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Let H be a Hilbert space and C a nonempty closed convex subset of H. Let A : C →
H be a maximal monotone mapping and f : C → C a bounded demicontinuous strong
pseudocontraction. Let {xt} be the unique solution to the equation f(x) = x + tAx. Then{xt} is
bounded if and only if {xt} converges strongly to a zero point of A as t → ∞ which is the unique
solution in A−1(0), where A−1(0) denotes the zero set of A, to the following variational inequality
〈f(p) − p, y − p〉 ≤ 0, for all y ∈ A−1(0).

1. Introduction and Preliminaries

Throughout this work, we always assume thatH is a real Hilbert space, whose inner product
and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex
subset of H and A a nonlinear mapping. We use D(A) and R(A) to denote the domain and
the range of the mapping A. → and ⇀ denote strong and weak convergence, respectively.

Recall the following well-known definitions.

(1) A mapping A : C → H is said to be monotone if

〈
Ax −Ay, x − y

〉 ≥ 0, ∀x, y ∈ C. (1.1)

(2) The single-valued mapping A : C → H is maximal if the graph G(A) of A is not
properly contained in the graph of any other monotone mapping. It is known that a
monotonemappingA ismaximal if and only if for (x,Ax) ∈ H×H, 〈x−y,Ax−g〉 ≥ 0
for every (y, g) ∈ G(A) implies g = Ay.
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(3) A : C → H is said to be pseudomonotone if for any sequence {xn} in C which
converges weakly to an element x in C with lim supn→∞〈Axn, xn − x〉 ≤ 0 we have

lim inf
n→∞

〈
Axn, xn − y

〉 ≥ 〈
Ax, x − y

〉
, ∀y ∈ C. (1.2)

(4) A : C → H is said to be bounded if it carries bounded sets into bounded sets; it is
coercive if 〈Ax, x〉/‖x‖ → ∞ as ‖x‖ → ∞.

(5) Let X,Y be linear normed spaces. T : D(T) ⊂ X → Y is said to be demicontinuous if,
for any {xn} ⊂ D(T)we have Txn ⇀ Tx0 as xn → x0.

(6) Let T be a mapping of a linear normed spaceX into its dual spaceX∗. T is said to be
hemicontinuous if it is continuous from each line segment in X to the weak topology
in X∗.

(7) The mapping f with the domain D(f) and the range R(f) in H is said to be
pseudocontractive if

〈
f(x) − f

(
y
)
, x − y

〉 ≤ ∥∥x − y
∥∥2

, ∀x, y ∈ D
(
f
)
. (1.3)

(8) The mapping f with the domainD(f) and the range R(f) inH is said to be strongly
pseudocontractive if there exists a constant β ∈ (0, 1) such that

〈
f(x) − f

(
y
)
, x − y

〉 ≤ β
∥∥x − y

∥∥2
, ∀x, y ∈ D

(
f
)
. (1.4)

Remark 1.1. For the maximal monotone operator A, we can defined the resolvent of A by
Jt = (I + tA)−1, t > 0. It is well know that Jt : H → D(A) is nonexpansive.

Remark 1.2. It is well-known that if T is demicontinuous, then T is hemicontinuous, however,
the converse, in general, may not be true. In reflexive Banach spaces, for monotone mappings
defined on the whole Banach space, demicontinuity is equivalent to hemicontinuity.

To find zeroes of maximal monotone operators is the central and important topics in
nonlinear functional analysis. We observe that p is a zero of the monotone mapping A if
and only if it is a fixed point of the pseudocontractive mapping T := I − A. Consequently,
considerable research works, especially, for the past 40 years or more, have been devoted
to the existence and convergence of zero points for monotone mappings or fixed points of
pseudocontractions, see, for instance, [1–23].

In 1965, Browder [1] proved the existence result of fixed point for demicontinuous
pseudocontractions in Hilbert spaces. To be more precise, he proved the following theorem.

Theorem B1. Let H be a Hilbert space, C a nonempty bounded and closed convex subset of H and
T : C → C a demicontinuous pseduo-contraction. Then T has a fixed point in C.

In 1968, Browder [4] proved the existence results of zero points for maximal monotone
mappings in reflexive Banach spaces. To be more precise, he proved the following theorem.
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Theorem B2. Let X be a reflexive Banach space, T1 : D(T1) ⊆ X → 2X
∗
a maximal monotone

mapping and T2 a bounded, pseudomonotone and coercive mapping. Then, for any h ∈ X∗, there exists
u ∈ X such that h ∈ (T1 + T2)u, or R(T1 + T2) is all of X∗.

For the existence of continuous paths for continuous pseudocontractions in Banach
spaces, Morales and Jung [15] proved the following theorem.

Theorem MJ. Let E be a Banach space. Suppose that C is a nonempty closed convex subset of E and
T : C → E is a continuous pseudocontraction satisfying the weakly inward condition. Then for each
z ∈ C, there exists a unique continuous path t �→ yt ∈ C, t ∈ [0, 1), which satisfies the following
equation yt = (1 − t)z + tTyt.

In 2002, Lan and Wu [14] partially improved the result of Morales and Jung [15] from
continuous pseudocontractions to demicontinuous pseudocontractions in the framework of
Hilbert spaces. To be more precise, they proved the following theorem.

Theorem LW. Let K be a bounded closed convex set in H. Assume that T : K → H is a
demicontinuous weakly inward pseudocontractive map. Then T has a fixed point in K. Moreover;
for every x0 ∈ K, {xt} defined by xt = (1 − t)Txt + tx0 converges to a fixed point of T .

In this work, motivated by Browder [3], Lan and Wu [14], Morales and Jung [15],
Song and Chen [19], and Zhou [22, 23], we consider the existence of convergence of paths for
maximal monotone mappings in the framework of real Hilbert spaces.

2. Main Results

Lemma 2.1. Let C be a nonempty closed convex subset of a Hilbert space H and T : C → H a
demicontinuous monotone mapping. Then T is pseudomonotone.

Proof. For any sequence {xn} ⊂ C which converges weakly to an element x in C such that

lim sup
n→∞

〈Txn, xn − x〉 ≤ 0, (2.1)

we see from the monotonicity of T that

〈Tx, xn − x〉 ≤ 〈Txn, xn − x〉. (2.2)

Combining (2.1) with (2.2), we obtain that

lim sup
n→∞

〈Tx, xn − x〉 = 0. (2.3)

By taking [z, g] ∈ Graph(T), we arrive at

〈Txn, xn − z〉 = 〈Txn, xn − x〉 + 〈Txn, x − z〉, (2.4)
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which yields that

lim inf
n→∞

〈Txn, xn − z〉 = lim inf
n→∞

〈Txn, x − z〉. (2.5)

Noticing that

〈
g, xn − z

〉 ≤ 〈Txn, xn − z〉, (2.6)

we have

〈
g, x − z

〉 ≤ lim inf
n→∞

〈Txn, x − z〉. (2.7)

Let zt = (1 − t)x + ty, for all y ∈ C and t ∈ (0, 1). By taking zt = z and gt = g in (2.7), we see
that

〈
gt, x − y

〉 ≤ lim inf
n→∞

〈
Txn, x − y

〉
. (2.8)

Noting that zt → x, t → 0, gt = Tzt, and T : C → H is demicontinuous, we have gt = Tzt ⇀
Tx as t → 0, and hence

lim inf
n→∞

〈
Txn, xn − y

〉
= lim inf

n→∞
〈
Txn, x − y

〉 ≥ 〈
Tx, x − y

〉
. (2.9)

This completes the proof.

Lemma 2.2. Let C be a nonempty closed convex subset of a Hilbert spaceH, A : C → H a maximal
monotone mapping, and T : C → H a bounded, demicontinuous, and strongly monotone mapping.
Then A + T has a unique zero in C.

Proof. By using Lemma 2.1 and Theorem B2, we can obtain the desired conclusion easily.

Lemma 2.3. Let C be a nonempty closed convex subset of a Hilbert spaceH, A : C → H a maximal
monotone mapping, and f : C → H a bounded, demicontinuous strong pseudocontraction with the
coefficient β ∈ (0, 1). For t > 0, consider the equation

0 = Tx + tAx, (2.10)

where T = I − f . Then, One has the following.

(i) Equation (2.10) has a unique solution xt ∈ C for every t > 0.

(ii) If {xt} is bounded, then ‖Axt‖ → 0 as t → ∞.

(iii) If A−1(0)/= ∅, then {xt} is bounded and satisfies

〈
xt − f(xt), xt − p

〉 ≤ 0, ∀p ∈ A−1(0), (2.11)

where A−1(0) denotes the zero set of A.
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Proof. (i) From Lemma 2.2, one can obtain the desired conclusion easily.
(ii) We use xt ∈ C to denote the unique solution of (2.10). That is, 0 = Txt + tAxt. It

follows that 0 = (I − f)xt + tAxt. Notice that

Axt =
f(xt) − xt

t
. (2.12)

From the boundedness of f and {xt}, one has limt→∞‖Axt‖ = 0.
(iii) For p ∈ A−1(0), one obtains that

∥
∥xt − p

∥
∥2 =

〈
xt − p, xt − p

〉

= 〈f(xt) − p, xt − p〉 − 〈
Axt, xt − p

〉

≤ 〈f(xt) − f
(
p
)
, xt − p〉 + 〈f(p) − p, xt − p〉 − 〈

Axt, xt − p
〉

≤ β
∥∥xt − p

∥∥2 +
〈
f
(
p
) − p, xt − p

〉
.

(2.13)

It follows that

∥∥xt − p
∥∥2 ≤ 1

1 − β

〈
f
(
p
) − p, xt − p

〉
. (2.14)

That is, ‖xt−p‖ ≤ (1/(1−β))‖f(p)−p‖, for all t > 0. This shows that {xt} is bounded. Noticing
that xt − f(xt) = −tAxt, one arrives at

〈
xt − f(xt), xt − p

〉
= −t〈Axt, xt − p

〉 ≤ 0, ∀t > 0. (2.15)

This completes the proof.

Lemma 2.4. Let C be a nonempty closed convex subset of a Hilbert space H and A a maximal
monotone mapping. Then C ⊆ (I + A)C. If one defines g : C → C by g(x) = (I + A)−1x, for
all x ∈ C, then g : C → C is a nonexpansive mapping with F(g) = A−1(0) and ‖x − g(x)‖ ≤ ‖Ax‖,
where F(g) denotes the set of fixed points of g.

Proof. Noticing that A is maximal monotone, one has R(I + A) = H. It follows that C ⊆
(I +A)C. For any x, y ∈ C, one sees that

∥∥g(x) − g
(
y
)∥∥ =

∥∥∥(I +A)−1x − (I +A)−1y
∥∥∥ ≤ ∥∥x − y

∥∥, (2.16)

which yields that g is nonexpansive mapping. Notice that

x = g(x) ⇐⇒ (I +A)x = x ⇐⇒ Ax = 0. (2.17)
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That is, F(g) = A−1(0). On the other hand, for any x ∈ C, we have

∥
∥x − g(x)

∥
∥ =

∥
∥
∥gg−1(x) − g(x)

∥
∥
∥

≤
∥∥
∥g−1(x) − x

∥∥
∥

= ‖(I +A)x − x‖
= ‖Ax‖.

(2.18)

This completes the proof.

Set S = (0, 1). Let B(S) denote the Banach space of all bounded real value functions
on S with the supremum norm, X a subspace of B(S), and μ an element in X∗, where X∗

denotes the dual space of X. Denote by μ(f) the value of μ at f ∈ X. If e(s) = 1, for all x ∈ S,
sometimes μ(e)will be denoted by μ(1). When X contains constants, a linear functional μ on
X is called a mean on X if μ(1) = ‖μ‖ = 1. We also know that if X contains constants, then the
following are equivalent.

(1) μ(1) = ‖μ‖ = 1.

(2) infs∈Sf(s) ≤ μ(f) ≤ sups∈Sf(s), for all f ∈ X.

To prove our main results, we also need the following lemma.

Lemma 2.5 (see [20, Lemma 4.5.4]). Let C be a nonempty and closed convex subset of a Banach
space E. Suppose that norm of E is uniformly Gâteaux differentiable. Let {xt} be a bounded set in X
and z ∈ C. Let μt be a mean on X. Then

μt‖xt − z‖2 = min
y∈C

∥∥xt − y
∥∥ (2.19)

if and only if

μt

〈
y − z, xt − z

〉 ≤ 0, y ∈ C. (2.20)

Now, we are in a position to prove the main results of this work.

Theorem 2.6. Let H be a Hilbert space and C a nonempty closed convex subset of H. Let A :
C → H be a maximal monotone mapping and f : C → C a bounded demicontinuous strong
pseudocontraction. Let {xt} be as in Lemma 2.3. Then {xt} is bounded if and only if {xt} converges
strongly to a zero point p of A as t → ∞ which is the unique solution in A−1(0) to the following
variational inequality:

〈
f
(
p
) − p, y − p

〉 ≤ 0, ∀y ∈ A−1(0). (2.21)

Proof. The part (⇐) is obvious and we only prove (⇒). From Lemma 2.3, one sees that
‖Axt‖ → 0 as t → ∞. It follows from Lemma 2.4 that ‖xt − g(xt)‖ → 0 as t → ∞.
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Define h(x) = μt‖xt−x‖, x ∈ C, where μt is a Banach limit. Then h is a convex and continuous
function with h(x) → ∞ as ‖x‖ → ∞. Put

K =
{
x ∈ C : h(x) = min

y∈C
h
(
y
)
}
. (2.22)

From the convexity and continuity of h, we can get the convexity and continuity of the set
K. Since h is continuous and H is a Hilbert space, we see that h attains its infimum over
K; see [20] for more details. Then K is nonempty bounded and closed convex subset of C.
Indeed, K contains one point only. Set g(x) = (I + A)−1x, where g : K → K. Notice that
g is nonexpansive. Since every nonempty bounded and closed convex subset has the fixed
point property for nonexpansive self-mapping in the framework of Hilbert spaces, then g has
a fixed point p in K, that is, g(p) = p. It follows from Lemma 2.4 that A(p) = 0. On the other
hand, one has μt‖xt − p‖ = miny∈Ch(y). In view of Lemma 2.5, we obtain that

μt

〈
y − p, xt − p

〉 ≤ 0, ∀y ∈ C. (2.23)

By taking y = f(p) in (2.23), we arrive at

μt

〈
f
(
p
) − p, xt − p

〉 ≤ 0, ∀y ∈ C. (2.24)

Combining (2.14) with (2.23) yields that μt‖xt − p‖2 = 0. Hence, there exists a subnet {xtα} of
{xt} such that {xtα} → p. From (iii) of Lemma 2.3, one has

〈
xtα − f(xtα), xtα − y

〉 ≤ 0, ∀y ∈ A−1(0). (2.25)

Taking limit in (2.25), one gets that

〈p − f
(
p
)
, p − y〉 ≤ 0, ∀y ∈ A−1(0). (2.26)

If there exists another subset {xtβ} of {xt} such that {xtβ} → q, then q is also a zero of A. It
follows from (2.26) that

〈
p − f

(
p
)
, p − q

〉 ≤ 0. (2.27)

By using (iii) of Lemma 2.3 again, one arrives at

〈
xtβ − f

(
xtβ

)
, xtβ − p

〉
≤ 0. (2.28)

Taking limit in (2.28), we obtain that

〈
q − f

(
q
)
, q − p

〉 ≤ 0. (2.29)
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Adding (2.27) and (2.29), we have

〈
p − q + f

(
q
) − f

(
p
)
, p − q

〉 ≤ 0, (2.30)

which yields that

∥
∥p − q

∥
∥2 ≤ 〈

f
(
p
) − f

(
q
)
, p − q

〉 ≤ β
∥
∥p − q

∥
∥2
. (2.31)

It follows that p = q. That is, {xt} converges strongly to p ∈ A−1(0), which is the unique
solution to the following variational inequality:

〈
f
(
p
) − p, y − p

〉 ≤ 0, ∀y ∈ A−1(0). (2.32)

Remark 2.7. From Theorem 2.6, we can obtain the following interesting fixed point theorem.
The composition of bounded, demicontinuous, and strong pseudocontractions with the
metric projection has a unique fixed point. That is, p = Pf(p).
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