then {xn} converges strongly to PF(S)∩V I(H,B,M)x0.

In this paper, motivated by the research work going on in this direction, see, for
instance, [2, 3, 7–21], we introduce an iterative method for finding a common element
of the set of fixed points of a strict pseudocontraction and of the set of solutions to the
problem (1.14) with multivalued maximal monotone mapping and relaxed (δ, r)-cocoercive
mappings. Strong convergence theorems are established in the framework of Hilbert spaces.

In order to prove our main results, we need the following conceptions and lemmas.

Definition 1.1 (see [11]). Let M : H → 2H be a multivalued maximal monotone mapping.
Then the single-valued mapping JM,λ : H → H defined by JM,λ(u) = (I + λM)−1(u), for all
u ∈ H, is called the resolvent operator associated with M, where λ is any positive number
and I is the identity mapping.
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Lemma 1.2 (see [4]). Assume that {αn} is a sequence of nonnegative real numbers such that αn+1 ≤
(1 − γn)αn + δn, where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(a)
∑∞

n=1 γn = ∞;

(b) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞αn = 0.

Lemma 1.3 (see [22]). Let {xn} and {yn} be bounded sequences in a Banach spaceX and let {βn} be
a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose that xn+1 = (1 − βn)yn +
βnxn for all n ≥ 0 and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then limn→∞‖yn − xn‖ = 0.

Lemma 1.4 (see [11]). u ∈ H is a solution of variational inclusion (1.14) if and only if u = JM,λ(u−
λBu, ) for all λ > 0, that is,

V I(H,B,M) = F(JM,λ(I − λB)), ∀λ > 0. (1.20)

Lemma 1.5 (see [11]). The resolvent operator JM,λ associated with M is single-valued and
nonexpansive for all λ > 0.

Lemma 1.6 (see [23]). Let C be a closed convex subset of a strictly convex Banach space E. Let S and
T be two nonexpansive mappings on C. Suppose that F(T) ∩ F(S) is nonempty. Then a mapping R
on C defined by Rx = aSx + (1 − a)Tx, where a ∈ (0, 1), for x ∈ C is well defined and nonexpansive
and F(R) = F(T) ∩ F(S) holds.

Lemma 1.7 (see [24]). LetH be a real Hilbert space, let C be a nonempty closed convex subset ofH,
and let S : C → C be a nonexpansive mapping. Then I − S is demiclosed at zero.

Lemma 1.8 (see [25]). Let C be a nonempty closed convex subset of a real Hilbert space H and
T : C → C a k-strict pseudocontraction. Define S : C → H by Sx = αx+ (1−α)Tx for each x ∈ C.
Then, as α ∈ [k, 1), S is nonexpansive such that F(S) = F(T).

2. Main Results

Theorem 2.1. Let H be a real Hilbert space and M : H → 2H a maximal monotone mapping. Let
B : H → H be a relaxed (δ, r)-cocoercive and ν-Lipschitz continuous mapping, and S a k-strict
pseudocontraction with a fixed point. Define a mapping Sk : H → H by Skx = kx + (1 − k)Sx.
Let f be a contraction of H into itself with the contractive coefficient α(0 < α < 1), and A a strongly
positive linear bounded self-joint operator with the coefficient γ > 0. Assume that 0 < γ < γ/α and
Ω = F(S) ∩ V I(H,B,M)/= ∅. Let x1 ∈ H and {xn} be a sequence generated by

yn = JM,λ(xn − λBxn),

xn+1 = αnγf(xn) + βnxn +
[(

1 − βn
)

I − αnA
][

μSkxn +
(

1 − μ
)

yn

]

, ∀n ≥ 1,
(2.1)

where {αn} and {βn} are sequences in (0, 1). Assume that λ ∈ (0, 2(r − δν2)/ν2), r > δν2. If the
control consequences {αn} and {βn} satisfy the following restrictions:
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(C1) 0 < a ≤ βn ≤ b < 1, for all n ≥ 1,

(C2) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

then {xn} converges strongly to z ∈ Ω, which solves uniquely the following variational inequality:

〈(

A − γf
)

z, z − x∗〉 ≤ 0, ∀x∗ ∈ Ω. (2.2)

Equivalently, one has PΩ(I −A + γf)z = z.

Proof. The uniqueness of the solution of the variational inequality (2.2) is a consequence of
the strong monotonicity ofA− γf . Suppose that z1 ∈ Ω and z2 ∈ Ω both are solutions to (2.2);
then 〈(A − γf)z1, z1 − z2〉 ≤ 0 and 〈(A − γf)z2, z2 − z1〉 ≤ 0. Adding up the two inequalities,
we see that

〈(

A − γf
)

z1 −
(

A − γf
)

z2, z1 − z2
〉 ≤ 0. (2.3)

The strong monotonicity of A − γf (see [2, Lemma 2.3]) implies that z1 = z2 and the
uniqueness is proved. Below we use z to denote the unique solution of (2.2).

Next, we show that the mapping I − λB is nonexpansive. Indeed, for all x, y ∈ H, one
see from the condition λ ∈ (0, 2(r − γμ2)/μ2) that

∥
∥(I − λB)x − (I − λB)y

∥
∥
2

=
∥
∥(x − y) − λ(Bx − By)

∥
∥
2

=
∥
∥x − y

∥
∥
2 − 2λ〈Bx − By, x − y〉 + λ2

∥
∥Bx − By

∥
∥
2

≤ ∥
∥x − y

∥
∥
2 − 2λ

[

(−δ)∥∥Bx − By
∥
∥
2 + r

∥
∥x − y

∥
∥
2
]

+ λ2ν2
∥
∥x − y

∥
∥
2

=
(

1 + λ2ν2 − 2λr + 2λδν2
)∥
∥x − y

∥
∥
2

≤ ∥
∥x − y

∥
∥
2
,

(2.4)

which implies that the mapping I−λB is nonexpansive. Taking x∗ ∈ Ω,we have x∗ = JM,λ(x∗−
λBx∗). It follows from Lemma 1.5 that

∥
∥yn − x∗∥∥ = ‖JM,λ(xn − λBxn) − JM,λ(x∗ − λBx∗)‖ ≤ ‖xn − x∗‖. (2.5)

Note that from the conditions (C1) and (C2), we may assume, without loss of generality, that
αn ≤ (1 − βn)‖A‖−1 for all n ≥ 1. Since A is a strongly positive linear bounded self-adjoint
operator, we have ‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}. Now for x ∈ H with ‖x‖ = 1, we
see that

〈((

1 − βn
)

I − αnA
)

x, x
〉

= 1 − βn − αn〈Ax, x〉 ≥ 1 − βn − αn‖A‖ ≥ 0; (2.6)
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that is, (1 − βn)I − αnA is positive. It follows that

∥
∥
(

1 − βn
)

I − αnA
∥
∥ = sup

{〈((1 − βn
)

I − αnA
)

x, x〉 : x ∈ C, ‖x‖ = 1
}

= sup
{

1 − βn − αn〈Ax, x〉 : x ∈ C, ‖x‖ = 1
}

≤ 1 − βn − αnγ.

(2.7)

Set tn = μSkxn + (1 − μ)yn. From Lemma 1.8, we see that Sk is nonexpansive. It follows from
(2.5) that

‖tn − x∗‖ ≤ μ‖Skxn − x∗‖ + (

1 − μ
)∥
∥yn − x∗∥∥ ≤ ‖xn − x∗‖. (2.8)

From (2.7) and (2.8), we arrive at

‖xn+1 − x∗‖
=
∥
∥αnγf(xn) + βnxn +

[(

1 − βn
)

I − αnA
]

tn − x∗∥∥

≤ αn

∥
∥γf(xn) −Ax∗∥∥ + βn‖xn − x∗‖ + ∥

∥
(

1 − βn
)

I − αnA
∥
∥‖tn − x∗‖

≤ αn

∥
∥γf(xn) −Ax∗∥∥ + βn‖xn − x∗‖ + (

1 − βn − αnγ
)‖tn − x∗‖

≤ αn

∥
∥γf(xn) − γf(x∗)

∥
∥ + αn

∥
∥γf(x∗) −Ax∗∥∥ + βn‖xn − x∗‖

+
(

1 − βn − αnγ
)‖xn − x∗‖

≤ ααnγ‖xn − x∗‖ + αn

∥
∥γf(x∗) −Ax∗∥∥ + βn‖xn − x∗‖

+
(

1 − βn − αnγ
)‖xn − x∗‖

=
[

1 − αn

(

γ − αγ
)]‖xn − x∗‖ + αn

∥
∥γf(x∗) −Ax∗∥∥.

(2.9)

By simple inductions, one obtains that ‖xn − x∗‖ ≤ max{‖x1 − x∗‖, ‖γf(x∗) − Ax∗‖/γ − αγ},
which gives that the sequence {xn} is bounded, so are {yn} and {tn}.

On the other hand, we see from the nonexpansivity of the mappings JM,λ that

∥
∥yn+1 − yn

∥
∥ = ‖JM,λ(xn+1 − λBxn+1) − JM,λ(xn − λBxn)‖ ≤ ‖xn+1 − xn‖. (2.10)

It follows that

‖tn+1 − tn‖ =
∥
∥μSkxn+1 +

(

1 − μ
)

yn+1 −
[

μSkxn +
(

1 − μ
)

yn

]∥
∥

≤ μ‖Skxn+1 − Skxn‖ +
(

1 − μ
)∥
∥yn+1 − yn

∥
∥

≤ ‖xn+1 − xn‖.
(2.11)

Setting

xn+1 =
(

1 − βn
)

en + βnxn, ∀n ≥ 1, (2.12)
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we see that

en+1 − en

=
αn+1γf(xn+1) +

[(

1 − βn+1
)

I − αn+1A
]

tn

1 − βn+1
− αnγf(xn) +

[(

1 − βn
)

I − αnA
]

tn

1 − βn

=
αn+1

1 − βn+1

[

γf(xn+1) −Atn
]

+ tn+1 − αn

1 − βn

[

γf(xn) −Atn
] − tn.

(2.13)

It follows that

‖en+1 − en‖ ≤ αn+1

1 − βn+1

∥
∥γf(xn+1) −Atn

∥
∥ +

αn

1 − βn

∥
∥γf(xn) −Atn

∥
∥ + ‖tn+1 − tn‖, (2.14)

which combines with (2.11) yields that

‖en+1 − en‖ − ‖xn+1 − xn‖ ≤ αn+1

1 − βn+1

∥
∥γf(xn+1) −Atn

∥
∥ +

αn

1 − βn

∥
∥γf(xn) −Atn

∥
∥. (2.15)

It follows from the conditions (C1) and (C2) that lim supn→∞(‖en+1 − en‖ − ‖xn+1 − xn‖) ≤ 0.
Hence, from Lemma 1.3, one obtains limn→∞‖en − xn‖ = 0. From (2.12), one has ‖xn+1 − xn‖ =
(1 − βn)‖en − xn‖. Thanks to the condition (C1), we see that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.16)

On the other hand, we have

xn+1 − xn = αnγf(xn) + βnxn +
[(

1 − βn
)

I − αnA
]

tn − xn

= αn

(

γf(xn) −Atn
)

+
(

1 − βn
)

(tn − xn).
(2.17)

It follows that

(

1 − βn
)‖tn − xn‖ ≤ ‖xn+1 − xn‖ + αn

∥
∥γf(xn) −Atn

∥
∥. (2.18)

From the conditions (C1) and (C2) and (2.16), we see that

lim
n→∞

‖tn − xn‖ = 0. (2.19)

Next, we prove that lim supn→∞〈(γf −A)z, xn − z〉 ≤ 0, where z = PΩ[I − (A − γf)]z.
To see this, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈(

γf −A
)

z, xn − z
〉

= lim
i→∞

〈(

γf −A
)

z, xni − z
〉

. (2.20)
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Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges weakly

to w. Without loss of generality, we can assume that xni ⇀ w. Next, we show that w ∈
F(S) ∩ V I(H,M,B). Define a mapping D by

Dx = μSkx +
(

1 − μ
)

JM,λ(I − λB), ∀x ∈ H. (2.21)

In view of Lemma 1.6, we see that D is nonexpansive such that

F(D) = F(Sk) ∩ F(JM,λ(I − λB)) = F(S) ∩ V I(H,B,M). (2.22)

From (2.19), we obtain limn→∞‖Dxni − xni‖ = 0. It follows from Lemma 1.7 that w ∈ F(D).
That is, w ∈ F(S) ∩ V I(H,M,B). Thanks to (2.20), we arrive at

lim sup
n→∞

〈(

γf −A
)

z, xn − z
〉

= lim
i→∞

〈(

γf −A
)

z, xni − z
〉

=
〈(

γf −A
)

z,w − z
〉 ≤ 0. (2.23)

Finally, we show that xn → z, as n → ∞. Indeed, we have

‖xn+1 − z‖2

= 〈αnγf(xn) + βnxn +
[(

1 − βn
)

I − αnA
]

tn − z, xn+1 − z〉
= αn〈γf(xn) −Az, xn+1 − z〉 + βn〈xn − z, xn+1 − z〉
+ 〈[(1 − βn

)

I − αnA
]

(tn − z), xn+1 − z〉
≤ αnγ〈f(xn) − f(z), xn+1 − z〉 + αn〈γf(z) −Az, xn+1 − z〉
+ βn‖xn − z‖‖xn+1 − z‖ + (

1 − βn − αnγ
)‖xn − z‖‖xn+1 − z‖

≤ γα

2
αn

(

‖xn − z‖2 + ‖xn+1 − z‖2
)

+ αn〈γf(z) −Az, xn+1 − z〉

+
(

1 − αnγ
)‖xn − z‖‖xn+1 − z‖

≤ γα

2
αn

(

‖xn − z‖2 + ‖xn+1 − z‖2
)

+ αn〈γf(z) −Az, xn+1 − z〉

+

(

1 − αnγ
)

2

(

‖xn − z‖2 + ‖xn+1 − z‖2
)

=
1 − αn

(

γ − αγ
)

2
‖xn − z‖2 + 1

2
‖xn+1 − z‖2 + αn〈γf(z) −Az, xn+1 − z〉,

(2.24)

which implies that

‖xn+1 − z‖2 ≤ [

1 − αn

(

γ − αγ
)]‖xn − z‖2 + 2αn

〈

γf(z) −Az, xn+1 − z
〉

. (2.25)

From the condition (C2), (2.23), and using Lemma 1.2, we see that limn→∞‖xn − z‖ = 0. This
completes the proof.
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Letting γ = 1 and A = I, the identity mapping, we can obtain from Theorem 2.1 the
following result immediately.

Corollary 2.2. Let H be a real Hilbert space and M : H → 2H a maximal monotone mapping. Let
B : H → H be a relaxed (δ, r)-cocoercive and ν-Lipschitz continuous mapping, and S a k-strict
pseudocontraction with a fixed point. Define a mapping Sk : H → H by Skx = kx + (1 − k)Sx.
Let f be a contraction of H into itself with the contractive coefficient α(0 < α < 1). Assume that
Ω = F(S) ∩ V I(H,B,M)/= ∅. Let x1 ∈ H and {xn} be a sequence generated by

yn = JM,λ(xn − λBxn),

xn+1 = αnf(xn) + βnxn +
(

1 − βn − αn

)[

μSkxn +
(

1 − μ
)

yn

]

, ∀n ≥ 1,
(2.26)

where {αn} and {βn} are sequences in (0, 1). Assume that λ ∈ (0, 2(r − δν2)/ν2), r > δν2. If the
control consequences {αn} and {βn} satisfy the following restrictions:

(C1) 0 < a ≤ βn ≤ b < 1, for all n ≥ 1,

(C2) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

then {xn} converges strongly to z ∈ Ω.

Remark 2.3. Corollary 2.2 improves Theorem 2.1 of Zhang et al. [11] in the following sense:

(1) from nonexpansive mappings to strict pseudocontractions;

(2) the analysis technique used in this paper is different from [11]’s: the proof is also
more concise than [11]’s;

(3) the restriction imposed on the parameter {αn} is relaxed.
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