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In 1957, Kolmogorov and Arnold gave a solution to the 13th problem which had been formulated
by Hilbert in 1900. Actually, it is known that there exist many open problems which can be derived
from the original problem. From the function-theoretic point of view, Hilbert’s 13th problem can
be exactly characterized as the superposition representability problem for continuous functions
of several variables. In this paper, the solution to the superposition representability problem for
infinitely differentiable functions of several variables is given.

1. Superposition Representability and
Superposition Irrepresentability

In 1957, Kolmogorov and Arnold [1] solved Hilbert’s 13th problem asking if all continuous
real-valued functions of several real variables can be represented as superpositions of
continuous functions of fewer variables. Moreover, in 1964, Vitushkin [2] solved the problem,
which had been derived from Hilbert’s 13th problem, asking if all finitely differentiable real-
valued functions of several real variables can be represented as superpositions of finitely
differentiable functions of fewer variables. In this paper, the solution to the superposition
representability problem for infinitely differentiable functions of several variables is given.

Let F(P)3 (resp., F(P)2) be a set of functions of three variables (resp., two variables)
satisfying the condition P such as continuity or differentiability. Then, the superposition
representability can be classified into the following two concepts.

Strong representabity: there exists a positive integer k satisfying that, for any function
f of F(P)3, f can be represented as a k-time nested superposition constructed from 2k+1 − 1
functions of F(P)2.
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Weak representability: for any function f of F(P)3, there exists a positive integer kf
such that f can be represented as a kf -time nested superposition constructed from several
functions of F(P)2.

Here, for a certain conditionP,P is said to be strongly (resp., weakly) representable, if
strong (resp., weak) representability under the condition P holds. It is clear that P is weakly
representable, if P is strongly representable. By the same way as above, the superposition
irrepresentability can be also classified into the following two concepts.

Strong irrepresentability: there exists a function f of F(P)3 which cannot be
represented as any finite-time nested superposition constructed from several functions of
F(P)2.

Weak irrepresentability: for any positive integer k, there exists a function fk of F(P)3
which cannot be represented as any k-time nested superposition constructed from several
functions of F(P)2.

Here, for a certain condition P, P is said to be strongly (resp., weakly) irrepresentable,
if strong (resp., weak) irrepresentability under the condition P holds. It is clear that P is
weakly irrepresentable, if P is strongly irrepresentable. Moreover, it is also clear that P
is weakly irrepresentable (resp., representable), if P is not strongly representable (resp.,
irrepresentable). Therefore, we can classify a condition such as continuity or differentiability
into three cases.

Case 1. The case that P is strongly representable.

Case 2. The case that P is not only weakly representable but also weakly irrepresentable.

Case 3. The case that P is strongly irrepresentable.

For example, if we take continuity as an example of P, then owing to Kolmogorov
and Arnold, we can say that continuity satisfies Case 1. As for the proof, we refer to [1, 3].
Moreover, if we take analyticity as an example of P, then, owing to Babenko, Erohin, and
Akashi, we can say that analyticity satisfies Case 3. As for the proof, we refer to [4–7]. If we
take finite differentiability as an example of P, then, owing to Vituskin, we can say that finite
differentiability satisfies Case 3. As for the proof, we refer to [2]. It is clear that polynomial
condition satisfies Case 2. In the following section, this result will be formulated as a
generalized relation between polynomial condition and infinite differentiability condition.

Recently, it is discussed that Hilbert’s 13th problem can be applied to the theory
of multidimensional numerical data compression. Since the results stated above show that
it is important for any functions of three variables to find the appropriate superpositions
which can approximate most efficiently to the original function. Therefore, nonlinear
theoretic approximation methods will play important roles in the theory of multidimensional
numerical data compression. As for the nonlinear theoretic approximation methods, we can
refer to Takahashi’s results [8].

2. Weak Irrepresentability of Polynomial Condition

In this section, we prove that polynomial condition is weakly irrepresentable.

Lemma 2.1. For any positive integer n, there exists a polynomial fn which cannot be represented
as any n-time nested superposition constructed from several infinitely differentiable functions of two
variables on (−1, 1)2.
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Proof. Let i, j, and k be three nonnegative integers. Then, for any infinitely differentiable
functions f(·, ·) and g(·, ·, ·), we define c(f)i,j and c(g)i,j,k as
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(2.1)

respectively. Here, assume that there exists a positive integer � satisfying that all the
polynomials can be represented as �-time nested superpositions. Then, the total number of
infinitely differentiable functions of two variables, from which we use to construct the �-
time nested superposition, is less than or equal to 2� − 1. Let p(·, ·, ·) be a polynomial of three
variables and {fp,m(·, ·); 1 ≤ m ≤ 2� − 1} is a family of infinitely differentiable functions of
two variables from which we use to construct the �-time nested superposition of p. For any
positive integer m which is less than or equal to 2� − 1 and for any nonnegative integer r, we
have
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(2.2)

Since Taylor’s expansion theorem assures that, for any nonnegative integer r, {c(p)i,j,k; 0 ≤
i + j + k ≤ r} can be exactly characterized as

⋃2�−1
m=1{c(fp,m)i,j ; 0 ≤ i + j ≤ r}, we have
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This implies that, for any positive integer s, the following inequality holds:
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So, we have a contradiction.
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Remark 2.2. This lemma shows that polynomial condition satisfies Case 2, because this
condition is also weakly representable.

3. Strong Irrepresentability of Infinite Differentiability Condition

In this section, we prove that infinite differentiability condition is strongly irrepresentable.

Theorem 3.1. There exists an infinitely differentiable function defined on (0, 1)3 with values in R,
which cannot be represented as any superposition constructed from several infinitely differentiable
functions defined on (0, 1)2 with values in R.

Proof. Let φ(·) be the function on R with values in R defined as
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(3.1)

Then, it can be easily proved that φ is infinitely differentiable. Moreover, for any positive
integer n, let pn(·) and qn(·) be the functions on R with values in R defined as

pn(x) = (1 − x)
(
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)

qn(x) = p−1n (x),

(3.2)

respectively. For any positive integer n, Lemma 2.1 assures that there exists a polynomial
hn(·, ·, ·), which is defined on (0, 1)3 and cannot be represented as n-time nested superposition
constructed from several polynomials of two variables. Therefore, it is sufficient that the
following function g(·, ·, ·), which is defined as
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cannot be represented as any superposition constructed from several infinitely differentiable
functions defined on (0, 1)2. Here, assume that, for a certain positive integer k, g(·, ·, ·) can be
represented as k-time nested superposition. Then, for any positive integer n, hn(·, ·, ·) is also
characterized by the following equality:
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=
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)

φ(x)φ
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y
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Actually, this equality shows that, for any positive integer n, hn(·, ·, ·) can be represented as
a certain k + 2-time nested superposition constructed from several infinitely differentiable
functions defined on (0, 1)2. Therefore, we have a contradiction.
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Remark 3.2. Theorem 3.1 shows that infinite differentiability condition satisfies Case 3. For
any real variables x, y, z, it is clear that xy + yz + zx can be represented as the following
two-time nested superposition:

xy + yz + zx =
(
x + y

)
z + yz. (3.5)

Actually, if we apply the same method as stated above to this polynomial, it can be proved
that xy + yz + zx cannot be represented as any one-time nested superposition.
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