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We prove some theorems for the existence of ergodic retractions onto the set of common fixed
points of a family of asymptotically nonexpansive mappings. Our results extend corresponding
results of Benavides and Ramı́rez (2001), and Li and Sims (2002).

1. Introduction

Let E be a Banach space and C a nonempty closed and convex subset of E. We recall some
definitions.

Definition 1.1. A mapping T : C → C is said to be

(i) nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C; (1.1)

(ii) asymptotically nonexpansive if there exists a sequence {kn} of positive numbers
satisfying the property limn→∞kn = 1 and

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥, ∀x, y ∈ C; (1.2)
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(iii) of asymptotically nonexpansive type if for each x in C, we have

lim sup
n→∞

sup
y∈C

(∥
∥Tnx − Tny

∥
∥ − ∥

∥x − y
∥
∥
) ≤ 0; (1.3)

(iv) weakly asymptotically nonexpansive if it satisfies the condition

lim sup
n→∞

∥
∥Tnx − Tny

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.4)

(v) retraction if T2 = T . A subset F of C is called a nonexpansive retract of C if either
F = ∅ or there exists a retraction of C onto F which is a nonexpansive mapping.

Definition 1.2. We say that a nonempty closed convex subset D of C satisfies property (ω)
with respect to

(i) a mapping T : C → C if ωT (x) ⊂ D for every x ∈ D where

ωT (x) =
{

y ∈ C : y = w − lim
k
Tnk(x) for some nk −→ ∞

}

, (1.5)

(ii) a semigroup of mappings ϕ = {T(t) : C → C : t ≥ 0} if ωϕ(x) ⊂ D for every x ∈ D
where

ωϕ(x) =
{

y ∈ C : y = w − lim
i
T(ti)(x) for some ti ↑ ∞

}

. (1.6)

Obviously, C itself verifies (ω).

Definition 1.3. (i) A mapping T : C → C is said to satisfy the (ω)-fixed point property ((ω)-
fpp) if T has a fixed point in every nonempty closed convex subsetD of Cwhich satisfies (ω)
with respect to T .

(ii) A semigroup ϕ = {T(t) : C → C : t ≥ 0} is said to satisfy the (ω)-fpp if ϕ has a
common fixed point in every nonempty closed convex subsetD of Cwhich satisfies (ω)with
respect to the semigroup ϕ.

(iii) A family ϕ = {Ti : C → C : i ∈ I} is said to satisfy the (ω)-fpp if ϕ has a common
fixed point in every nonempty closed convex subset D of C which satisfies (ω) with respect
to each Ti.

In 1965, Kirk [1] proved that if C is a weakly compact convex subset of a Banach space
with normal structure, then every nonexpansive mapping T : C → C has a fixed point. (A
nonempty convex subset C of a normed linear space is said to have normal structure if each
bounded convex subset K of C consisting of more than one point contains a nondiametral
point). Goebel and Kirk [2] proved that if E is assumed to be uniformly convex, then every
asymptotically nonexpansive self-mapping T of C has a fixed point. This was extended to
mappings of asymptotically nonexpansive type by Kirk in [3]. However, whether normal
structure implies the existence of fixed points for mappings of asymptotically nonexpansive
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type is a natural and still open question. Li and Sims [4] proved the following fixed point
result in the case that E has uniform normal structure (It is known that a space with uniform
normal structure is reflexive and that all uniformly convex or uniformly smooth Banach
spaces have uniform normal structure).

Theorem 1.4. Suppose E is a Banach space with uniform normal structure;C is a nonempty bounded
subset of E. Then

(i) every continuous and asymptotically nonexpansive type mapping T : C → C satisfies
(ω)-fpp;

(ii) every semigroup ϕ = {T(t) : C → C : t ≥ 0} of asymptotically nonexpansive type
mappings on C such that T(t) is continuous on C for each t ≥ 0 satisfies (ω)-fpp.

On the other hand, Bruck [5] initiated the study of the structure of the fixed point set
F(T) = {x : Tx = x} in a general Banach space E: if C is a weakly compact convex subset of
E and T : C → C is nonexpansive and satisfies a conditional fixed point property, then F(T)
is a nonexpansive retract of C. The same author [6] used this fact to derive the existence of
fixed points for a commuting family of nonexpansive mappings. See, for example, [7, 8] for
some related results.

Benavides and Ramı́rez [9] studied the structure of the set of fixed points for (weakly)
asymptotically nonexpansive mappings.

Theorem 1.5. Let E be a Banach space and C a nonempty weakly compact convex subset of E.
Assume that every asymptotically nonexpansive self-mapping of C satisfies the (ω)-fpp. Then for any
commuting family ϕ of asymptotically nonexpansive self-mappings of C, the common fixed point set
of ϕ, F(ϕ), is a nonempty nonexpansive retract of C.

In this paper, we prove some theorems to guarantee the existence of nonexpansive
retractions onto the common fixed points of some families of (weakly) asymptotically
nonexpansive (type) mappings. The results obtained in this paper extend in some sense, for
example, Theorems 1.4 and 1.5, above.

2. Nonexpansive Retractions for Families of
Weakly Asymptotically Nonexpansive Mappings

Theorem 2.1. Let C be a nonempty weakly compact convex subset of a Banach space E, and ϕ = {Ti :
i ∈ I} a family of weakly asymptotically nonexpansive mappings on C such that F(ϕ)/= ∅. Assume
one of the following assumptions is satisfied:

(a) ϕ satisfies the (ω)-fpp;

(b) F(ϕ) is a nonexpansive retract of C.

Then for each α ∈ I, there exists a nonexpansive retraction Pα from C onto F(ϕ), the common
fixed points of ϕ, such that PαTα = TαPα = Pα, and every closed convex ϕ-invariant subset of C is also
Pα-invariant.
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Proof. Consider CC with the product topology induced by the weak topology on C. Now,
consider an α ∈ I and define

R :=
{

T ∈ CC : T is nonexpansive, T ◦ Tα = T,

and every closed convex ϕ-invariant subset of C is also T -invariant
} (2.1)

By applying an argument similar to that in the proof of [9, Theorem 2], it follows that R is
compact (the topology on R is that of weak pointwise convergence) and there is a minimal
element Pα ∈ R in the following sense:

if T ∈ R and
∥
∥T(x) − T

(

y
)∥
∥ ≤ ∥

∥Pα(x) − Pα

(

y
)∥
∥, ∀x, y ∈ C,

then
∥
∥T(x) − T

(

y
)∥
∥ =

∥
∥Pα(x) − Pα

(

y
)∥
∥.

( ∗)

First, we assume the case (a). We shall prove that Pα(x) ∈ F(ϕ) for all x ∈ C. For a
given x ∈ C, consider the setK = {T(Pα(x)) : T ∈ R}. ThenK is a nonempty weakly compact
convex subset of C, because R is convex and compact. We will show that for all i ∈ I, K
satisfies property (ω) with respect to Ti. Fix i ∈ I and take y ∈ K and z ∈ Csuch as Tnk

i y ⇀ z,

for some nk → ∞. There exists h ∈ R such that y = h(Pα(x)). Consider a subnet {Tnk(η)
i } of

{Tnk

i } such that S(u) = ω − limηT
nk(η)
i (u) exists for every u ∈ C. Now, taking u = h(Pα(x)), we

have z = S(h(Pα(x))). Since S is nonexpansive, h ∈ R, and S ◦ h ◦ Tα = S ◦ h, it follows that
S ◦ h ∈ R and then z = S(h(Pα(x))) ∈ K. Thus K satisfies the property (ω) with respect to Ti.
Since, ϕ satisfies the (ω)-fpp (by (a)), it follows that K ∩ F(ϕ)/= ∅. So, there exists h ∈ R with
h(Pα(x)) ∈ F(ϕ). Let y = h(Pα(x)). Then Pα(y) = h(y) = y, and by using the minimality of Pα,
we have

∥
∥Pα(x) − y

∥
∥ =

∥
∥Pα(x) − Pα

(

y
)∥
∥ =

∥
∥h(Pα(x)) − h

(

Pα

(

y
))∥
∥ =

∥
∥h(Pα(x)) − y

∥
∥ = 0. (2.2)

So, we get Pα(x) = y ∈ F(ϕ). Since this is so for each x ∈ C and Pα belongs to R, it follows
that P 2

α = Pα and PαTα = TαPα = Pα.
Now, we assume the case (b). From (b), there is a nonexpansive retraction R from C

onto F(ϕ). Put ϕ′ := ϕ∪{R}. Since F(ϕ) = F(ϕ′), we can replace ϕ by ϕ′ in the above assertions
to obtain a minimal element Pα ∈ R in the sense (∗), where R ia defined here as

{

T ∈ CC : T is nonexpansive, T ◦ Tα = T,

and every closed convex ϕ’-invariant subset of C is also T -invariant
}

.

(2.3)

We note that R ◦ T ◦ Tα = R ◦ T , (∀T ∈ R). Since R ∈ ϕ′, every closed convex ϕ′-invariant
subset of C is also R-invariant and consequently R ◦ T -invariant, (∀T ∈ R). So it is easy to see
that R ◦ T ∈ R, (∀T ∈ R). Therefore, for every x ∈ C, the set K = {T(Pα(x)) : T ∈ R} is an
R-invariant subset of C. So, considering the fact that R(K) ⊆ K ∩R(C) = K ∩ F(ϕ), we obtain
K ∩ F(ϕ)/= ∅. Now, we can repeat the argument used in the last paragraph to get the desired
result.
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A nonexpansive retraction satisfying the thesis of Theorem 2.1 is usually called an
ergodic retraction (see e.g., [10, 11]).

Combining Theorem 1.5 [9, Theorem 4] and Theorem 2.1(a), we get the following
improvement of Theorem 1.5.

Corollary 2.2. Let E be a Banach space and C a nonempty weakly compact convex subset of E.
Assume that every asymptotically nonexpansive self-mapping of C satisfies (ω)-fpp. Then for any
commuting family ϕ = {Ti : i ∈ I} of asymptotically nonexpansive self-mappings of C and for each
i ∈ I, there exists a nonexpansive retraction Pi from C onto F(ϕ), such that PiTi = TiPi = Pi, and
every closed convex ϕ-invariant subset of C is also Pi-invariant.

3. Ergodic Retractions for a Semigroup of
Asymptotically Nonexpansive Type

Assume that S is a semigroup and l∞(S) is the space of all bounded real-valued functions
defined on S with supremum norm. For s ∈ S and f ∈ B(S), we define elements lsf and rsf
in B(S) by (lsf)(t) = f(st) and (rsf)(t) = f(ts) for each t ∈ S, respectively. An element μ of
l∞(S)∗ is said to be a mean on X if ‖μ‖ = μ(1) = 1. We often write μt(f(t)) instead of μ(f) for
μ ∈ l∞(S)∗ and f ∈ l∞(S). A mean μ is said to be invariant if μ(lsf) = μ(rsf) = μ(f) for each
s ∈ S and f ∈ l∞(S). S is said to be amenable if there is an invariant mean on l∞(S). As is well
known, S is amenable when it is a commutative semigroup [12].

The following result which we need is well known (see [13]).

Lemma 3.1. Let f be a function of a semigroup S into E such that the weak closure of {f(t) : t ∈ S} is
weakly compact. Then, for any μ ∈ l∞(S)∗, there exists a unique element fμ in E such that 〈fμ, x∗〉 =
μt〈f(t), x∗〉 for all x∗ ∈ E∗. Moreover, if μ is a mean, then fμ ∈ co{f(t) : t ∈ S}.

We can write fμ by
∫

f(t)dμ(t). As a direct consequence of Lemma 3.1, we have the
following lemma.

Lemma 3.2. Let C be a nonempty closed convex subset of a Banach space E, ϕ = {T(t) : t ≥ 0} a
semigroup of weakly asymptotically nonexpansive mappings on C such that weak closure of {T(t)x :
t ≥ 0} is weakly compact for each x ∈ C, and μ a mean on l∞(R+).

If we write Tμx instead of
∫

T(t)x dμ(t), then the following hold.

(i) Tμx = x for each x ∈ F(ϕ).

(ii) Tμx ∈ co{T(t)x : t ≥ 0} for each x ∈ C.

(iii) If μ is invariant, then TμT(t) = Tμ for each t ≥ 0 and Tμ is a nonexpansive mapping from
C into itself.

Proof. We only need to prove that Tμ is nonexpansive: consider x, y ∈ C and x∗ ∈ J(Tμx−Tμy).
Then for each s ≥ 0, we have

∥
∥Tμx − Tμy

∥
∥
2 =

〈

Tμx − Tμy, x
∗〉 = μt

〈

T(t)x − T(t)y, x∗〉 = μt

〈

T(t + s)x − T(t + s)y, x∗〉

≤ ∥
∥Tμx − Tμy

∥
∥sup

t≥0

∥
∥T(t + s)x − T(t + s)y

∥
∥.

(3.1)
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Therefore, ‖Tμx − Tμy‖ ≤ supt≥0‖T(t + s)x − T(t + s)y‖, for every s ≥ 0. Consequently, we get

∥
∥Tμx − Tμy

∥
∥ ≤ inf

s≥0
sup
t≥0

∥
∥T(t + s)x − T(t + s)y

∥
∥ ≤ ∥

∥x − y
∥
∥. (3.2)

The following is our main result which is an improvement of Theorem 1.4 [4, Theorem
2.2].

Theorem 3.3. Suppose E is a Banach space with uniform normal structure;C is a nonempty bounded
closed and convex subset of E; ϕ = {T(t) : t ≥ 0} is a semigroup of asymptotically nonexpansive type
mappings on C such that T(t) is continuous on C for each t ≥ 0. Then there exists a nonexpansive
retraction P from C onto F(ϕ), such that PT(t) = T(t)P = P for each t ∈ S, and every closed convex
ϕ-invariant subset of C is also P -invariant.

Proof. Consider CC with the product topology induced by the weak topology on C. Now,
define

R :=
{

T ∈ CC : T is nonexpansive, T ◦ T(t) = T, ∀t ≥ 0

and every closed convex ϕ-invariant subset of C is also T -invariant
}

.

(3.3)

We note that R/= ∅, because the mapping Tμ in Lemma 3.2 belongs to R. By applying an
argument similar to that in the proof of [9, Theorem 2] (see also the proof of [7, Lemma 3.1]),
it follows that R is compact and there is a minimal element P ∈ R in the following sense:

if T ∈ R and
∥
∥T(x) − T

(

y
)∥
∥ ≤ ∥

∥P(x) − P
(

y
)∥
∥, ∀x, y ∈ C,

then
∥
∥T(x) − T

(

y
)∥
∥ =

∥
∥P(x) − P

(

y
)∥
∥.

(3.4)

We will prove that P(x) ∈ F(ϕ) for all x ∈ C. For a given x ∈ C, consider the set K =
{T(P(x)) : T ∈ R}. Then K is a nonempty weakly compact convex subset of C, because R

is convex and compact. Take y ∈ K and z ∈ Csuch as T(ti)y ⇀ z, for some ti ↑ ∞. There
exists h ∈ R, such that y = h(P(x)). Consider a subnet {T(ti(η))} of {T(ti} such that S(u) =
ω − limηT(ti(η))(u) exists for every u ∈ C. Now, taking u = h(P(x)), we have z = S(h(P(x))).
Since S is nonexpansive, h ∈ R and S ◦h ◦T(t) = S ◦h for every t ≥ 0, it follows that S ◦h ∈ R

and then z = S(h(P(x))) ∈ K. ThusK satisfies the property (ω)with respect to the semigroup
ϕ. Now, from Theorem 1.4, it follows that K ∩ F(ϕ)/= ∅. From this and the argument used in
the proof of Theorem 2.1, we obtain P(x) ∈ F(ϕ). Since this holds for each x ∈ C, P 2 = P .
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