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A method based on the Banach fixed-point theorem is proposed for obtaining certain solutions
(TE-polarized electromagnetic waves) of the Helmholtz equation describing the reflection and
transmission of a plane monochromatic wave at a nonlinear lossy dielectric film situated between
two lossless linear semiinfinite media. All three media are assumed to be nonmagnetic and
isotropic. The permittivity of the film is modelled by a continuously differentiable function of
the transverse coordinate with a saturating Kerr nonlinearity. It is shown that the solution of
the Helmholtz equation exists in form of a uniformly convergent sequence of iterations of the
equivalent Volterra integral equation. Numerical results are presented.

1. Introduction

Scattering of transverse-electric (TE) electromagnetic waves at a single nonlinear homoge-
neous, isotropic, nonmagnetic layer situated between two homogeneous, semiinfinite media
has been the subject of intense theoretical and experimental investigations in recent years. In
particular, the Kerr-like nonlinear dielectric film has been the focus of a number of studies
[1–6].

Exact analytical solutions have been obtained for the scattering of plane TE-waves
with Kerr-nonlinear films [7, 8]. As far as exact analytical solutions were considered in those
papers, absorbtion was excluded, at most it was treated numerically [9–11].

As Chen and Mills have pointed out, it is a nontrivial extension of the usual scattering
theory to include absorption [3] and it seems (to the best of our knowledge) that the problem
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was not solved till now. In the following we propose a solution based on the Banach fixed-
point theorem (contraction principle) of the functional analysis [12]. To demonstrate the
broad range of applicability of this theorem we consider a nonlinear lossy dielectric film
with spatially varying saturating permittivity. In Section 2 we reduce Maxwell’s equations
to a Volterra integral equation (2.12) for the intensity of the electric field E(y) and give a
solution in form of a uniform convergent sequence of iterate functions. Using these solutions,
we determine the phase function ϑ(y) of the electric field, and, evaluating the boundary
conditions in Section 3, we derive analytical expressions for reflectance, transmittance,
absorptance, and phase shifts on reflection and transmission.

It should be emphasised that the contraction principle includes the proof of the
existence of the exact bounded (i.e., ”physical”) solution of the problem and additionally
yields approximate analytical solution by iterations. Furthermore, the rate of convergence of
the iterative procedure and the error estimate can be evaluated [12]. Thus this approach is
useful for physical applications.

Referring to Figure 1, we consider the reflection and transmission of an electromag-
netic plane wave at a dielectric film between two linear semiinfinite media (substrate and
cladding). All media are assumed to be homogeneous in x- and z-direction, isotropic, and
nonmagnetic. The film is assumed to be absorbing and characterized by a complex valued
permittivity function εf(y).

A plane wave of frequency ω0 and intensity E2
0, with electric vector E0 parallel to the

z-axis (TE), is incident on the film of thickness d. Since the geometry is independent of the
z-coordinate and because of the supposed TE-polarization, fields are parallel to the z-axis
(E = (0, 0, Ez)). More precisely, we look for solution E of Maxwell’s equations

rotH = −iω0εE,

rotE = iω0μ0H
(1.1)

that satisfy the boundary conditions (continuity of Ez and ∂Ez/∂y at interfaces y ≡ 0 and
y ≡ d) and where (due to TE-polarization) H = (Hx,Hy, 0). Due to the requirement of
the translational invariance in x-direction and partly satisfying the boundary conditions, the
fields tentatively are written as (ẑ denotes the unit vector in z-direction)

E
(

x, y, t
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ẑ
[

E0e
i(px−qc ·(y−d)−ω0t) + Erei(px+qc ·(y−d)−ω0t)

]

, y > d,

ẑ
[

E
(

y
)

ei(px+ϑ(y)−ω0t)
]

, 0 < y < d,

ẑ
[

E3e
i(px−qsy−ω0t)

]

, y < 0,

(1.2)

where E(y), p =
√
εck0 sinϕ, k0 = ω0

√
ε0μ0, qc, qs, and ϑ(y) are real and Er = |Er | exp(iδr) and

E3 = |E3| exp(iδt) are independent of y.
We assume a permittivity ε(y) of the three-layer system modelled by

ε
(

y
)

ε0
=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

εc, y > d,

εf
(

y
)

= ε0
f + εR

(

y
)

+ iεI
(

y
)

+
aE2(y

)

1 + arE2
(

y
) , 0 < y < d,

εs, y < 0,

(1.3)
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Figure 1: Configuration considered in this paper. A plane wave is incident to a nonlinear slab (situated
between two linear media) to be reflected and transmitted.

with real constants εc, εs, ε0
f
, a, r and real-valued continuously differentiable functions εR(y),

εI(y) on [0, d].

2. Reduction of the Scattering Problem to the Solution of
a Volterra Integral Equation

By inserting (1.2) and (1.3) into Maxwell’s equations we obtain the nonlinear Helmholtz
equations, valid in each of the three media (j = s, f, c),

∂2
˜Ej
(

x, y
)

∂x2
+
∂2
˜Ej
(

x, y
)

∂y2
+ k2

0
ε
(

y
)

ε0

˜Ej
(

x, y
)

= 0, j = s, f, c, (2.1)

where ˜Ej(x, y) denotes the time-independent part of E(x, y, t).
Scaling x, y, z, p, qc, qs by k0 and using the definition of ε/ε0 in (1.3), (2.1) reads

∂2
˜Ej
(

x, y
)

∂x2
+
∂2
˜Ej
(

x, y
)

∂y2
+ εj
(

y
)

˜Ej
(

x, y
)

= 0, j = s, f, c, (2.2)

where the same symbols have been used for unscaled and scaled quantities. Using ansatz
(1.2) in (2.2), we get for the semiinfinite media

q2
j = εj − p

2, j = s, c. (2.3)

For the film (j = f), we obtain, omitting tildes,

d2E
(

y
)

dy2
− E
(

y
)

(

dϑ
(

y
)

dy

)2

+

(

ε0
f + εR

(

y
)

− p2 +
aE2(y

)

1 + arE2
(

y
)

)

E
(

y
)

= 0, (2.4)

E
(

y
)d2ϑ

(

y
)

dy2
+ 2

dϑ
(

y
)

dy
dE
(

y
)

dy
+ εI
(

y
)

E
(

y
)

= 0. (2.5)
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Equation (2.5) can be integrated leading to

E2(y
)dϑ
(

y
)

dy
= c1 −

∫y

0
εI(τ)E2(τ)dτ, (2.6)

where c1 is a constant that is determined by means of the boundary conditions:

c1 = E2(0)
dϑ(0)

dy
= −qsE2(0). (2.7)

Insertion of dϑ(y)/dy according to equation (2.6) into (2.4) leads to

d2E
(

y
)

dy2
+
(

q2
f

(

y
)

− p2
)

E
(

y
)

+
aE3(y

)

1 + arE2
(

y
) −
(

c1 −
∫y

0 εI(t)E
2(t)dt

)2

E3
(

y
) = 0, (2.8)

with

q2
f

(

y
)

= ε0
f + εR

(

y
)

. (2.9)

As for real permittivity, real qs (transmission) implies that c1 /= 0.
Setting I(y) = aE2(y), multiplying (2.8) by 4E3(y), and differentiating the result with

respect to y, we obtain

d3I
(

y
)

dy3
+ 4

d
((

q2
f

(

y
)

− p2
)

I
(

y
)

)

dy
= 2

d
(

q2
f

(

y
)

)

dy
I
(

y
)

−
2I
(

y
)(

dI
(

y
)

/dy
)(

3 + 2rI
(

y
))

(

1 + rI
(

y
))2

− 4εI
(

y
)

(

ac1 −
∫y

0
εI(t)I(t)dt

)

.

(2.10)

Equation (2.10) can be integrated with respect to I(y) to yield

d2I
(

y
)

dy2
+ 4κ2I

(

y
)

= −4εR
(

y
)

I
(

y
)

+ 2
∫y

0

dεR(t)
dt

I(t)dt

− 2
r2

(

2rI
(

y
)

+
1

1 + rI
(

y
) − ln

(

1 + rI
(

y
))

)

+ 4
∫y

0
εI(t)

(

∫ t

0
εI(z)I(z)dz

)

dt − 4ac1

∫y

0
εI(t)dt + c2,

(2.11)

where κ2 = ε0
f
− p2 and c2 is a constant of integration.
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The homogeneous equation d2I(y)/dy2 + 4κ2I(y) = 0 has the solution

˜I0
(

y
)

= a|E3|2 cos
(

2κy
)

(2.12)

so that the general solution of (2.11) reads [13]

I
(

y
)

= ˜I0
(

y
)

+
∫y

0
dt

sin 2κ
(

y − t
)

2κ

·
(

− 4 εR(t)I(t) + 2
∫ t

0

dεR(τ)
dτ

I(τ)dτ − 2
r2

(

2rI(t) +
1

1 + rI(t)
− ln(1 + rI(t))

)

+ 4
∫ t

0
εI(τ)

(∫ τ

0
εI(z)I(z)dz

)

dτ − 4ac1

∫ t

0
εI(τ)dτ + c2

)

,

(2.13)

where the constant c2 must be determined by the boundary conditions.
The Volterra equation (2.13) is equivalent to (2.1) for 0 < y < d. According to (2.13)

I(y) and ˜I0(y) satisfy the boundary conditions at y = 0. Evaluating some of the integrals on
the righthand side, (2.13) can be written as

I
(

y
)

= I0
(

y
)

+
1
κ2

∫y

0
sin2κ

(

y − τ
)dεR(τ)

dτ
I(τ)dτ

− 2
κ

∫y

0
sin 2κ

(

y − τ
)

εR(τ)I(τ)dτ

− 2
rκ

∫y

0
sin 2κ

(

y − τ
)

I(τ)dτ

− 1
κr2

∫y

0
sin 2κ

(

y − τ
) 1

1 + rI(τ)
dτ

+
1
κr2

∫y

0
sin 2κ

(

y − τ
)

ln(1 + rI(τ))dτ

+ 4
∫y

0
εI(z)I(z)dz

∫y

z

sin 2κ
(

y − t
)

2κ

{

∫ t

z

εI(τ)dτ

}

dt,

(2.14)

with (on the evaluation of c2 see Appendix A)

I0
(

y
)

= ˜I0
(

y
)

+
c2sin2κy

2κ2
− 4ac1

∫y

0

sin 2κ
(

y − t
)

2κ

∫ t

0
εI(z)dzdt, (2.15)

ac1 = −qsI(0), (2.16)

c2 = 2I(0)
(

q2
s + q

2
f(0) − p

2
)

− 2I2(0)
1 + rI(0)

+
2
r2

(

2rI(0) +
1

1 + rI(0)
− ln(1 + rI(0))

)

, (2.17)

where ˜I0(y) is given by (2.12).
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Let us introduce in the Banach space C[0, d] bounded integral operators N1,N2,N3,
N4,N5,Nc by

N1(I) =
1
κ2

∫y

0
sin2κ

(

y − τ
)dεR(τ)

dτ
I(τ)dτ,

N2(I) = −
2
κ

∫y

0
sin 2κ

(

y − τ
)

εR(τ)I(τ)dτ,

N3(I) = −
2
κ

∫y

0
sin 2κ

(

y − τ
)

I(τ)dτ,

N4(I) = −
1
κ

∫y

0
sin 2κ

(

y − τ
) 1

1 + rI(τ)
dτ,

N5(I) =
1
κ

∫y

0
sin 2κ

(

y − τ
)

ln(1 + rI(τ))dτ,

Nc(I) = 4
∫y

0
εI(s)ψ

(

y, s
)

I(s)ds,

(2.18)

where constant c2 is given by (A.3) and

ψ
(

y, s
)

=
∫y

s

sin 2κ
(

y − t
)

2κ

{

∫ t

s

εI(τ)dτ

}

dt (2.19)

with the values ‖N1‖, ‖N2‖, ‖N3‖, ‖N4‖, ‖N5‖, ‖Nc‖, and ‖I0s‖which are defined as

‖N1‖ =
1
κ2

max
0≤y≤d

∫y

0

∣

∣

∣sin2κ
(

y − τ
)

∣

∣

∣ ·
∣

∣

∣

∣

dεR(τ)
dτ

∣

∣

∣

∣

dτ,

‖N2‖ =
2
κ

max
0≤y≤d

∫y

0

∣

∣sin 2κ
(

y − τ
)∣

∣ · |εR(τ)|dτ,

‖N3‖ =
2
κ

max
0≤y≤d

∫y

0

∣

∣sin 2κ
(

y − τ
)∣

∣dτ,

‖N4‖ =
1
κ

max
0≤y≤d

∫y

0

∣

∣sin 2κ
(

y − τ
)∣

∣dτ,

‖N5‖ =
1
κ

max
0≤y≤d

∫y

0

∣

∣sin 2κ
(

y − τ
)∣

∣dτ = ‖N4‖,

‖Nc‖ = 4 max
0≤y≤d

∫y

0
|εI(z)| ·

∣

∣ψ
(

y, z
)∣

∣dz,

‖I0‖ = max
0≤y≤d

|I0|.

(2.20)

The following main result holds.
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Theorem 2.1. If

‖N1‖ + ‖N2‖ + ‖Nc‖ +
‖N3‖ + 2‖N4‖

r
< 1, (2.21)

‖I0s‖ +
(

1/r2)‖N4‖
1 − (‖N1‖ + ‖N2‖ + ‖Nc‖ + (‖N3‖ + ‖N4‖)/r)

< ρ, (2.22)

then in any ball Sρ(0) there exists a unique solution of the nonlinear integral equation (2.14) and this
solution can be obtained as a uniform limit

I
(

y
)

= lim
j→∞

Ij
(

y
)

(2.23)

of the iterations of (2.14).

Proof. Let us introduce the iterations of (2.14) as follows:

Ij
(

y
)

= I0
(

y
)

+
1
κ2

∫y

0
sin2κ

(

y − τ
)dεR(τ)

dτ
Ij−1(τ)dτ

− 2
κ

∫y

0
sin 2κ

(

y − τ
)

εR(τ)Ij−1(τ)dτ

− 2
rκ

∫y

0
sin 2κ

(

y − τ
)

Ij−1(τ)dτ

− 1
κr2

∫y

0
sin 2κ

(

y − τ
) 1

1 + rIj−1(τ)
dτ

+
1
κr2

∫y

0
sin 2κ

(

y − τ
)

ln
(

1 + rIj−1(τ)
)

dτ

+ 4
∫y

0
εI(z)Ij−1(z)dz

∫y

z

sin 2κ
(

y − t
)

2κ

{

∫ t

z

εI(τ)dτ

}

dt,

(2.24)

where j = 1, 2, . . . , and I0(y) is given by (2.15). In order to prove that the sequence (2.24) is
uniformly convergent to the solution of (2.14) it suffices to check that all conditions of the
Banach fixed-point theorem [12] are fulfilled.

We consider the nonlinear operator F as

F(I) := I0
(

y
)

+N1(I) +N2(I) +
1
r
N3(I) +

1
r2
N4(I) +

1
r2
N5(I) +Nc(I). (2.25)

Then (2.14) can be rewritten in operator form

I
(

y
)

= F(I)
(

y
)

. (2.26)
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We consider ρ such that ‖I‖ = max0≤y≤dI(y) ≤ ρ. First we must check whether this operator
F maps the ball Sρ(0) to itself. Indeed, if I(y) ∈ Sρ(0), then

‖F(I)‖ ≤ ‖I0‖ + ‖N1‖ · ‖I‖ + ‖N2‖ · ‖I‖ + ‖Nc‖ · ‖I‖ +
1
r
‖N3‖ · ‖I‖

+
1
r2 ‖N4‖ ·

1
1 + r min0≤y≤dI

(

y
) +

1
r2 ‖N4‖ · r‖I‖

≤ ‖I0‖ + ‖N1‖ · ρ + ‖N2‖ · ρ + ‖Nc‖ · ρ +
1
r
‖N3‖ · ρ

+
1
r2 ‖N4‖ +

1
r
‖N4‖ · ρ.

(2.27)

Thus, the following inequality must be valid:

‖I0‖ +
1
r2 ‖N4‖ +

(

‖N1‖ + ‖N2‖ + ‖Nc‖ +
1
r
(‖N3‖ + ‖N4‖)

)

· ρ < ρ. (2.28)

This inequality holds if

‖I0‖ +
(

1/r2)‖N4‖
1 − (‖N1‖ + ‖N2‖ + ‖Nc‖ + (‖N3‖ + ‖N4‖)/r)

< ρ, (2.29)

and, thus, if

‖N1‖ + ‖N2‖ + ‖Nc‖ +
‖N3‖ + ‖N4‖

r
< 1. (2.30)

It means that for this value of ρ (2.29) continuous map F transfers ball Sρ(0) in itself. Hence,
(2.14) has at least one solution inside Sρ(0). For uniqueness of this solution it remains to prove
that F is contractive [12]. To prove the contraction of F we consider

F(I1) − F(I2) =N1(I1 − I2) +N2(I1 − I2) +Nc(I1 − I2)

+
1
r
N3(I1 − I2) +

1
r2 (N4(I1) −N4(I2)) +

1
r2 (N5(I1) −N5(I2)).

(2.31)

Hence

‖F(I1) − F(I2)‖ ≤ ‖N1‖‖I1 − I2‖ + ‖N2‖‖I1 − I2‖ + ‖Nc‖‖I1 − I2‖

+ ‖N3‖
∥

∥

∥

∥

1
r
(I1 − I2)

∥

∥

∥

∥

+
∥

∥

∥

∥

1
r2 (N4(I1) −N4(I2))

∥

∥

∥

∥

+
∥

∥

∥

∥

1
r2 (N5(I1) −N5(I2))

∥

∥

∥

∥

.

(2.32)
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The following estimations hold:

(i)

∥

∥

∥

∥

1
r2 (N4(I1) −N4(I2))

∥

∥

∥

∥

≤ max
0≤y≤d

1
κr2

∫y

0

∣

∣sin 2κ
(

y − τ
)∣

∣ ·
∣

∣

∣

∣

1
1 + rI1(τ)

− 1
1 + rI2(τ)

∣

∣

∣

∣

dτ

= max
0≤y≤d

1
κr2

∫y

0

∣

∣sin 2κ
(

y − τ
)∣

∣ ·
∣

∣

∣

∣

rI2(τ) − rI1(τ)
(1 + rI1(τ))(1 + rI2(τ))

∣

∣

∣

∣

dτ

≤ 1
r

max
0≤y≤d

1
κ

∫y

0

∣

∣sin 2κ
(

y − τ
)∣

∣dτ · ‖I1 − I2‖,

(2.33)

hence

∥

∥

∥

∥

1
r2 (N4(I1) −N4(I2))

∥

∥

∥

∥

≤ ‖N4‖
r
· ‖I1 − I2‖. (2.34)

And

(ii)

∥

∥

∥

∥

1
r2 (N5(I1) −N5(I2))

∥

∥

∥

∥

≤ max
0≤y≤d

1
κr2

∫y

0

∣

∣sin 2κ
(

y − τ
)∣

∣ · |ln(1 + rI1(τ)) − ln(1 + rI2(τ))|dτ.

(2.35)

Using

|ln(1 + rI1) − ln(1 + rI2)| =
∣

∣

∣

∣

ln
1 + rI1

1 + rI2

∣

∣

∣

∣

=
∣

∣

∣

∣

ln
(

1 +
r(I1 − I2)

1 + rI2

)∣

∣

∣

∣

≤ r‖I1 − I2‖, (2.36)

equation (2.35) yields

∥

∥

∥

∥

1
r2 (N5(I1) −N5(I2))

∥

∥

∥

∥

≤ 1
r2
· ‖N4‖ · r · ‖I1 − I2‖ =

‖N4‖
r
‖I1 − I2‖. (2.37)

Thus, from (2.32), one obtains

‖F(I1) − F(I2)‖ ≤
(

‖N1‖ + ‖N2‖ + ‖Nc‖ +
‖N3‖
r

+
‖N4‖
r

+
‖N4‖
r

)

· ‖I1 − I2‖

=
(

‖N1‖ + ‖N2‖ +
‖N3‖ + 2‖N4‖

r

)

· ‖I1 − I2‖,

(2.38)
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so that F is contractive if

‖N1‖ + ‖N2‖ + ‖Nc‖ +
‖N3‖ + 2‖N4‖

r
< 1. (2.39)

Thus, the theorem is proved.

Corollary 2.2. If one denotes by m the left-hand side of inequality (2.39) ((2.21)), the solution I(y)
of (2.14) can be approximated by the iterations Ij(y) as follows:

∥

∥I − Ij
∥

∥ ≤ mj

1 −m‖I1 − I0‖

≤ mj

1 −m

(

1
κr2

max
0≤y≤d

∫y

0

∣

∣sin 2κ
(

y − τ
)∣

∣dτ +m‖I0‖
)

≤ mj

1 −m

(

d2

r2
+m‖I0‖

)

,

(2.40)

where j = 0, 1, 2, . . . and I0 is defined in (2.15).

Proof. See [12].

Remark 2.3. For the sufficient condition (2.39) ((2.21)) to hold parameters must be chosen
such that (2.39) ((2.21)) holds even if r is small (Equation (2.14) represents the exact solution
I(y) if (2.21) and (2.22) are satisfied. I(y) can be approximated by the first iteration I1(y) with
the error (d2/r2)(m/(1−m))+(m2/(1−m))‖I0‖, where m denotes the left-hand side of (2.21).
Condition (2.21) must hold for a particular r > 0. In the limit r → 0 (and lossless medium)
(2.14) transforms to (2.41) in [14]. In order to obtain a condition of the type of (2.21) for all
0 < r < 1 (uniformly), combination of N3, N4, N5 and part of I0s within the estimations
is necessary. It seems impossible to obtain a condition of the type of (2.21) uniformly with
respect to all nonnegative r. It is possible only to obtain such kind of condition uniformly for
0 < r < 1 or for 1 < r < ∞ independently. In this respect, some mathematical complications
arise that are not the main point of this paper).

Remark 2.4. Estimation of ‖I0‖ (cf., Appendix B) gives

‖I0‖ ≤ I(0) +
1
2
|c2|d2 +

2
3
a|c1|‖εI‖d3, (2.41)

where constants c1 and c2 are defined by (2.16), respectively. Combining (2.40) and (2.41), we
obtain the error of approximation

∥

∥I − Ij
∥

∥ ≤ d
2

r2
· mj

1 −m +
mj+1

1 −m

(

I(0) +
1
2
|c2|d2 +

2
3
a|c1|‖εI‖d3

)

:= Rj, (2.42)

where j = 0, 1, 2, . . . .
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3. Reflectance, Transmittance, Absorptance, and Phase Shifts

Conservation of energy requires that absorptance A, transmittance T , and reflectance R be
related by

A = 1 − R − T, (3.1)

with

T =
qs
qc

I(0)
aE2

0

, (3.2)

R =
|Er |2

E2
0

. (3.3)

Due to the continuity conditions at y = d,

E0 + |Er |eiδr = E(d)eiϑ(d), (3.4)

2E0e
−iϑ(d) =

i

qc

dE(y)
dy

∣

∣

∣

∣

y=d
+ E(d)

⎛

⎝1 − 1
qc

dϑ
(

y
)

dy

∣

∣

∣

∣

∣

y=d

⎞

⎠, (3.5)

reflectance, transmittance, absorptance, and the phase shift on reflection, δr , and on
transmission, δt, can be determined. Combination of (3.4) and (3.5) yields

aE2
0 =

1
4

⎧

⎪

⎨

⎪

⎩

(

dI(y)/dy
∣

∣

y=d

)2

4q2
cI(d)

+ I(d)

⎛

⎝1 +
qsI(0) +

∫d

0 εI(τ)I(τ)dτ
qcI(d)

⎞

⎠

2
⎫

⎪

⎬

⎪

⎭

, (3.6)

a|Er |2 =
1
4

⎧

⎪

⎨

⎪

⎩

(

dI(y)/dy
∣

∣

y=d

)2

4q2
cI(d)

+ I(d)

⎛

⎝1 −
qsI(0) +

∫d

0 εI(τ)I(τ)dτ
qcI(d)

⎞

⎠

2
⎫

⎪

⎬

⎪

⎭

. (3.7)

Inserting equations (3.6) and (3.7) into (3.1) and using (3.2) and (3.3), we obtain

A =
1

qcaE
2
0

∫d

0
εI(τ)I(τ)dτ. (3.8)

The continuity conditions (3.4), (3.5) and (3.2), (3.6) imply that

δr = − arcsin
dI(y)/dy

∣

∣

y=d

4qcaE2
0

√
1 − T −A

, (3.9)



12 Fixed Point Theory and Applications

for the phase shift on reflection, and

δt = ϑ(0) =
∫d

0

qsI(0) + qcaE2
0
˜A(τ)

I(τ)
dτ + arcsin

⎛

⎜

⎝−
dI(y)/dy

∣

∣

y=d

4qc
√

aE2
0I(d)

⎞

⎟

⎠, (3.10)

with

˜A(u) :=
1

qcaE
2
0

∫ τ

0
εI(u)I(u)du, (3.11)

for the phase shift on transmission.

4. Numerical Evaluations

A numerical evaluation of the foregoing quantities is straightforward. It is useful to apply
a parametric-plot routine using the first approximation I1(y). If the parameters satisfy the
convergence conditions (2.21) and (2.22), the results obtained for I1(y) are in good agreement
with the purely numerical solution of (2.11) (cf., Figures 2 and 3).

Iterating equation (2.24) once by inserting I0(τ) according to (2.15), (2.16) for Ij−1(τ),
the first approximation I1(y) is given by

I1
(

y
)

= I0
(

y
)

+
1
κ2

∫y

0
sin2κ

(

y − τ
)dεR(τ)

dτ
I0(τ)dτ

− 2
κ

∫y

0
sin 2κ

(

y − τ
)

εR(τ)I0(τ)dτ

− 2
rκ

∫y

0
sin 2κ

(

y − τ
)

I0(τ)dτ

− 1
κr2

∫y

0
sin 2κ

(

y − τ
) 1

1 + rI0(τ)
dτ

+
1
κr2

∫y

0
sin 2κ

(

y − τ
)

ln(1 + rI0(τ))dτ

+ 4
∫y

0
εI(z)I0(z)dz

∫y

z

sin 2κ
(

y − t
)

2κ

{

∫ t

z

εI(τ)dτ

}

dt.

(4.1)

For the numerical evaluations the following steps can be performed.

(i) Prescribe the parameters of the problem such that (2.21) and (2.22) are satisfied.

(ii) Prescribe a certain upper bound (accuracy) of the right-hand side Rj of (2.42) and
perform a parametric plot of Rj (with I(0) as parameter) with j = 1. If R1(aE2

0) is
smaller (or equal) than (to) the prescribed accuracy for all aE2

0 of a certain interval,
accept I1(y) as a suitable approximation.
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Figure 2: Dependence of the field intensity I1(y, aE2
0) inside the slab on the transverse coordinate y and

aE2
0 for r = 1000, εI = 0.1, εc = 1, εs = 1.7, ε0

f
= 3.5, ϕ = 1.107, d = 1, γ = 0.033, and b = 0.1.
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Figure 3: Dependence of the field intensity I1(y, aE2
0) inside the slab on the transverse coordinate y for

a|E3|2 = 0.1. The other parameters are as in Figure 2. Solid curve corresponds to the first iteration of (2.24)
and dashed curve to the numerical solution of the system of differential equations (2.4), (2.5).

(iii) If R1(aE2
0) exceeds the prescribed accuracy, calculate I2(y) according to (2.24) and

check again according to step (ii) or enlarge the accuracy so that R1(aE2
0) is smaller

(or equal) than (to) the prescribed accuracy.

The reason for the satisfactory agreement between the exact numerical solution and
the first approximation I1(y) (cf., Figure 3) is due to the foregoing explanation.

If a|E3|2 is fixed (as in the numerical example below), and thus aE2
0 according to (3.6),

inequality (2.42) can be used to optimize the iteration approach with respect to another free
parameter, for example, d or r or p, as indicated.

Using the first approximation, the phase function can be evaluated according to (2.6)
as

ϑ1
(

y
)

= arcsinϑ1(d) − qsI(0)
∫y

d

dτ
I1(τ)

−
∫y

d

dτ
I1(τ)

∫ τ

0
εI(ξ)I1(ξ)dξ, (4.2)
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Figure 4: Phase function ϑ1(y, aE2
0) according to (4.2) inside the slab. Parameters are as in Figure 3.
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Figure 5: Absorptance A1 depending on the layer thickness d and on the incident field intensity aE2
0 for

the same parameters as in Figure 3.

where

sinϑ1(d) = −
dI1(y)/dy

∣

∣

y=d

4qc
√

aE2
0I1(d)

. (4.3)

Thus, the approximate solution of the problem is represented by (4.1) and (4.2). The
appropriate parameter is I(0) = aE2(0), since E0 in (4.3) can be expressed im terms of I(0) as
shown in (3.6).

For illustration we assume a permittivity according to

εf
(

y
)

= ε0
f + εR

(

y
)

+ iεI +
I
(

y
)

1 + rI
(

y
) , (4.4)
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Figure 6: Phase shift on reflection δr1 depending on the layer thickness d and on the incident field intensity
aE2

0 for the same parameters as in Figure 3.

with

εR
(

y
)

= γcos2 by

d
, (4.5)

where ε0
f
, γ, b, d, r are real constants. For simplicity, εI is also assumed to be constant. Results

for the first iterate solution I1(y, aE2
0) are depicted in Figures 2 and 3. Using I1(y, aE2

0), the
phase function ϑ1(y, aE2

0), absorptance A1(d, aE2
0), and phase shift on reflection δr1(y, aE2

0)
are shown in Figures 4, 5, and 6, respectively. The left-hand side of condition (2.21) ((2.39))
is 0.572 for the parameters selected in this example. Results for R, T and the phase shift on
transmission can be obtained similarly.

5. Summary

Based on known mathematics, we have proposed an iterative approach to the scattering of a
plane TE-polarized optical wave at a dielectric film with permittivities modelled by a complex
continuously differentiable function of the transverse coordinate.

The result is an approximate analytical expression for the field intensity inside the
film that can be used to express the physical relevant quantities (reflectivity, transmissivity,
absorptance, and phase shifts). Comparison with exact numerical solutions shows satisfac-
tory agreement.

It seems appropriate to explain the benefits of the present approach as follows.

(i) The approach yields (approximate) solutions in cases where the usual methods (cf.,
References [1–6]) fail or could not be applied till now.

(ii) The quality of the approximate solutions can be estimated in dependence on the
parameters of the problem.

On the other hand, the conditions of convergence explicitly depend on the permittivity
functions in question and thus have to be derived for every permittivity anew (cf., [14] and
(2.40)).
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Appendices

Appendix A

The constant of integration c2 is determined by (2.11) with y = 0 as

c2 =
d2I(y)

dy2

∣

∣

∣

∣

∣

y=0

+ 4
(

q2
f(0) − p

2
)

I(0) +
2
r2

(

2rI(0) +
1

1 + rI(0)
− ln(1 + rI(0))

)

. (A.1)

According to (2.7), the second derivative of the field intensity I(y) at y = 0 is given by

d2I(y)
dy2

∣

∣

∣

∣

∣

y=0

= 2q2
sI(0) − 2

(

q2
f(0) − p

2
)

I(0) − 2I2(0)
1 + rI(0)

, (A.2)

leading to, taking into account boundary conditions, E(0) = E3e
−iϑ(0) and dE(y)/dy|y=0 = 0,

c2 = 2q2
sI(0) + 2

(

q2
f(0) − p

2
)

I(0) − 2I2(0)
1 + rI(0)

+
2
r2

(

2rI(0) +
1

1 + rI(0)
− ln(1 + rI(0))

)

.

(A.3)

Appendix B

With εR(x) ∈ C1[0, d] and εI(x) ∈ C[0, d] one obtains

‖N1‖ =
1
κ2

max
0≤y≤d

∫y

0

∣

∣

∣sin2κ
(

y − τ
)

∣

∣

∣ ·
∣

∣ε′R(τ)
∣

∣dτ

≤ max
0≤y≤d

∫y

0

(

y − τ
)2dτ ·

∥

∥ε′R
∥

∥ =
1
3
d3∥
∥ε′R
∥

∥,

‖N2‖ =
2
κ

max
0≤y≤d

∫y

0

∣

∣sin 2κ
(

y − τ
)∣

∣ · |εR(τ)|dτ

≤ 4 max
0≤y≤d

∫y

0

(

y − τ
)

dτ · ‖εR‖ = 2d2‖εR‖,

‖N3‖ =
2
κ

max
0≤y≤d

∫y

0

∣

∣sin 2κ
(

y − τ
)∣

∣dτ ≤ 4max
0≤y≤d

∫y

0

(

y − τ
)

dτ = 2d2,
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‖N4‖ = ‖N5‖ =
1
κ

max
0≤y≤d

∫y

0

∣

∣sin 2κ
(

y − τ
)∣

∣dτ

≤ 2max
0≤y≤d

∫y

0

(

y − τ
)

dτ = d2,

‖Nc‖ = 4max
0≤y≤d

∫y

0
|εI(z)| ·

∣

∣ψ
(

y, z
)∣

∣dz

≤ 4‖εI‖max
0≤y≤d

∫y

0

∫y

z

∣

∣sin 2κ
(

y − τ
)∣

∣

2κ

∫ t

z

|εI(τ)|dτ dtdz

≤ 4‖εI‖2 max
0≤y≤d

∫y

0

∫y

z

(

y − t
)

(t − z)dtdz =
d4

6
‖εI‖2,

‖I0‖ ≤ max
0≤y≤d

a|E3|2 ·
∣

∣cos 2κy
∣

∣ + |c2|max
0≤y≤d

∣

∣

∣sin2κy
∣

∣

∣

2κ2

+ 4a|c1|max
0≤y≤d

∫y

0

∣

∣sin 2κ
(

y − t
)∣

∣

2κ

∫ t

0
|εI(τ)|dτ dt

≤ a|E3|2 +
1
2
|c2|d2 + 4a|c1| · ‖εI‖max

0≤y≤d

∫y

0

(

y − t
)

tdt

= a|E3|2 +
1
2
|c2|d2 +

2
3
a|c1| · ‖εI‖d3. (B.1)

For εR, given by (4.5), we obtain

‖εR‖ ≤ γ,
∥

∥ε′R
∥

∥ ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2γb2

d
, 2b ≤ 1,

γb

d
, 2b > 1.

(B.2)

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (Graduate College 695 ”Nonlin-
earities of optical materials”) is gratefully acknowledged. One of the authors (V. S. Serov)
gratefully acknowledges the support by the Academy of Finland (Application no. 213476,
Finnish Programme for Centres of Excellence in Research 2006–2011). The authors are
grateful to anonymous referee whose valuable comments have very much helped to improve
the quality of the presentation.

References

[1] W. Chen and D. L. Mills, “Optical response of a nonlinear dielectric film,” Physical Review B, vol. 35,
no. 2, pp. 524–532, 1987.

[2] K. M. Leung, “Scattering of transverse-electric electromagnetic waves with a finite nonlinear film,”
Journal of the Optical Society of America B, vol. 5, no. 2, pp. 571–574, 1988.



18 Fixed Point Theory and Applications

[3] W. Chen and D. L. Mills, “Optical behavior of a nonlinear thin film with oblique S-polarized incident
wave,” Physical Review B, vol. 38, no. 18, pp. 12814–12822, 1988.

[4] K. M. Leung, “Exact results for the scattering of electromagnetic waves with a nonlinear film,” Physical
Review B, vol. 39, pp. 3590–3598, 1989.

[5] Th. Peschel, “Investigation of optical tunneling through nonlinear films,” Journal of the Optical Society
of America B, vol. 5, no. 1, pp. 29–36, 1988.
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