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Let X be a reflexive Banach space which has a weakly sequentially continuous duality mapping. In
this paper, we consider the following viscosity approximation sequence xn = λnf(xn)+(1−λn)Tnxn,
where λn ∈ (0, 1), {Tn} is a uniformly asymptotically regular sequence, and f is a weakly contractive
mapping. Strong convergence of the sequence {xn} is proved.

1. Introduction

Let C be a nonempty closed convex subset of a Banach space X. Recall that a self-mapping
T : C → C is nonexpansive if

∥
∥T(x) − T(y)∥∥ ≤ ∥

∥x − y∥∥ ∀x, y ∈ C. (1.1)

Alber and Guerre-Delabriere [1] defined the weakly contractive maps in Hilbert spaces, and
Rhoades [2] showed that the result of [1] is also valid in the completemetric spaces as follows.

Definition 1.1. Let (X, d) be a complete metric space. A mapping T : X → X is called weakly
contractive if

d
(

Tx, Ty
) ≤ d(x, y) − ψ(d(x, y)), (1.2)
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where x, y ∈ X and ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function such
that ψ(t) = 0 if and only if t = 0 and limt→∞ψ(t) = ∞.

Theorem 1.2. Let T : X → X be a weakly contractive mapping, where (X, d) is a complete metric
space, then T has a unique fixed point.

In 2007, Song and Chen [3] considered the iterative sequence

xn = λnf(xn) + (1 − λn)Tnxn, n ∈ {1, 2, . . .}. (1.3)

They proved the strong convergence of the iterative sequence {xn}, where f is a contraction
mapping and {Tn} is a uniformly asymptotically regular sequence of nonexpansivemappings
in a reflexive Banach space X, as follows.

Theorem 1.3 (see [3, Theorem 3.1]). Let X be a reflexive Banach space which admits a weakly
sequentially continuous duality mapping J fromX toX∗. Suppose that C is a nonempty closed convex
subset of X and {Tn}, n ∈ {1, 2, . . .}, is a uniformly asymptotically regular sequence of nonexpansive
mappings from C into itself such that

F :=
∞⋂

n=1

Fix(Tn)/= ∅, (1.4)

where Fix(Tn) := {x ∈ C : x = Tnx}, n ∈ {1, 2, . . .}. Let {xn} be defined by (1.3) and λn ∈ (0, 1),
such that limn→∞λn = 0. Then as n → ∞, the sequence {xn} converges strongly to p, such that p is
the unique solution, in F, to the variational inequality:

〈

f
(

p
) − p, J(y − p)〉 ≤ 0, ∀y ∈ F. (1.5)

In this paper, inspired by the above results, strong convergence of sequence (1.3) is
proved, where f is a weakly contractive mapping.

2. Preliminaries

A Banach space X is called strictly convex if

‖x‖ =
∥
∥y

∥
∥ = 1, x /=y implies

∥
∥x + y

∥
∥

2
< 1. (2.1)

A Banach space X is called uniformly convex, if for all ε ∈ [0, 2], there exist δε > 0 such that

‖x‖ =
∥
∥y

∥
∥ = 1 with

∥
∥x − y∥∥ ≥ ε implies that

∥
∥x + y

∥
∥

2
< 1 − δε. (2.2)

The following results are well known which can be founded in [4].



Fixed Point Theory and Applications 3

(1) A uniformly convex Banach space X is reflexive and strictly convex.

(2) IfC is a nonempty convex subset of a strictly convex Banach spaceX and T : C → C
is a nonexpansive mapping, then the fixed point set F(T) of T is a closed convex
subset of C.

By a gauge function we mean a continuous strictly increasing function ϕ defined on [0,∞)
such that ϕ(0) = 0 and limr→∞ϕ(r) = ∞. The mapping Jϕ : X → 2X

∗
defined by

Jϕ(x) =
{

x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = ϕ(‖x‖)}, for each x ∈ X, (2.3)

is called the duality mapping with gauge function ϕ. In the case where ϕ(t) = t, then Jϕ = J
which is the normalized duality mapping.

Proposition 2.1 (see [5]). (1) J = I if and only if X is a Hilbert space.
(2) J is surjective if and only if X is reflexive.
(3) Jϕ(λx) = signλ(ϕ(|λ| · ‖x‖)/‖x‖)J(x) for all x ∈ X \ {0}, λ ∈ R; in particular J(−x) =

−J(x), for all x ∈ X.

We say that a Banach space X has a weakly sequentially continuous duality mapping
if there exists a gauge function ϕ such that the duality mapping Jϕ is single-valued and
continuous from the weak topology to the weak∗ topology of X.

We recall [6] that a Banach space X is said to satisfy Opial’s condition, if for any
sequence {xn} in X, which converges weakly to x ∈ X, we have

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥
∥xn − y

∥
∥ ∀y ∈ X, y /=x. (2.4)

It is known [7] that any separable Banach space can be equivalently renormed such that it
satisfies Opial’s condition. A space with a weakly sequentially continuous duality mapping
is easily seen to satisfy Opial’s condition [8].

Lemma 2.2 (see [9, Lemma 4]). Let X be a Banach space satisfying Opial’s condition and C a
nonempty, closed, and convex subset ofX. Suppose that T : C → C is a nonexpansive mapping. Then
I − T is demiclosed at zero, that is, if {xn} is a sequence in C which converges weakly to x and if the
sequence xn − Txn converges strongly to zero, then x − Tx = 0.

Definition 2.3 (see [3]). Let C be a nonempty closed convex subset of a Banach space X and
Tn : C → C, where n ∈ {1, 2, . . .}. Then the mapping sequence {Tn} is called uniformly
asymptotically regular on C, if for allm ∈ {1, 2, . . .} and any bounded subset K of C we have

lim
n→+∞

sup
x∈K

‖Tm(Tnx) − Tnx‖ = 0. (2.5)

3. Main Result

In this section, we prove a new version of Theorem 1.3.
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Theorem 3.1. Let X be a reflexive Banach space which admits a weakly sequentially continuous
duality mapping J from X to X∗. Suppose that C is a nonempty closed convex subset of X and Tm :
C → C,m ∈ {1, 2, . . .}, is a uniformly asymptotically regular sequence of nonexpansive mappings
such that

F :=
∞⋂

m=1

Fix(Tm)/= ∅. (3.1)

Let f : C → C be a weakly contractive mapping. Suppose that {tm} is a sequence of positive numbers
in (0, 1) satisfying limm→∞tm = 0. Assume that {xm} is defined by the following iterative process:

xm = tmf(xm) + (1 − tm)Tmxm, m ∈ {1, 2, . . .}. (3.2)

Then the above sequence {xm} converges strongly to a common fixed point p of {Tm}, m ∈ {1, 2, . . .}
such that p is the unique solution, in F, to the variational inequality

〈

f
(

p
) − p, J(y − p)〉 ≤ 0, ∀y ∈ F. (3.3)

Proof.

Step 1. We prove the uniqueness of the solution to the variational inequality (3.3). Suppose
that p, q ∈ F are distinct solutions to (3.3). Then

〈

f
(

p
) − p, J(q − p)〉 ≤ 0,

〈

f
(

q
) − q, J(p − q)〉 ≤ 0.

(3.4)

By adding up the above relations, we get

0 ≥ 〈(

p − f(p)) − (

q − f(q)), J(p − q)〉

≥ 〈p − q, J(p − q)〉 − 〈

f
(

p
) − f(q), J(p − q)〉

≥ ∥
∥p − q∥∥2 − ∥

∥f
(

p
) − f(q)∥∥∥∥J(p − q)∥∥

≥ ∥
∥p − q∥∥2 − ∥

∥p − q∥∥2 + ψ
(∥
∥p − q∥∥)∥∥p − q∥∥.

(3.5)

Thus ψ(‖p − q‖)‖p − q‖ ≤ 0, hence p = q. We denote by p the unique solution, in F, to(3.3).
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Step 2. We show that the sequence {xm} is bounded. Let q ∈ F; from (3.2)we get then that

∥
∥xm − q∥∥2 =

〈

tm
(

f(xm) − q
)

+ (1 − tm)
(

Tmxm − q), J(xm − q)〉

= tm
〈(

f(xm) − f
(

q
))

+
(

f
(

q
) − q), J(xm − q)〉

+ (1 − tm)
〈

Tmxm − Tmq, J
(

xm − q)〉

≤ tm
∥
∥f(xm) − f

(

q
)∥
∥
∥
∥J

(

xm − q)∥∥ + tm
〈

f
(

q
) − q, J(xm − q)〉

+ (1 − tm)
∥
∥Tmxm − Tmq

∥
∥
∥
∥J

(

xm − q)∥∥

≤ tm
[(∥
∥xm − q∥∥ − ψ(∥∥xm − q∥∥))∥∥xm − q∥∥ +

〈

f
(

q
) − q, J(xm − q)〉]

+ (1 − tm)
∥
∥Tmxm − Tmq

∥
∥
∥
∥J

(

xm − q)∥∥

≤ tm
[∥
∥xm − q∥∥2 − ψ(∥∥xm − q∥∥)∥∥xm − q∥∥ +

〈

f
(

q
) − q, J(xm − q)〉

]

+ (1 − tm)
∥
∥xm − q∥∥2

≤ ∥
∥xm − q∥∥2 − tm

∥
∥xm − q∥∥ψ(∥∥xm − q∥∥) + tm

∥
∥f

(

q
) − q∥∥∥∥xm − q∥∥.

(3.6)

Thus

∥
∥xm − q∥∥ψ(∥∥xm − q∥∥) ≤ ∥

∥f
(

q
) − q∥∥∥∥xm − q∥∥, (3.7)

or

ψ
(∥
∥xm − q∥∥) ≤ ∥

∥f
(

q
) − q∥∥. (3.8)

Therefore {xm} is bounded.

Step 3. We prove that limm→+∞‖xm − Tnxm‖ = 0, for all n ∈ {1, 2, . . .}. Since the sequence {xm}
is bounded, so {f(xm)} and {Tmxm} are bounded. Hence limm→∞tm‖Tmxm −f(xm)‖ = 0, thus
limm→∞‖xm − Tmxm‖ = 0. Let K be a bounded subset of C which contains {xm}. Since the
sequence {Tm} is uniformly asymptotically regular, we can obtain

lim
m→∞

‖Tn(Tmxm) − Tmxm‖ ≤ lim
m→∞

sup
x∈K

‖Tn(Tmx) − Tmx‖ = 0. (3.9)

Letm → ∞, then

‖xm − Tnxm‖ ≤ ‖xm − Tmxm‖ + ‖Tmxm − Tn(Tmxm)‖ + ‖Tn(Tmxm) − Tnxm‖
≤ 2‖xm − Tmxm‖ + ‖Tmxm − Tn(Tmxm)‖ −→ 0.

(3.10)

Hence limm→∞‖xm − Tnxm‖ = 0, for all n ∈ {1, 2, . . .}.
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Step 4. We show that the sequence {xm} is sequentially compact. SinceX is reflexive and {xm}
is bounded, there exists a subsequence {xmk} of {xm} such that {xmk} is weakly convergent
to q ∈ C as k → ∞. Since limk→∞‖xmk − Tnxmk‖ = 0 for all n ∈ {1, 2, . . .}, by Lemma 2.2, we
have q = Tnq for all n ∈ {1, 2, . . .}. Thus q ∈ F.

Step 2 implies that

∥
∥xmk − q

∥
∥
2 ≤ tmk

[(∥
∥xmk − q

∥
∥ − ψ(∥∥xmk − q

∥
∥
))∥
∥xmk − q

∥
∥ +

〈

f
(

q
) − q, J(xmk − q

)〉]

+ (1 − tmk)
∥
∥xmk − q

∥
∥
2
.

(3.11)

Hence

tmk

∥
∥xmk − q

∥
∥ψ

(∥
∥xmk − q

∥
∥
) ≤ tmk

〈

f
(

q
) − q, J(xmk − q

)〉

. (3.12)

Since J is single valued and weakly sequentially continuous from X to X∗, we have

lim sup
k→∞

∥
∥xmk − q

∥
∥ψ

(∥
∥xmk − q

∥
∥
) ≤ lim

k→∞
〈

f
(

q
) − q, J(xmk − q

)〉

= 0. (3.13)

Thus limk→∞xmk = q. Hence the sequence {xm} is sequentially compact.

Step 5. We now prove that q ∈ F is a solution to the variational inequality (3.3). Suppose that
y ∈ F, then

∥
∥xm − y∥∥2 = tm

〈(

f(xm) − xm
)

+
(

xm − y), J(xm − y)〉

+ (1 − tm)
〈

Tmxm − Tmy, J
(

xm − y)〉

≤ tm
〈(

f(xm) − xm
)

, J
(

xm − y)〉 + ∥
∥xm − y∥∥2

.

(3.14)

Hence

〈(

f(xm) − xm
)

, J
(

y − xm
)〉 ≤ 0 for each m ∈ {1, 2, . . .}. (3.15)

Since {xmk} → q as k → ∞, we have

∥
∥
(

xmk − f(xmk)
) − (

q − f(q))∥∥ −→ 0 as k −→ ∞,
∣
∣
〈(

xmk − f(xmk)
)

, J
(

xmk − y
)〉 − 〈(

q − f(q)), J(q − y)〉∣∣

=
∣
∣
〈(

xmk − f(xmk)
) − (

q − f(q)), J(xmk − y
)〉

+
〈(

q − f(q)), J(xmk − y
) − J(q − y)〉∣∣

≤ ∥
∥
(

xmk − f(xmk)
) − (

q − f(q))∥∥∥∥xmk − y
∥
∥

+
∣
∣
〈(

q − f(q)), J(xmk − y
) − J(q − y)〉∣∣ −→ 0,

(3.16)
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as k → ∞. Hence

〈

f
(

q
) − q, J(y − q)〉 = lim

k→∞
〈

f(xmk) − xmk , J
(

y − xmk

)〉 ≤ 0. (3.17)

Thus q ∈ F is a solution to the variational inequality (3.3). By uniqueness, q = p. Since the
sequence {xm} is sequentially compact and each cluster point of it is equal to p, then {xm} →
p asm → ∞. The proof is completed.

It is known that [10, Example 2] in a uniformly convex Banach space E, the Cesàro
means Tn = (1/n)

∑n−1
j=0 T

j for nonexpansive mapping T is uniformly asymptotically regular.
So we have the following corollary, which is a new version of [10, Theorem 3.2].

Corollary 3.2. Let X be a real uniformly convex Banach space which admits a weakly sequentially
continuous duality mapping J from X to X∗ and C a nonempty closed convex subset of X. Suppose
that T : C → C is a nonexpansive mapping, F(T)/= ∅ and f : C → C is a weakly contractive
mapping. Let {zm} be defined by

zm = tmf(zm) + (1 − tm) 1
m + 1

Σm
j=0T

jzm, m ≥ 0, (3.18)

where tm ∈ (0, 1) and limm→∞tm = 0. Then as m → ∞, {zm} converges strongly to a fixed point p
of T , where p is the unique solution in F(T) to the following variational inequality:

〈

f
(

p
) − p, j(u − p)〉 ≤ 0 ∀u ∈ F(T). (3.19)

Acknowledgment

A. Razani would like to thank the School of Mathematics of the Institute for Research in
Fundamental Sciences, Teheran, Iran for supporting this paper (Grant no.89470126).

References

[1] Ya. I. Alber and S. Guerre-Delabriere, “Principle of weakly contractivemaps inHilbert spaces,” inNew
Results in Operator Theory and Its Applications, vol. 98 of Operator Theory: Advances and Applications, pp.
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