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We introduce two general iterative schemes for finding a common fixed point of a countable family
of relatively nonexpansive mappings in a Banach space. Under suitable setting, we not only obtain
several convergence theorems announced by many authors but also prove them under weaker
assumptions. Applications to the problem of finding a common element of the fixed point set
of a relatively nonexpansive mapping and the solution set of an equilibrium problem are also
discussed.

1. Introduction and Preliminaries

Let C be a nonempty subset of a Banach space E, and let T be a mapping from C into itself.
When {xn} is a sequence in E, we denote strong convergence of {xn} to x ∈ E by xn → x and
weak convergence by xn ⇀ x. We also denote the weak∗ convergence of a sequence {x∗

n} to
x∗ in the dual E∗ by x∗

n
∗
⇀ x∗. A point p ∈ C is an asymptotic fixed point of T if there exists

{xn} in C such that xn ⇀ p and xn − Txn → 0. We denote F(T) and ̂F(T) by the set of fixed
points and of asymptotic fixed points of T , respectively. A Banach space E is said to be strictly
convex if ‖x + y‖/2 < 1 for x, y ∈ S(E) = {z ∈ E : ‖z‖ = 1} and x /=y. It is also said to be
uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that ‖x + y‖/2 < 1 − δ for
x, y ∈ S(E) and ‖x − y‖ ≥ ε. The space E is said to be smooth if the limit

lim
t→ 0

‖x + tx‖ − ‖x‖
t

(1.1)
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exists for all x, y ∈ S(E). It is also said to be uniformly smooth if the limit exists uniformly in
x, y ∈ S(E).

Many problems in nonlinear analysis can be formulated as a problem of finding a fixed
point of a certain mapping or a common fixed point of a family of mappings. This paper deals
with a class of nonlinear mappings, so-called relatively nonexpansive mappings introduced
by Matsushita and Takahashi [1]. This type of mappings is closely related to the resolvent of
maximal monotone operators (see [2–4]).

Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty
closed convex subset of E. Throughout this paper, we denote by φ the function defined by

φ
(

x, y
)

= ‖x‖2 − 2
〈

x, Jy
〉

+
∥

∥y
∥

∥

2 ∀x, y ∈ E, (1.2)

where J is the normalized dualitymapping fromE to the dual spaceE∗ given by the following
relation:

〈x, Jx〉 = ‖x‖2 = ‖Jx‖2. (1.3)

We know that if E is smooth, strictly convex, and reflexive, then the duality mapping J is
single-valued, one-to-one, and onto. The duality mapping J is said to be weakly sequentially
continuous if xn ⇀ x implies that Jxn

∗
⇀ Jx (see [5] for more details).

Following Matsushita and Takahashi [6], a mapping T : C → E is said to be relatively
nonexpansive if the following conditions are satisfied:

(R1) F(T) is nonempty;

(R2) φ(u, Tx) ≤ φ(u, x) for all u ∈ F(T), x ∈ C;

(R3) ̂F(T) = F(T).

If T satisfies (R1) and (R2), then T is called relatively quasi-nonexpansive [7]. Obviously,
relative nonexpansiveness implies relative quasi-nonexpansiveness but the converse is
not true. Relatively quasi-nonexpansive mappings are sometimes called hemirelatively
nonexpansivemappings. But we do prefer the former name because in aHilbert space setting,
relatively quasi-nonexpansive mappings are nothing but quasi-nonexpansive.

In [2], Alber introduced the generalized projection ΠC from E onto C as follows:

ΠC(x) = argmin
y∈C

φ
(

y, x
) ∀x ∈ E. (1.4)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 and ΠC becomes the metric projection of E
onto C. Alber’s generalized projection is an example of relatively nonexpansive mappings.
For more example, see [1, 8].

In 2004, Masushita and Takahashi [1, 6] also proved weak and strong convergence
theorems for finding a fixed point of a single relatively nonexpansive mapping. Several
iterative methods, as a generalization of [1, 6], for finding a common fixed point of the family
of relatively nonexpansive mappings have been further studied in [7, 9–14].
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Recently, a problem of finding a common element of the set of solutions of an
equilibrium problem and the set of fixed points of a relatively nonexpansive mapping is
studied by Takahashi and Zembayashi in [15, 16]. The purpose of this paper is to introduce
a new iterative schemewhich unifies several ones studied bymany authors and to deduce the
corresponding convergence theorems under the weaker assumptions. More precisely, many
restrictions as were the case in other papers are dropped away.

First, we start with some preliminaries which will be used throughout the paper.

Lemma 1.1 (see [7, Lemma 2.5]). Let C be a nonempty closed convex subset of a strictly convex
and smooth Banach space E and let T be a relatively quasi-nonexpansive mapping from C into itself.
Then F(T) is closed and convex.

Lemma 1.2 (see [17, Proposition 5]). LetC be a nonempty closed convex subset of a smooth, strictly
convex, and reflexive Banach space E. Then

φ
(

x,ΠCy
)

+ φ
(

ΠCy, y
) ≤ φ

(

x, y
)

(1.5)

for all x ∈ C and y ∈ E.

Lemma 1.3 (see [17]). Let E be a smooth and uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous, and convex function h : [0, 2r] → R such that h(0) = 0
and

h
(∥

∥x − y
∥

∥

) ≤ φ
(

x, y
)

(1.6)

for all x, y ∈ Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 1.4 (see [17, Proposition 2]). Let E be a smooth and uniformly convex Banach space and let
{xn} and {yn} be sequences of E such that either {xn} or {yn} is bounded. If limn→∞φ(xn, yn) = 0,
then limn→∞‖xn − yn‖ = 0.

Lemma 1.5 (see [2]). Let C be a nonempty closed convex subset of a smooth, strictly convex, and
reflexive Banach space E, let x ∈ E, and let z ∈ C. Then

z = ΠCx ⇐⇒ 〈

y − z, Jx − Jz
〉 ≤ 0, ∀y ∈ C. (1.7)

Lemma 1.6 (see [18]). Let E be a uniformly convex Banach space and let r > 0. Then there exists a
strictly increasing, continuous, and convex function g : [0, 2r] → R such that g(0) = 0 and

∥

∥tx + (1 − t)y
∥

∥

2 ≤ t‖x‖2 + (1 − t)
∥

∥y
∥

∥

2 − t(1 − t)g
(∥

∥x − y
∥

∥

)

(1.8)

for all x, y ∈ Br and t ∈ [0, 1].

We next prove the following three lemmas which are very useful for our main results.
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Lemma 1.7. Let Let C be a closed convex subset of a smooth Banach space E. Let T be a relatively
quasi-nonexpansive mapping from E into E and let {Si}Ni=1 be a family of relatively quasi-nonexpansive
mappings from C into itself such that F(T) ∩⋂N

i=1 F(Si)/= ∅. The mapping U : C → E is defined by

Ux = TJ−1
N
∑

i=1

ωi(αiJx + (1 − αi)JSix) (1.9)

for all x ∈ C and {ωi}, {αi} ⊂ [0, 1], i = 1, 2, . . . ,N such that
∑N

i=1 ωi = 1. If x ∈ C and z ∈
F(T) ∩⋂N

i=1 F(Si), then

φ(z,Ux) ≤ φ(z, x). (1.10)

Proof. The proof of this lemma can be extracted from that of Lemma 1.8; so it is omitted.

If E has a stronger assumption, we have the following lemma.

Lemma 1.8. Let C be a closed convex subset of a uniformly smooth Banach space E. Let r > 0.
Then, there exists a strictly increasing, continuous, and convex function g∗ : [0, 6r] → R such that
g∗(0) = 0 and for each relatively quasi-nonexpansive mapping T : E → E and each finite family of
relatively quasi-nonexpansive mappings {Si}Ni=1 : C → C such that F(T) ∩⋂N

i=1 F(Si)/= ∅,

N
∑

i=1

ωiαi(1 − αi)g∗(‖Jz − JSiz‖) ≤ φ(u, z) − φ(u,Uz) (1.11)

for all z ∈ C ∩ Br and u ∈ F(T) ∩⋂N
i=1 F(Si) ∩ Br , where

Ux = TJ−1
N
∑

i=1

ωi(αiJx + (1 − αi)JSix) (1.12)

x ∈ C and {ωi}, {αi} ⊂ [0, 1], i = 1, 2, . . . ,N such that
∑N

i=1 ωi = 1.

Proof. Let r > 0. From Lemma 1.6 and E∗ is uniformly convex, then there exists a strictly
increasing, continuous, and convex function g∗ : [0, 6r] → R such that g∗(0) = 0 and

∥

∥tx∗ + (1 − t)y∗∥
∥

2 ≤ t‖x∗‖2 + (1 − t)
∥

∥y∗∥
∥

2 − t(1 − t)g∗(∥
∥x∗ − y∗∥

∥

)

(1.13)

for all x∗, y∗ ∈ {z∗ ∈ E∗ : ‖z∗‖ ≤ 3r} and t ∈ [0, 1]. Let T : E → E and {Si}Ni=1 : C → C

be relatively quasi-nonexpansive for all i = 1, 2, . . . ,N such that F(T) ∩ ⋂N
i=1 F(Si)/= ∅. For

z ∈ C ∩ Br and u ∈ F(T) ∩⋂N
i=1 F(Si) ∩ Br . It follows that

(‖u‖ − ‖Siz‖)2 ≤ φ(u, Siz) ≤ φ(u, z) ≤ (‖u‖ + ‖z‖)2 ≤ (2r)2 (1.14)
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and hence ‖Siz‖ ≤ 3r. Consequently, for i = 1, 2, . . . ,N,

‖αiJz + (1 − αi)JSiz‖2 ≤ αi‖Jz‖2 + (1 − αi)‖JSiz‖2 − αi(1 − αi)g∗(‖Jz − JSiz‖). (1.15)

Then

φ(u,Uz) ≤ φ

(

u, J−1
N
∑

i=1

ωi(αiJz + (1 − αi)JSiz)

)

= ‖u‖2 − 2

〈

u,
N
∑

i=1

ωi(αiJz + (1 − αi)JSiz)

〉

+

∥

∥

∥

∥

∥

N
∑

i=1

ωi(αiJz + (1 − αi)JSiz)

∥

∥

∥

∥

∥

2

≤
N
∑

i=1

ωi

(

‖u‖2 − 2〈u, αiJz + (1 − αi)JSiz〉 + ‖αiJz + (1 − αi)JSiz‖2
)

≤
N
∑

i=1

ωi

(

‖u‖2 − 2〈u, αiJz + (1 − αi)JSiz〉 + αi‖Jz‖2 + (1 − αi)‖JSiz‖2

− αi(1 − αi)g∗(‖Jz − JSiz‖)
)

=
N
∑

i=1

ωi

(

αiφ(u, z) + (1 − αi)φ(u, Siz) − αi(1 − αi)g∗(‖Jz − JSiz‖)
)

≤ φ(u, z) −
N
∑

i=1

ωiαi(1 − αi)g∗(‖Jz − JSiz‖).

(1.16)

Thus

N
∑

i=1

ωiαi(1 − αi)g∗(‖Jz − JSiz‖) ≤ φ(u, z) − φ(u,Uz). (1.17)

Lemma 1.9. Let C be a closed convex subset of a uniformly smooth and strictly convex Banach
space E. Let T be a relatively quasi-nonexpansive mapping from E into E and let {Si}Ni=1 be a family
of relatively quasi-nonexpansive mappings from C into itself such that F(T) ∩ ⋂N

i=1 F(Si)/= ∅. The
mapping U : C → E is defined by

Ux = TJ−1
N
∑

i=1

ωi(αiJx + (1 − αi)JSix) (1.18)

for all x ∈ C and {ωi}, {αi} ⊂ (0, 1), i = 1, 2, . . . ,N such that
∑N

i=1 ωi = 1. Then, the following hold:

(1) F(U) = F(T) ∩⋂N
i=1 F(Si),

(2) U is relatively quasi-nonexpansive.
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Proof. (1) Clearly, F(T) ∩ ⋂N
i=1 F(Si) ⊂ F(U). We want to show the reverse inclusion. Let z ∈

F(U) and u ∈ F(T) ∩⋂N
i=1 F(Si). Choose

r := max{‖u‖, ‖z‖, ‖S1z‖, ‖S2z‖, . . . , ‖Smz‖}. (1.19)

From Lemma 1.8, we have

N
∑

i=1

ωiαi(1 − αi)g∗(‖Jz − JSiz‖) = 0. (1.20)

From ωiαi(1 − αi) > 0 for all i = 1, 2, . . . ,N and by the properties of g∗, we have

Jz = JSiz (1.21)

for all i = 1, 2, . . . ,N. From J is one to one, we have

z = Siz (1.22)

for all i = 1, 2, . . . ,N. Consider

z = Uz = TJ−1
N
∑

i=1

ωi(αiJz + (1 − αi)JSiz) = Tz. (1.23)

Thus z ∈ F(T) ∩⋂N
i=1 F(Si).

(2) It follows directly from the above discussion.

2. Weak Convergence Theorem

Theorem 2.1. LetC be a nonempty closed convex subset of a uniformly smooth and uniformly convex
Banach space E. Let {Tn}∞n=1 : E → C be a family of relatively quasi-nonexpansive mappings and let
{Si}Ni=1 : C → C be a family of relatively quasi-nonexpansive mappings such that F :=

⋂∞
n=1 F(Tn) ∩

⋂N
i=1 F(Si)/= ∅. Let the sequence {xn} be generated by x1 ∈ C,

xn+1 = TnJ
−1

N
∑

i=1

ωn,i(αn,iJxn + (1 − αn,i)JSixn) (2.1)

for any n ∈ N, {ωn,i}, {αn,i} ⊂ [0, 1] for all n ∈ N, i = 1, 2, . . . ,N such that
∑N

i=1 ωn,i = 1 for all
n ∈ N. Then {ΠFxn} converges strongly to z ∈ F, whereΠF is the generalized projection of C onto F.
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Proof. Let u ∈ ⋂∞
n=1 F(Tn) ∩

⋂N
i=1 F(Si). Put

Un = TnJ
−1

N
∑

i=1

ωn,i(αn,iJ + (1 − αn,i)JSi). (2.2)

From Lemma 1.7, we have

φ(u, xn+1) = φ(u,Unxn) ≤ φ(u, xn). (2.3)

Therefore limn→∞φ(u, xn) exists. This implies that {φ(u, xn)}, {xn} and {Sixn} are bounded
for all i = 1, 2, . . . ,N.

Let yn ≡ ΠFxn. From (2.3) and m ∈ N, we have

φ
(

yn, xn+m
) ≤ φ

(

yn, xn

)

. (2.4)

Consequently,

φ
(

yn, yn+m
)

+ φ
(

yn+m, xn+m
) ≤ φ

(

yn, xn+m
) ≤ φ

(

yn, xn

)

. (2.5)

In particular,

φ
(

yn+1, xn+1
) ≤ φ

(

yn, xn

)

. (2.6)

This implies that limn→∞φ(yn, xn) exists. This together with the boundedness of {xn} gives
r := supn∈N

‖yn‖ < ∞. Using Lemma 1.3, there exists a strictly increasing, continuous, and
convex function h : [0, 2r] → R such that h(0) = 0 and

h
(∥

∥yn − yn+m
∥

∥

) ≤ φ
(

yn, yn+m
) ≤ φ

(

yn, xn

) − φ
(

yn+m, xn+m
)

. (2.7)

Since {φ(yn, xn)} is a convergent sequence, it follows from the properties of g that {yn} is a
Cauchy sequence. Since F is closed, there exists z ∈ F such that yn → z.

We first establish weak convergence theorem for finding a common fixed point of
a countable family of relatively quasi-nonexpansive mappings. Recall that, for a family of
mappings {Tn}∞n=1 : C → E with

⋂∞
n=1 F(Tn)/= ∅, we say that {Tn} satisfies the NST-condition

[19] if for each bounded sequence {zn} in C,

lim
n→∞

‖zn − Tnzn‖ = 0 implies ωw{zn} ⊂
∞
⋂

n=1

F(Tn), (2.8)

where ωw{zn} denotes the set of all weak subsequential limits of a sequence {zn}.
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Theorem 2.2. Let C be a nonempty closed convex subset of a uniformly smooth and uniformly
convex Banach space E. Let {Tn}∞n=1 : E → C be a family of relatively quasi-nonexpansive mappings
satisfying NST-condition and let {Si}Ni=1 : C → C be a family of relatively nonexpansive mappings
such that F :=

⋂∞
n=1 F(Tn) ∩

⋂N
i=1 F(Si)/= ∅ and suppose that

φ(u, Tnx) + φ(Tnx, x) ≤ φ(u, x) (2.9)

for all u ∈ ⋂∞
n=1 F(Tn), n ∈ N and x ∈ E. Let the sequence {xn} be generated by x1 ∈ C,

xn+1 = TnJ
−1

N
∑

i=1

ωn,i(αn,iJxn + (1 − αn,i)JSixn) (2.10)

for any n ∈ N, {ωn,i}, {αn,i} ⊂ [0, 1] for all n ∈ N, i = 1, 2, . . . ,N such that
∑N

i=1 ωn,i = 1 for all
n ∈ N, lim infn→∞ωn,iαn,i(1−αn,i) > 0 for all i = 1, 2, . . . ,N. If J is weakly sequentially continuous,
then {xn} converges weakly to z ∈ F, where z = limn→∞ΠFxn.

Proof. Let u ∈ F. From Theorem 2.1, limn→∞φ(u, xn) exists and hence {xn} and {Sixn} are
bounded for all i = 1, 2, . . . ,N. Let

r = sup
n∈N

{‖xn‖, ‖S1xn‖, ‖S2xn‖, . . . , ‖SNxn‖}. (2.11)

By Lemma 1.8, there exists a strictly increasing, continuous, and convex function g∗ :
[0, 2r] → R such that g∗(0) = 0 and

N
∑

i=1

ωn,iαn,i(1 − αn,i)g∗(‖Jxn − JSixn‖) ≤ φ(u, xn) − φ(u, xn+1). (2.12)

In particular, for all i = 1, 2, . . . ,N,

ωn,iαn,i(1 − αn,i)g∗(‖Jxn − JSixn‖) ≤ φ(u, xn) − φ(u, xn+1). (2.13)

Hence,

∞
∑

n=1

ωn,iαn,i(1 − αn,i)g∗(‖Jxn − JSixn‖) < ∞ (2.14)

for all i = 1, 2, . . . ,N. Since lim infn→∞ωn,iαn,i(1 − αn,i) > 0 for all i = 1, 2 . . . ,N and the
properties of g, we have

lim
n→∞

‖Jxn − JSixn‖ = 0 (2.15)
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for all i = 1, 2 . . . ,N. Since J−1 is uniformly norm-to-norm continuous on bounded sets, we
have

lim
n→∞

‖xn − Sixn‖ = 0 (2.16)

for all i = 1, 2 . . . ,N. Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that
xnk ⇀ z ∈ C. Since Si is relatively nonexpansive, z ∈ ̂F(Si) = F(Si) for all i = 1, 2 . . . ,N.

We show that z ∈ ⋂∞
n=1 F(Tn). Let

yn = J−1
N
∑

i=1

ωn,i(αn,iJxn + (1 − αn,i)JSixn). (2.17)

We note from (2.15) that

∥

∥

∥

∥

∥

N
∑

i=1

ωn,i(αn,iJxn + (1 − αn,i)JSixn) − Jxn

∥

∥

∥

∥

∥

≤
N
∑

i=1

ωn,i(1 − αn,i)‖JSixn − Jxn‖ −→ 0. (2.18)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, it follows that

lim
n→∞

∥

∥yn − xn

∥

∥ = lim
n→∞

∥

∥

∥

∥

∥

J−1
(

N
∑

i=1

ωn,i(αn,iJxn + (1 − αn,i)JSixn)

)

− J−1Jxn

∥

∥

∥

∥

∥

= 0. (2.19)

Moreover, by (2.9) and the existence of limn→∞φ(u, xn), we have

φ
(

Tnyn, yn

) ≤ φ
(

u, yn

) − φ
(

u, Tnyn

)

= φ

(

u, J−1
N
∑

i=1

ωn,i(αn,iJxn + (1 − αn,i)JSixn)

)

− φ(u, xn+1)

≤ φ(u, xn) − φ(u, xn+1) −→ 0.

(2.20)

It follows from Lemma 1.4 that limn→∞‖Tnyn − yn‖ = 0. From (2.19) and xnk ⇀ z, we have
ynk ⇀ z. Since {Tn} satisfies NST-condition, we have z ∈ ⋂∞

n=1 F(Tn). Hence z ∈ F.
Let zn = ΠFxn. From Lemma 1.5 and z ∈ F, we have

〈znk − z, Jxnk − Jznk〉 ≥ 0. (2.21)

From Theorem 2.1, we know that zn → z′ ∈ F. Since J is weakly sequentially continuous, we
have

〈

z′ − z, Jz − Jz′
〉 ≥ 0. (2.22)
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Moreover, since J is monotone,

〈

z′ − z, Jz − Jz′
〉 ≤ 0. (2.23)

Then

〈

z′ − z, Jz − Jz′
〉

= 0. (2.24)

Since E is strictly convex, z′ = z. This implies that ωw{xn} = {z′} and hence xn ⇀ z′ =
limn→∞ΠFxn.

We next apply our result for finding a common element of a fixed point set of
a relatively nonexpansive mapping and the solution set of an equilibrium problem. This
problem is extensively studied in [11, 14–16]. Let C be a subset of a Banach space E and
let f : C ×C → R be a bifunction. The equilibrium problem for a bifunction f is to find x ∈ C
such that f(x, y) ≥ 0 for all y ∈ C. The set of solutions above is denoted by EP(f), that is

x ∈ EP
(

f
)

iff f
(

x, y
) ≥ 0 ∀y ∈ C. (2.25)

To solve the equilibrium problem, we usually assume that a bifunction f satisfies the
following conditions (C is closed and convex):

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C;

(A3) for all x, y, z ∈ C, lim supt↓0f(tz + (1 − t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

The following lemma gives a characterization of a solution of an equilibrium problem.

Lemma 2.3. LetC be a nonempty closed convex subset of a Banach space E. Let f be a bifunction from
C ×C → R satisfying (A1)–(A4). Suppose that p ∈ C. Then p ∈ EP(f) if and only if f(y, p) ≤ 0 for
all y ∈ C.

Proof. Let p ∈ EP(f), then f(p, y) ≥ 0 for all y ∈ C. From (A2), we get that f(y, p) ≤ −f(p, y) ≤
0 for all y ∈ C.

Conversely, assume that f(y, p) ≤ 0 for all y ∈ C. For any y ∈ C, let

xt = ty + (1 − t)p, for t ∈ (0, 1]. (2.26)

Then f(xt, p) ≤ 0 and hence

0 = f(xt, xt) ≤ tf
(

xt, y
)

+ (1 − t)f
(

xt, p
) ≤ tf

(

xt, y
)

. (2.27)
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So f(xt, y) ≥ 0 for all t ∈ (0, 1]. From (A3), we have

0 ≤ lim sup
t↓0

f
(

ty + (1 − t)p, y
) ≤ f

(

p, y
) ∀y ∈ C. (2.28)

Hence p ∈ EP(f).

Takahashi and Zembayashi proved the following important result.

Lemma 2.4 (see [15, Lemma 2.8]). LetC be a nonempty closed convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E. Let f be a bifunction from C ×C → R satisfying (A1)–
(A4). For r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Tr(x) =
{

z ∈ C : f
(

z, y
)

+
1
r

〈

y − z, Jz − Jx
〉 ≥ 0 ∀y ∈ C

}

(2.29)

for all x ∈ E. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping [20], that is, for all x, y ∈ E

〈

Trx − Try, JTrx − JTry
〉 ≤ 〈

Trx − Try, Jx − Jy
〉

; (2.30)

(3) F(Tr) = EP(f);

(4) EP(f) is closed and convex.

We now deduce Takahashi and Zembayashi’s recent result from Theorem 2.2.

Corollary 2.5 (see [15, Theorem 4.1]). Let C be a nonempty closed convex subset of a uniformly
smooth and uniformly convex Banach space E. Let f be a bifunction from C ×C to R satisfying (A1)–
(A4) and let S be a relatively nonexpansive mapping from C into itself such that F(S) ∩ EP(f)/= ∅.
Let the sequence {xn} be generated by u1 ∈ E,

xn ∈ C such that f
(

xn, y
)

+
1
rn

〈

y − xn, Jxn − Jun

〉 ≥ 0 ∀y ∈ C,

un+1 = J−1(αnJxn + (1 − αn)JSxn)

(2.31)

for every n ∈ N, {αn} ⊂ [0, 1] satisfying lim infn→∞αn(1 − αn) > 0 and {rn} ⊂ [a,∞) for some
a > 0. If J is weakly sequentially continuous, then {xn} converges weakly to z ∈ ΠF(S)∩EP(f), where
z = limn→∞ΠF(S)∩EP(f)xn.
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Proof. Put Tn ≡ Trn where Trn is defined by Lemma 2.4. Then
⋂∞

n=1 F(Tn) = EP(f). By
reindexing the sequences {xn} and {un} of this iteration, we can apply Theorem 2.2 by
showing that the family {Tn} satisfies the condition (2.9) and NST-condition. It is proved
in [15, Lemma 2.9] that

φ(u, Tnx) + φ(Tnx, x) ≤ φ(u, x) ∀x ∈ E, u ∈
∞
⋂

n=1

F(Tn). (2.32)

To see that {Tn} satisfies NST-condition, let {zn} be a bounded sequence in C such that
limn→∞‖zn − Tnzn‖ = 0 and p ∈ ωw{zn}. Suppose that there exists a subsequence {znk} of
{zn} such that znk ⇀ p. Then Tnkznk ⇀ p ∈ C. Since J is uniformly continuous on bounded
sets and rnk ≥ a, we have

lim
k→∞

1
rnk

‖Jznk − JTnkznk‖ = 0. (2.33)

From the definition of Trnk , we have

f
(

Tnkznk , y
)

+
1
rnk

〈

y − Tnkznk , JTnkznk − Jznk

〉 ≥ 0 ∀y ∈ C. (2.34)

Since

f
(

y, Tnkznk

) ≤ −f(Tnkznk , y
)

≤ 1
rnk

〈

y − Tnkznk , JTnkznk − Jznk

〉

≤ 1
rnk

∥

∥y − Tnkznk

∥

∥‖JTnkznk − Jznk‖

(2.35)

and f is lower semicontinuous and convex in the second variable, we have

f
(

y, p
) ≤ lim inf

k→∞
f
(

y, Tnkznk

) ≤ 0. (2.36)

Thus f(y, p) ≤ 0 for all y ∈ C. From Lemma 2.3, we have p ∈ EP(f). Then {Tn} satisfies the
NST-condition. From Theorem 2.2 whereN = 1, {xn} converges weakly to z ∈ F(Tn)∩F(S) =
EP(f) ∩ F(S), where z = limn→∞ΠEP(f)∩F(S)xn.

Using the same proof as above, we have the following result.



Fixed Point Theory and Applications 13

Corollary 2.6 (see [11, Theorem 3.5]). LetC be a nonempty and closed convex subset of a uniformly
convex and uniformly smooth Banach space E. Let f be a bifunction from C × C to R satisfies (A1)–
(A4) and let T, S : C → C be two relatively nonexpansive mappings such that F := F(T) ∩ F(S) ∩
EP(f)/= ∅. Let the sequence {xn} be generated by the following manner:

xn ∈ C such that f
(

xn, y
)

+
1
rn

〈

y − xn, Jxn − Jun

〉 ≥ 0 ∀y ∈ C,

un+1 = J−1
(

αnJxn + βnJTxn + γnJSxn

) ∀n ≥ 1.

(2.37)

Assume that {αn}, {βn}, and {γn} are three sequences in [0, 1] satisfying the following restrictions:

(a) αn + βn + γn = 1;

(b) lim infn→∞αnβn > 0, lim infn→∞αnγn > 0;

(c) {rn} ⊂ [a,∞) for some a > 0.

If J is weakly sequentially continuous, then {xn} converges weakly to z ∈ F, where z = limn→∞ΠFxn.

The following result also follows from Theorem 2.2.

Corollary 2.7 (see [9, Theorem 5.3]). Let E be a uniformly smooth and uniformly convex Banach
space and let C be a nonempty closed convex subset of E. Let {Si}Ni=1 be a finite family of relatively
nonexpansive mappings from C into itself such that F =

⋂N
i=1 F(Si) is a nonempty and let {αn,i :

n, i ∈ N, 1 ≤ i ≤ N} ⊂ [0, 1] and {ωn,i : n, i ∈ N, 1 ≤ i ≤ N} ⊂ [0, 1] be sequences such that
lim infn→∞αn,i(1 − αn,i) > 0 and lim infn→∞ωn,i > 0 for all i ∈ {1, 2, . . . ,N} and ∑N

i=1 ωn,i = 1 for
all n ∈ N. Let Un be a sequence of mappings defined by

Unx = ΠCJ
−1

N
∑

i=1

ωn,i(αn,iJx + (1 − αn,i)JSix) (2.38)

for all x ∈ C and let the sequence {xn} be generated by x1 = x ∈ C and

xn+1 = Unxn (n = 1, 2, . . .). (2.39)

Then the following hold:

(1) the sequence {xn} is bounded and each weak subsequential limit of {xn} belongs to
⋂N

i=1 F(Si);

(2) if the duality mapping J from E into E∗ is weakly sequentially continuous, then {xn}
converges weakly to the strong limit of {ΠFxn}.

Proof. Since ΠC is relatively nonexpansive, the family {ΠC} satisfies the NST-condition.
Moreover, F(ΠC) = C and

φ
(

x,ΠCy
)

+ φ
(

ΠCy, y
) ≤ φ

(

x, y
) ∀y ∈ E, x ∈ C. (2.40)

Thus the conclusions of this corollary follow.
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3. Strong Convergence Theorem

In this section, we prove strong convergence of an iterative sequence generated by the hybrid
method in mathematical programming. We start with the following useful common tools.

Lemma 3.1. Let C be a nonempty closed convex subset of a uniformly smooth and uniformly convex
Banach space E. Let {Tn}∞n=1 : E → E and {Si}Ni=1 : C → C be families of relatively quasi-
nonexpansive mappings such that F :=

⋂∞
n=1 F(Tn) ∩

⋂N
i=1 F(Si)/= ∅, and

φ(u, Tnx) + φ(Tnx, x) ≤ φ(u, x) (3.1)

for all u ∈ ⋂∞
n=1 F(Tn), n ∈ N and x ∈ E. Let {xn} ⊂ C be such that {xn} and {Sixn} are bounded for

all i = 1, 2, . . . ,N, and

yn = J−1
N
∑

i=1

ωn,i(αn,iJxn + (1 − αn,i)JSixn),

un = Tnyn,

(3.2)

where {ωn,i}, {αn,i} ⊂ [0, 1] for all n ∈ N and i = 1, 2, . . . ,N satisfy
∑N

i=1 ωn,i = 1 for all n ∈ N,
lim infn→∞ωn,i(1 − αn,i) > 0 for all i = 1, 2, . . . ,N and limn→∞‖xn − un‖ = 0. Then the following
statements hold:

(1) limn→∞(φ(u, xn) − φ(u, un)) = 0 for all u ∈ C,

(2) limn→∞‖un − yn‖ = 0,

(3) ωw{xn} = ωw{yn},
(4) if limn→∞‖xn+1 − xn‖ = 0, then limn→∞‖xn − Sixn‖ = 0 for all i = 1, 2, . . . ,N,

(5) if xn → z, then un → z and yn → z.

Proof. (1) Since limn→∞‖xn − un‖ = 0 and J is uniformly norm-to-norm continuous on
bounded sets,

lim
n→∞

‖Jxn − Jun‖ = 0. (3.3)

We note here that {un} is also bounded. For any u ∈ C, we have

∣

∣φ(u, xn) − φ(u, un)
∣

∣ =
∣

∣

∣‖xn‖2 − ‖un‖2 − 2〈u, Jun − Jxn〉
∣

∣

∣

≤
∣

∣

∣‖xn‖2 − ‖u‖2
∣

∣

∣ + 2|〈u, Jun − Jxn〉|

≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖u‖‖Jun − Jxn‖ −→ 0.

(3.4)

(2) Let u ∈ F. Using (3.1) and the relative quasi-nonexpansiveness of each Tn, we have

φ
(

un, yn

)

= φ
(

Tnyn, yn

) ≤ φ
(

u, yn

) − φ
(

u, Tnyn

) ≤ φ(u, xn) − φ(u, un) −→ 0. (3.5)
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By Lemma 1.4 and the boundedness of {un}, we have

lim
n→∞

∥

∥un − yn

∥

∥ = 0. (3.6)

(3) Since

∥

∥xn − yn

∥

∥ ≤ ‖xn − un‖ +
∥

∥un − yn

∥

∥ = ‖xn − un‖ +
∥

∥Tnyn − yn

∥

∥ −→ 0, (3.7)

we have ωw{xn} = ωw{yn}.
(4) Assume that limn→∞‖xn+1 − xn‖ = 0. From limn→∞‖xn − yn‖ = 0, we get that

limn→∞‖xn+1 − yn‖ = 0. Since J is uniformly norm-to-norm continuous on bounded sets, we
have

lim
n→∞

‖Jxn+1 − Jxn‖ = lim
n→∞

∥

∥Jxn+1 − Jyn

∥

∥ = 0. (3.8)

So,

∥

∥Jxn+1 − Jyn

∥

∥ =

∥

∥

∥

∥

∥

Jxn+1 −
N
∑

i=1

ωn,i(αn,iJxn + (1 − αn,i)JSixn)

∥

∥

∥

∥

∥

≥
N
∑

i=1

(ωn,i(1 − αn,i)‖Jxn+1 − JSixn‖ −ωn,iαn,i‖Jxn+1 − Jxn‖).
(3.9)

From (3.8), we have

N
∑

i=1

ωn,i(1 − αn,i)‖Jxn+1 − JSixn‖ ≤ ∥

∥Jxn+1 − Jyn

∥

∥ +
N
∑

i=1

ωn,iαn,i‖Jxn+1 − Jxn‖ −→ 0. (3.10)

It follows from lim infn→∞ωn,i(1 − αn,i) > 0 for all i = 1, 2, . . . ,N that

lim
n→∞

‖Jxn+1 − JSixn‖ = 0 (3.11)

for all i = 1, 2, . . . ,N. Since J−1 is uniformly norm-to-norm continuous on bounded sets and
limn→∞‖xn+1 − xn‖ = 0, we have

lim
n→∞

‖xn − Sixn‖ = 0 (3.12)

for all i = 1, 2, . . . ,N, as desired.
(5) Assume that xn → z. From the assumption and (2), we have

lim
n→∞

‖xn − un‖ = lim
n→∞

∥

∥un − yn

∥

∥ = 0. (3.13)

Hence un → z and yn → z.
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Lemma 3.2 (see [21, Lemma 2.4]). Let F be a closed convex subset of a strictly convex, smooth and
reflexive Banach space E satisfying Kadec-Klee property. Let x ∈ E and {xn} be a sequence in E such
that ωw{xn} ⊂ F and φ(xn, x) ≤ φ(ΠFx, x) for all n ∈ N. Then xn → z = ΠFx.

Recall that a Banach space E satisfies Kadec–Klee property if whenever {un} is a
sequence in E with xn ⇀ x and ‖xn‖ → ‖x‖, it follows that xn → x.

3.1. The CQ-Method

Theorem 3.3. LetC be a nonempty closed convex subset of a uniformly smooth and uniformly convex
Banach spaceE. Let {Tn}∞i=1 : E → E be a family of relatively quasi-nonexpansive mappings satisfying
NST-condition and let {Si}Ni=1 : C → C be a family of relatively nonexpansive mappings such that
F :=

⋂∞
n=1 F(Tn) ∩

⋂N
i=1 F(Si)/= ∅, and

φ(u, Tnx) + φ(Tnx, x) ≤ φ(u, x) (3.14)

for all u ∈ ⋂∞
n=1 F(Tn), n ∈ N and x ∈ E. Let the sequence {xn} be generated by

x1 = x ∈ C,

un = TnJ
−1

N
∑

i=1

ωn,i(αn,iJxn + (1 − αn,i)JSixn),

Cn =
{

z ∈ C : φ(z, un) ≤ φ(z, xn)
}

,

Qn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(3.15)

for every n ∈ N, {ωn,i}, {αn,i} ⊂ [0, 1] for all n ∈ N and i = 1, 2, . . . ,N satisfying
∑N

i=1 ωn,i = 1 for
all n ∈ N, lim infn→∞ωn,i(1− αn,i) > 0 for all i = 1, 2, . . . ,N. Then {xn} converges strongly toΠFx.

Proof. The proof is broken into 4 steps.

Step 1 ({xn} is well defined). First, we show that Cn ∩Qn is closed and convex. Clearly, Qn is
closed and convex. Since

φ(z, un) ≤ φ(z, xn) ⇐⇒ ‖un‖2 − ‖xn‖2 − 2〈z, Jun − Jxn〉 ≤ 0, (3.16)

then Cn is closed and convex. Thus Cn ∩Qn is closed and convex.
We next show that F ⊂ Cn ∩Qn. Let u ∈ F. Then, from Lemma 1.7,

φ(u, un) ≤ φ(u, xn). (3.17)

Thus u ∈ Cn. Hence F ⊂ Cn for all n ∈ N.
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Next, we show by induction that F ⊂ Cn ∩Qn for all n ∈ N. Since Q1 = C, we have

F ⊂ C1 ∩Q1. (3.18)

Suppose that F ⊂ Ck ∩Qk for some k ∈ N. From xk+1 = ΠCk∩Qkx ∈ Ck ∩Qk and the definition
of the generalized projection, we have

〈xk+1 − z, Jx − Jxk+1〉 ≥ 0 (3.19)

for all z ∈ Ck ∩Qk. From F ⊂ Ck ∩Qk,

〈

xk+1 − p, Jx − Jxk+1
〉 ≥ 0 (3.20)

for all p ∈ F. Hence F ⊂ Qk+1, and we also have F ⊂ Ck+1 ∩Qk+1. So, we have ∅/=F ⊂ Cn ∩Qn

for all n ∈ N and hence the sequence {xn} is well defined.

Step 2 (ωw{xn} ⊂ ⋂N
i=1 F(Si)). From the definition of Qn, we have xn = ΠQnx. Using

Lemma 1.2, we get

φ(xn, x) = φ
(

ΠQnx, x
) ≤ φ(u, x) − φ

(

u,ΠQnx
) ≤ φ(u, x) (3.21)

for all u ∈ Qn. In particular, since xn+1 ∈ Qn and ΠFx ∈ F ⊂ Qn,

φ(xn, x) ≤ φ(xn+1, x), (3.22)

φ(xn, x) ≤ φ(ΠFx, x) (3.23)

for all n ∈ N. This implies that limn→∞φ(xn, x) exists and {xn} is bounded. Moreover, from
(3.21) and xn+1 ∈ Qn,

φ(xn, x) ≤ φ(xn+1, x) − φ(xn+1, xn). (3.24)

Hence

φ(xn+1, xn) ≤ φ(xn+1, x) − φ(xn, x) −→ 0. (3.25)

It follows from xn+1 = ΠCn∩Qnx ∈ Cn that

φ(xn+1, un) ≤ φ(xn+1, xn) −→ 0. (3.26)

From (3.25), (3.26), and Lemma 1.4, we have

lim
n→∞

‖xn+1 − xn‖ = 0 = lim
n→∞

‖xn+1 − un‖. (3.27)



18 Fixed Point Theory and Applications

So limn→∞‖xn − un‖ = 0. Using Lemma 3.1(4), we get that

lim
n→∞

‖xn − Sixn‖ = 0 (3.28)

for all i = 1, 2, . . . ,N. Since each Si is relatively nonexpansive,

ωw{xn} ⊂
N
⋂

i=1

̂F(Si) =
N
⋂

i=1

F(Si). (3.29)

Step 3 (ωw{xn} ⊂ ⋂∞
n=1 F(Tn)). Let yn = J−1

∑N
i=1 ωn,i(αn,iJxn + (1 − αn,i)JSixn). From

Lemma 3.1(2), we have

lim
n→∞

∥

∥Tnyn − yn

∥

∥ = 0, (3.30)

and ωw{xn} = ωw{yn}. It follows from NST-condition that ωw{xn} = ωw{yn} ⊂ ⋂∞
n=1 F(Tn).

Step 4 (xn → ΠFx). From Steps 2 and 3, we have ωw{xn} ⊂ F. The conclusion follows by
Lemma 3.2 and (3.23).

We apply Theorem 3.3 and the proof of Corollary 2.5 and then obtain the following
result.

Corollary 3.4. Let C, E, f , S be as in Corollary 2.5. Let the sequence {xn} be generated by

x1 = x ∈ C,

yn = J−1(αnJxn + (1 − αn)JSxn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0 ∀y ∈ C,

Cn =
{

z ∈ C : φ(z, un) ≤ φ(z, xn)
}

,

Qn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(3.31)

for every n ∈ N, {αn} ⊂ [0, 1] satisfying lim supn→∞αn < 1 and {rn} ⊂ [a,∞] for some a > 0.
Then, {xn} converges strongly to ΠF(S)∩EP(f)x, where ΠF(S)∩EP(f) is the generalized projection of E
onto F(S) ∩ EP(f).

Remark 3.5. Corollary 3.4 improves the restriction on {αn} of [15, Theorem 3.1]. In fact, it is
assumed in [15, Theorem 3.1] that lim infn→∞αn(1 − αn) > 0.
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3.2. The Monotone CQ-Method

Let C be a closed subset of a Banach space E. Recall that a mapping T : C → C is closed if for
each {xn} in C, if xn → x and Txn → y, then Tx = y. A family of mappings {Tn} : C → E

with
⋂∞

n=1 F(Tn)/= ∅ is said to satisfy the (∗)-condition if for each bounded sequence {zn} in C,

lim
n→∞

‖zn − Tnzn‖ = 0, zn −→ z imply z ∈
∞
⋂

n=1

F(Tn). (3.32)

Remark 3.6. (1) If {Tn} satisfies NST-condition, then {Tn} satisfies (∗)-condition.
(2) If Tn ≡ T and T is closed, then {Tn} satisfies (∗)-condition.

Theorem 3.7. Let C be a nonempty closed convex subset of a uniformly smooth and uniformly
convex Banach space E. Let {Tn}∞n=1 : E → E be a family of relatively quasi-nonexpansive mappings
satisfying (∗)-condition and let {Si}Ni=1 : C → C be a family of closed relatively quasi-nonexpansive
mappings such that F :=

⋂∞
n=1 F(Tn) ∩

⋂N
i=1 F(Si)/= ∅, and

φ(u, Tnx) + φ(Tnx, x) ≤ φ(u, x) (3.33)

for all u ∈ ⋂∞
n=1 F(Tn), n ∈ N, and x ∈ E. Let the sequence {xn} be generated by

x0 = x ∈ C, Q0 = C,

un = TnJ
−1

N
∑

i=1

ωn,i(αn,iJxn + (1 − αn,i)JSixn),

C0 =
{

z ∈ C : φ(z, u0) ≤ φ(z, x0)
}

,

Cn =
{

z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)
}

,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(3.34)

for every n ∈ N, {ωn,i}, {αn,i} ⊂ [0, 1] satisfying
∑N

i=1 ωn,i = 1 and lim infn→∞ωn,i(1 − αn,i) > 0 for
all i = 1, 2, . . . ,N. Then {xn} converges strongly toΠFx.

Proof.

Step 1 ({xn} is well defined). This step is almost the same as Step 1 of the proof of
Theorem 3.3, so it is omitted.

Step 2 ({xn} is a Cauchy sequence inC). We can follow the proof of Theorem 3.3 and conclude
that

lim
n→∞

φ(xn, x) (3.35)
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exists. Moreover, as xn+m ∈ Qn for all n,m and xn = ΠQnx,

φ(xn+m, xn) = φ
(

xn+m,ΠQnx
)

≤ φ(xn+m, x) − φ
(

ΠQnx, x
)

= φ(xn+m, x) − φ(xn, x).

(3.36)

Since {xn} is bounded, it follows from Lemma 1.3 that there exists a strictly increasing,
continuous, and convex function h such that h(0) = 0 and

h(‖xn+m − xn‖) ≤ φ(xn+m, x) − φ(xn, x). (3.37)

Since limn→∞φ(xn, x) exists, we have that {xn} is a Cauchy sequence. Therefore, xn → z for
some z ∈ C.

Step 3 (z ∈ ⋂N
i=1 F(Si)). Since xn+1 = ΠCn∩Qnx ∈ Cn, we have

φ(xn+1, un) ≤ φ(xn+1, xn) −→ φ(z, z) = 0. (3.38)

By Lemma 1.4 and the boundedness of {xn}, we have

lim
n→∞

‖xn+1 − un‖ = 0. (3.39)

So, we have limn→∞‖xn − un‖ = 0. Using Lemma 3.1(4), we get that

lim
n→∞

‖xn − Sixn‖ = 0 (3.40)

for all i = 1, 2, . . . ,N. Since each Si is closed, z ∈ ⋂N
i=1 F(Si).

Step 4 (z ∈ ⋂∞
n=1 F(Tn)). Let yn = J−1

∑N
i=1 ωn,i(αn,iJxn + (1 − αn,i)JSixn). From Lemma 3.1(2),

we have limn→∞‖yn−Tnyn‖ = 0 and yn → z. It follows from (∗)-condition that z ∈ ⋂∞
n=1 F(Tn).

Step 5 (xn → ΠFx). From Steps 3 and 4, we have ωw{xn} ⊂ F. The conclusion follows by
Lemma 3.2 and (3.23).

Letting Tn = identity and S1 = S2 = · · · = SN yield the following result.
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Corollary 3.8 (see [12, Theorem 3.1]). Let C be a nonempty closed convex subset of a uniformly
convex and uniformly smooth real Banach space E. Let T : C → C be a closed relatively quasi-
nonexpansive mapping such that F(T)/= ∅. Assume that {αn} is a sequence in [0, 1] such that
lim supn→∞αn < 1. Define a sequence {xn} in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{

z ∈ Cn−1 ∩Qn−1 : φ
(

z, yn

) ≤ φ(z, xn)
}

,

C0 =
{

z ∈ C : φ
(

z, y0
) ≤ φ(z, x0)

}

,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
Q0 = C,

xn+1 = ΠCn∩Qnx0.

(3.41)

Then {xn} converges strongly toΠF(T)x0.

Letting Tn = identity andN = 2 yield the following result.

Corollary 3.9 (see [13, Theorem 3.1]). Let C be a nonempty closed convex subset of a uniformly
convex and uniformly smooth real Banach spaceE. Let T, S be two closed relatively quasi-nonexpansive
mappings from C into itself such that F := F(T) ∩ F(S)/= ∅. Define a sequence {xn} in C be the
following algorithm:

x0 ∈ C chosen arbitrarily,

zn = J−1
(

β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn

)

,

yn = J−1(αnJxn + (1 − αn)Jzn),

C0 =
{

z ∈ C : φ
(

z, y0
) ≤ φ(z, x0)

}

,

Cn =
{

z ∈ Cn−1 ∩Qn−1 : φ
(

z, yn

) ≤ φ(z, xn)
}

,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
Q0 = C,

xn+1 = ΠCn∩Qnx0

(3.42)

with the conditions: β(1)n , β
(2)
n , β

(3)
n ∈ [0, 1] with β(1)n + β

(2)
n + β

(3)
n = 1 and

(1) lim infn→∞β
(1)
n β

(2)
n > 0;

(2) lim infn→∞β
(1)
n β

(3)
n > 0;

(3) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1).

Then {xn} converges strongly toΠFx0.
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Remark 3.10. Using Theorem 3.7, we can show that the conclusion of Corollary 3.9 remains
true under the more general restrictions on {αn}, {β(1)n }, {β(2)n }, and {β(3)n }:

(1) αn, β
(1)
n ∈ [0, 1] are arbitrary;

(2) lim infn→∞β
(2)
n > 0 and lim infn→∞β

(3)
n > 0.

3.3. The Shrinking Projection Method

Theorem 3.11. Let C, E, {Tn}∞n=1, {Si}Ni=1 be as in Theorem 3.7. Let the sequence {xn} be generated
by

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

un = TnJ
−1

N
∑

i=1

ωn,i(αn,iJxn + (1 − αn,i)JSixn),

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0

(3.43)

for every n ∈ N, {ωn,i}, {αn,i} ⊂ [0, 1] for all n ∈ N and i = 1, 2, . . . ,N satisfies
∑N

i=1 ωn,i = 1 for all
n ∈ N, lim infn→∞ωn,i(1 − αn,i) > 0 for all i = 1, 2, . . . ,N. Then {xn} converges strongly toΠFx.

Proof. The proof is almost the same as the proofs of Theorems 3.3 and 3.7; so it is omitted.

In particular, applying Theorem 3.11 gives the following result.

Corollary 3.12. Let C, E, f, S be as in Corollary 2.5. Let the sequence {xn} be generated by x0 =
x ∈ C, C0 = C and

yn = J−1(αnJxn + (1 − αn)JSxn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0 ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0

(3.44)

for every n ∈ N ∪ {0}, where J is the duality mapping on E. Assume that {αn} ⊂ [0, 1] satisfies
lim supn→∞αn < 1 and {rn} ⊂ [a,∞) for some a > 0. Then {xn} converges strongly toΠF(S)∩EP(f)x,
whereΠF(S)∩EP(f) is the generalized projection of E onto F(S) ∩ EP(f).

Remark 3.13. Corollary 3.12 improves the restriction on {αn} of [16, Theorem 3.1]. In fact, it is
assumed in [16, Theorem 3.1] that lim infn→∞αn(1 − αn) > 0.
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Corollary 3.14 (see [11, Theorem 3.1]). Let C be a nonempty and closed convex subset of a
uniformly convex and uniformly smooth Banach space E. Let f be a bifunction from C × C to R

satisfying (A1)–(A4) and let T, S : C → C be two closed relatively quasi-nonexpansive mappings
such that F := F(T)∩F(S)∩EP(f)/= ∅. Let the sequence {xn} be generated by the following manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1
(

αnJxn + βnJTxn + γnJSxn

)

,

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0 ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0.

(3.45)

Assume that {αn}, {βn}, and {γn} are three sequences in [0, 1] satisfying the restrictions:

(a) αn + βn + γn = 1;

(b) lim infn→∞αnβn > 0, lim infn→∞αnγn > 0;

(c) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly toΠFx0.

Remark 3.15. The conclusion of Corollary 3.14 remains true under the more general
assumption; that is, we can replace (b) by the following one:

(b′) lim infn→∞βn > 0 and lim infn→∞γn > 0.

We also deduce the following result.

Corollary 3.16 (see [14, Theorem 3.1]). Let C, E, f, T, S be as in Corollary 3.14. Let the
sequences {xn}, {yn}, {zn}, and {un} be generated by the following:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1(δnJxn + (1 − δn)Jzn),

zn = J−1
(

αnJxn + βnJTxn + γnJSxn

)

,

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jzn
〉 ≥ 0 ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0.

(3.46)
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Assume that {αn}, {βn}, and {γn} are three sequences in [0, 1] satisfying the following restrictions:

(a) αn + βn + γn = 1;

(b) 0 ≤ αn < 1 for all n ∈ N ∪ {0} and lim supn→∞αn < 1;

(c) lim infn→∞αnβn > 0, lim infn→∞αnγn > 0;

(d) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} and {un} converge strongly to ΠFx0.

Remark 3.17. The conclusion of Corollary 3.16 remains true under the more general
restrictions; that is, we replace (b) and (c) by the following one:

(b′) lim infn→∞βn > 0 and lim infn→∞γn > 0.

Corollary 3.18 (see [10, Theorem 3.1]). Let C be a nonempty closed convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {Ti}Ni=1 : C → C be a family of relatively
nonexpansive mappings such that F :=

⋂N
i=1 F(Ti)/= ∅ and let x0 ∈ E. For C1 = C and x1 = ΠC1x0,

define a sequence {xn} of C as follows:

yn = J−1(αnJxn + (1 − αn)Jzn),

zn = J−1
(

β
(1)
n Jxn +

N
∑

i=1

β
(i+1)
n JTixn

)

,

Cn+1 =
{

z ∈ Cn : φ
(

z, yn

) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0,

(3.47)

where {αn}, {β(i)n } ⊂ [0, 1] satisfies the following restrictions:

(i) 0 ≤ αn < 1 for all n ∈ N ∪ {0} and lim supn→∞αn < 1;

(ii) 0 ≤ β
(i)
n ≤ 1 for all i = 1, 2, . . . ,N + 1,

∑N+1
i=1 β

(i)
n = 1 for all n ∈ N ∪ {0}. If

(a) either lim infn→∞β
(1)
n β

(i+1)
n > 0 for all i = 1, 2, . . . ,N or

(b) limn→∞β
(1)
n = 0 and lim infn→∞β

(k+1)
n β

(l+1)
n > 0 for all i /= j, k, l = 1, 2, . . . ,N.

then the sequence {xn} converges strongly toΠFx0.

Remark 3.19. The conclusion of Corollary 3.18 remains true under the more general
restrictions on {αn}, {β(i)n }:

(1) αn, β
(1)
n ∈ [0, 1] are arbitrary.

(2) lim infn→∞β
(i)
n > 0 for all i = 2, . . . ,N.
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