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The purpose of this paper is to introduce and study two modified hybrid proximal-point
algorithms for finding a common element of the solution set EP of a generalized equilibrium

problem and the set T-'0NT~'0 for two maximal monotone operators T and T defined on a Banach
space X. Strong and weak convergence theorems for these two modified hybrid proximal-point
algorithms are established.

1. Introduction

Let X be a real Banach space with its dual X*. The mapping J : X — 2% defined by
Jex) = {x e X" (x,x) = 1P = P}, vxeX, (1.1)

is called the normalized duality mapping. From the Hahn-Banach theorem, it follows that
J(x)# 0 for each x € X.

A Banach space X is said to be strictly convex, if |[x + y||/2 < 1 forallx,y e U = {z €
X :||z]| = 1} with x#y. X is said to be uniformly convex if for each € € (0,2], there exists
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6 > O such that [|x + y||/2 <1-6 for all x,y € U with ||x — y|| > €. Recall that each uniformly
convex Banach space has the Kadec-Klee property, that is,

Xy, — X
X, — X. (1.2)
[lxnll — llx]]

It is well known that if X* is strictly convex, then | is single-valued. In the sequel, we
shall still denote the single-valued normalized duality mapping by J. Let C be a nonempty
closed convex subset of X, f : CxC — Rabifunction, and A : C — X* anonlinear mapping.
Very recently, Zhang [1] considered and studied the generalized equilibrium problem of
finding x € C such that

f(%y)+(AZ,y-%)>0, VyeC (1.3)

The set of solutions of (1.3) is denoted by EP. Problem (1.3) and related problems
have been studied and investigated extensively in the literature; See, for example, [2-12] and
references therein. Whenever A = 0, problem (1.3) reduces to the equilibrium problem of
finding X € C such that

f(x,y)>0, VYyeC. (1.4)

The set of solutions of (1.4) is denoted by EP(f). Whenever f = 0, problem (1.3) reduces to
the variational inequality problem of finding X € C such that

(A%,y-%)>0, VyeC. (1.5)

The set of solutions of (1.5) is denoted by VI(C, A).

Whenever X = H a Hilbert space, problem (1.3) was very recently introduced and
considered by S. Takahashi and W. Takahashi [13]. Problem (1.3) is very general in the sense
that it includes, as spacial cases, optimization problems, variational inequalities, minimax
problems, Nash equilibrium problem in noncooperative games, and others; See, for example,
[1,2,4,6-9,14-17] which are references therein.

A mapping S : C — X is called nonexpansive if ||Sx — Sy|| < ||x - y| forall x,y € C.
Denote by F(S) the set of fixed points of S, that is, F(S) = {x € C : Sx = x}. Very recently,
W. Takahashi and K. Zembayashi [18] proposed an iterative algorithm for finding a common
element of the solution set of the equilibrium problem (1.4) and the set of fixed points of a
relatively nonexpansive mapping S in a Banach space X. They also studied the strong and
weak convergence of the sequences generated by their algorithm. In particular, they proposed
the following iterative algorithm:

xg € C,

Yn = ]71 (anJxn + (1= a,)JSxy),
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1
u, € C such that f(u,, y) + r—(y —Up, Jun— Jyn) >0, VyeC,

H,={z€C:d(z,uy) <P(z,x0)},
W,={zeC:{x,—-2z Jx—]Jx,) >0},

Xpi1 =Ig,w,x, n2>0,
(1.6)

where ¢(x,y) = ||x||> - 2(x, Jy) + |ly|? for all x,y € X, {a,} C [0,1], and {r,} C [a, o) for
some a > 0. They proved that the sequence {x,} generated by the above algorithm converges
strongly to TTr(s)nep(r)X0, Where Ir(s)nep(ys) is the generalized projection of X onto F(S) N
EP(f). They have also studied the weak convergence of the sequence {x,} generated by the
following algorithm:

uy € X,
x, € C such that f(x,,y) + rl(y =X, Jxn— Ju,) >0, VyeC, (1.7)
Ups1 = ]_1(“11]3511 + (1 - an)]an), n> O,

to z € F(S) N EP(f), where z = limy, . . ITr(s)nEP(f) Xn-

Let C be a nonempty closed convex subset of a uniformly smooth and uniformly
convex Banach space X. Let A : C — X* be an a-inverse-strongly monotone mapping and
f :CxC — Rabifunction satisfying the following conditions:

(Al) f(x,x) =0forall x € C;

(A2) fis monotone, thatis, f(x,y) + f(y,x) <0,forallx,y € C;
(A3) forall x,y,z € C, lim suptwf(tz +(1-t)x,y) < f(x,y);
(A4) forall x € C, f(x,-) is convex and lower semicontinuous.

Let 51,5, : C — C be two relatively nonexpansive mappings such that F(S;) NF(S2) N
EP #0. Let {x,} be the sequence generated by

x0€C, Cyo=C;
Zy = ]*1(0cn]xn + (1 —-a,)]S1xy),

Yn = ]_1 (ﬁn]xn + (1 - ,Bn)]szzn);
. (1.8)
u, € C such that f(u, y)+(Au,, vy — un>+r—<y —Up, Jun— Jya) 20, VyeC,

Cunt = {vE€Ch: P(v,u) < Pud(v,xn) + (1= Bn)P(v, 24) < P(v,x3) };

Xne1 =1c,, %0, Yn2>0.

n+l1

Zhang [1] proved the strong convergence of the sequence {x,} to ITr(s,)nr(s,)nEpXo under
appropriate conditions.
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On the other hand, a classic method of solving 0 € Tx in a Hilbert space H is the
proximal point algorithm which generates, for any starting point xo € H, a sequence {x,} in
H by the iterative scheme

Xn+l = ]rnxnr n= 0/ 1/2/° sy (19)

where {r,} is a sequence in (0,0), J, = (I + rT)™! for each r > 0 is the resolvent operator
for T, and I is the identity operator on H. This algorithm was first introduced by Martinet
[19] and further studied by Rockafellar [20] in the framework of a Hilbert space H. Later
several authors studied (1.9) and its variants in the setting of a Hilbert space H or in a Banach
space X; See, for example, [15, 21-25] and references therein. Very recently, Li and Song [24]
introduced and studied the following iterative scheme:

Xp € X chosen arbitrarily,
Yn = ]_1<ﬂn]xn+ (1 _ﬂn)]]r,,xn)r (110)

Xns1 = J NanJxo+ (1 - an)Jyn), n=0,1,2,...,

where J, = (J +rT)™'J and J is the duality mapping on X.
Algorithm (1.10) covers, as special cases, the algorithms introduced by Kohsaka and
Takahashi [23] and Kamimura et al. [22] in a smooth and uniformly convex Banach space X.
Let X be a uniformly smooth and uniformly convex Banach space, and let C be a
nonempty closed convex subset of X. Let T : X — 2X" be a maximal monotone operator such
that:

(A5) T-10N EP(f) #0.

In addition, for each r > 0, define a mapping T, : X — C as follows:
T, (x) = {z €eC: f(zy)+ %(y—z,]z—]x) >0, Vy € C} (1.11)

for all x € X.

Very recently, utilizing the ideas of the above algorithms in [15, 16, 18, 21, 22, 24], we
[17] introduced two iterative methods for finding an element of T"'0NEP(f) and established
the following strong and weak convergence theorems.

Theorem 1.1 (see [17]). Suppose that conditions (A1)—(A5) are satisfied and let xo € X be chosen
arbitrarily. Consider the sequence

Xn+1 = HHnﬂanO/ n= 0/ 1/ 2/ RN (112)
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where
H,={ze€C:¢(z,T,yn) < anp(z,x0) + (1 — an)P(z,x1) },
Wy={zeC:{(x,—2z Jxo— Jx,) >0}, (1.13)
Y, = ]_1 (anJXO +(1-ay) (ﬁn]xn + (1 _,Bn)]]rnxn))r
T, is defined by (1.11), A Pn) [0,1] satisfy lim, _, ., = 0, iminf, ,,p,(1 - B,) > O,

and {r,} C (0,0) satzsﬁes hmmfnﬂoorn > 0. Then, the sequence {x,} converges strongly to
[r-10nep(£) X0, Where Tlr-10nep(5) i the generalized projection of X onto T-'0N EP(f).

Theorem 1.2 (see [17]). Suppose that conditions (A1)-(A5) are satisfied and let xy € X be chosen
arbitrarily. Consider the sequence

Xns1 = J N (anJx0 + (1= an) (Bu) Tron + (1= Bu) J 15, Truxn)), n=0,1,2,..., (1.14)

where T, is defined by (1.11), APnt C [0,1] satisfy the conditions Y. g, < oo and
liminf, . ,B,(1 — B.) > O, and {rn} c (0, oo) satisfies liminf,_, 1, > 0. If | is weakly
sequentially continuous, then {x,} converges weakly to an element z € T~'0 N EP(f), where
z = 1imn_>O°HT—10ﬂEp(f)xn

The purpose of this paper is to introduce and study two new iterative methods for
finding a common element of the solution set EP of generalized equilibrium problem (1.3)
and the set T10 N T~'0 for maximal monotone operators T and Tina uniformly smooth
and uniformly convex Banach space X. Firstly, motivated by Theorem 1.1 and a result of
Zhang [1], we introduce a sequence {x,} that converges strongly to I} i 719 ppXo under
some appropriate conditions.

Secondly, inspired by Theorem 1.2 and a result of Zhang [1], we define a sequence
that converges weakly to an element z € T'0NT~'0 N EP, where z = limy, -, oo T1p1 g F10nppXn
(Section 4).

Our results represent a generalization of known results in the literature, including
those in [16-18, 24]. Our Theorems 3.1 and 4.2 are the extension and improvements of
Theorems 1.1 and 1.2 in the following way:

(i) the problem of finding an element of T~10 N T-10 N EP includes the one of finding
an element of T~'0 N EP(f) as a special case;

(ii) the algorithms in this paper are very different from those in [17] because of
considering the complexity involving the problem of finding an element of T'0 N
T'0NEP.

2. Preliminaries

Throughout the paper, we denote the strong convergence, weak convergence, and weak*
convergence of a sequence {x,} toa point x € X by x,, — x, x, — x and x,, — x, respectively.

Assumption 2.1. Let X be a uniformly smooth and uniformly convex Banach space and let C
be anonempty closed convex subset of X. Let A : C — X* be an a-inverse-strongly monotone
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mapping and let f : C x C — R be a bifunction satisfying the conditions (A1)-(A4). Let
T,T : X — 2% be two maximal monotone operators such that:

(A5) T'0NT~0 N EP #0.

Recall that if C is a nonempty closed convex subset of a Hilbert space H, then the
metric projection Pc : H — C of H onto C is nonexpansive. This fact actually characterizes
Hilbert spaces and hence, it is not available in more general Banach spaces. In this connection,
Alber [26] recently introduced a generalized projection operator Ilc in a Banach space X
which is an analogue of the metric projection in Hilbert spaces.

Consider the functional defined as in [26] by

d(x,y) = xI? - 2(x, Jy) + |ly||*, VxyeX. 2.1)

It is clear that in a Hilbert space H, (2.1) reduces to ¢(x,y) = ||x - y|*>, Vx,y € H.

The generalized projectionIlc : X — C is a mapping that assigns to an arbitrary point
x € X the minimum point of the functional ¢(y, x), that is, IIcx = X, where X is the solution
to the minimization problem

$(%,x) = min ¢y, x). (2.2)

The existence and uniqueness of the operator Ilc follow from the properties of the
functional ¢(x,y) and strict monotonicity of the mapping J; See, for example, [27]. In a
Hilbert space, I'l¢c = Pc. From [26], in a smooth, strictly convex and reflexive Banach space X,
we have

(lyll = 112D < ¢y x) < (lyll + lIxl1)?, - Vx,y € X (23)

Moreover, by the property of subdifferential of convex functions, we easily get the
following inequality:

P(x,y) < ¢<x,]‘1(]y +]z)> -2(y-x,Jz), VYx,y,zeX. (2.4)

Let S be a mapping from C into itself. A point p in C is called an asymptotic fixed point
of S [28] if C contains a sequence {x,} which converges weakly to p such that ||Sx, —x,|| — 0.
The set of asymptotic fixed points of S is denoted by F(S). A mapping S from S into itself is
called relatively nonexpansive [18, 29, 30] if F(S) = F(S) and ¢(p,Sx) < p(p,x), forall x e C
and p € F(S).

Observe that, if X is a reflexive, strictly convex and smooth Banach space, then for any
x,y € X, ¢(x,y) = 0if and only if x = y. To this end, it is sufficient to show that if ¢(x,y) =0,
then x = y. Actually, from (2.3), we have ||x|| = ||y||, which implies that (x, Jy) = ||x||> = |ly|/*.
From the definition of J, we have Jx = Jy and therefore, x = y. For further details, we refer
to [31].

We need the following lemmas for the proof of our main results.
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Lemma 2.2 (see [32]). Let X be a smooth and uniformly convex Banach space and let {x,} and {y,}
be two sequences of X. If ¢(xpn, y) — 0and either {x,} or {y,} is bounded, then ||x, — y.|| — O.

Lemma 2.3 (see [26, 32]). Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space X, x € X and z € C. Then

z=Ilex <= (y-zJx-Jz)<0, VyeC. (2.5)

Lemma 2.4 (see [26, 32]). Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space X. Then

¢(x,Tcy) + ¢(Tcy, y) <¢(x,y), VxeC yeX (2.6)

Lemma 2.5 (see [33]). Let X be a reflexive, strictly convex and smooth Banach space and let T :
X — 2% be a multivalued operator. Then

(i) T7'0 is closed and convex if T is maximal monotone such that T~10 # ;

(ii) T is maximal monotone if and only if T is monotone with R(J +rT) = X* forall r > 0.

Lemma 2.6 (see [34]). Let X be a uniformly convex Banach space and let r > 0. Then there exists a
strictly increasing, continuous and convex function g : [0,2r] — R such that g(0) = 0 and

lex + (@ =0y |* < =l + A= Dly|l* - 11 - Dg(llx - y]), (27)

forall x,y € B, and t € [0,1], where B, = {z € X : ||z|| < r}.

Lemma 2.7 (see [32]). Let X be a smooth and uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous, and convex function g : [0,2r] — Rsuch that g(0) =0
and

g(lx-yl) <o(x,y), VYx,y€B,. (2.8)

The following result is due to Blum and Oettli [14].

Lemma 2.8 (see [14]). Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space X, f : C x C — R a bifunction satisfying conditions (A1)-(A4), and r > 0
and x € X. Then, there exists z € C such that

f(z,y)+%<y—z,lz—]x>zo, Vy e C. (2.9)

Motivated by a result in [35] in a Hilbert space setting, Takahashi and Zembayashi
[18] established the following lemma.
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Lemma 2.9 (see [18]). Let C be a nonempty closed convex subset of a uniformly smooth, strictly
convex and reflexive Banach space X, and f : C x C — R a bifunction satisfying conditions (A1)-
(A4). For r > 0 and x € X, define a mapping T, : X — C as follows:

T, (x) = {zeC:f(z,y) + %(y—z,]z—]x} >0, VyeC} (2.10)

forall x € X. Then
(i) T, is single-valued;

(ii) T, is a firmly nonexpansive-type mapping, that is, for all x,y € X,

(Trx-Tyy, JT,x - JT,y) < (T,x - Ty, Jx - Jy); (2.11)

(iii) F(T;) = F(T;) = EP(f);
(iv) EP(f) is closed and convex.

Using Lemma 2.9, we have the following result.

Lemma 2.10 (see [18]). Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space X, f : C x C — R a bifunction satisfying conditions (A1)-(A4), and r > 0.
Then, for x € X and q € F(T;),

$(q,Trx) + P(Trx, x) < (g, x). (2.12)

Utilizing Lemmas 2.8, 2.9, and 2.10, Zhang [1] derived the following result.

Proposition 2.11 (see [1]). Let X be a smooth, strictly convex and reflexive Banach space and let
C be a nonempty closed convex subset of X. Let A : C — X* be an a-inverse-strongly monotone
mapping, f : C x C — R a bifunction satisfying conditions (A1)—(A4), and r > 0. Then

(I) for x € X, there exists u € C such that
fuy) (A y —u) + {y - Ju-Jx) 20, WyeC (213)
(1) if X is additionally uniformly smooth and K, : C — C is defined as
K, (x) = {u €C: f(uy)+(Au,y—u)+ %(y— u,Ju-Jx) >0, Yy € C}, VxeC, (2.14)

then the mapping K, has the following properties:

(i) K, is single-valued,

(ii) K, is a firmly nonexpansive-type mapping, that is,

(Kyx - Kyy, JK,x - JKyy) < (Kyx - Kyy, Jx = Jy), Vx,yeX, (2.15)
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(iii) F(K,) = F(K,) = EP,
(iv) EP is a closed convex subset of C,

v) ¢(p, Kix) + p(Krx,x) < p(p, x), forall p € F(K,).

Proof. Define a bifunction F : C x C — R by
F(x,y) = f(x,y) + (Ax,y —x), VYx,yeC. (2.16)

It is easy to verify that F satisfies the conditions (A1)—(A4). Therefore, the conclusions (I) and
(II) follow immediately from Lemmas 2.8, 2.9, and 2.10. O

Let T,T : X — 2X" be two maximal monotone operators in a smooth Banach space X.
We denote the resolvent operators of T and T by I =0+ rT)_ J and ]Nr (J+ rf)_ J for each
r > 0, respectively. Then J, : X' — D(T) and T, : X — D(T) are two single-valued mappings.
Also, T™'0 = F(J,) and T-10 = F(J,) for each r > 0, where F(J,) and F(J,) are the sets of fixed
points of J, and J,, respectively. For each r > 0, the Yosida approximations of T and T are
defined by A, = (J - JJ»)/r and A, =(J-] ]r) /1, respectively. It is known that

Ax €T(]x), Arx € T(fﬁf), for eachr >0, x € X. (2.17)

Lemma 2.12 (see [23]). Let X be a reflexive, strictly convex and smooth Banach space, and let T :
X — 2% be a maximal monotone operator with T~*0# 0. Then,

¢z, Irx) +d(Jrx,x) < P(z,x), Vr>0, z€ T7'0, x e X. (2.18)

Lemma 2.13 (see [36]). Let {a,} and {b,} be two sequences of nonnegative real numbers such that
Ane1 < Ay + by foralln > 0. If 327, by, < oo, then limy,_, . a, exists.

3. Strong Convergence Theorem

In this section, we prove a strong convergence theorem for finding a common element of the
set of solutions for a generalized equilibrium problem and the set T~'0NT !0 for two maximal
monotone operators T and T.

Theorem 3.1. Suppose that Assumption 2.1 is satisfied. Let xo € X be chosen arbitrarily. Consider
the sequence

Xn+1 = HHnﬂanO/ n= 0/ 1/ 2/ ceey (31)
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where
H,={z€C:¢(z, Ky, yn) < (ttn + &n — anln)P(z,x0) + (1 - ) (1 - &) P(2,x4) },
W,=1{zeC:{x,—2z Jxo— Jx,) >0},
Xp = ]_1 (lxn]xO +(1-ay) (,Bn]xn + (1 _ﬂn)]]rnxn))/
Ya = J7 (FnT o+ (1= &) (Bu) %n + (1= ) I T %) )

(3.2)

K, is defined by (2.14), {an}, {Pn}, {&n}, {ﬁn} C [0, 1] satisfy

lima, =0, lim& =0, lminfp,(1-$,)>0, liminff,(1-5,)>0, (33)
n—oo n—oo

n—oo n—oo

and {r,} C (0,00) satisfies liminf, .1y > 0. Then, the sequence {x,} converges strongly to
I gnirgnppXo, Where Tl w1onpp 1S the generalized projection of X onto T"'0NT-'0N EP.

Proof. For the sake of simplicity, we define

Uy = Kr,,]/nr Zp = ]_1 (ﬂn]xn + (1 - ﬁn)]]rnxn)/ Zp = ]_1 <En]5zn + (1 - ﬁn)]’frnfn>r
(3.4)

so that
Xp = ] NanJxo + (1 - an)Jzn), Yn =] @n]x0 + (1= &n) ] Z0). (3.5)

We divide the proof into several steps.

Step 1. We claim that H,, N W, is closed and convex for each n > 0.

Indeed, it is obvious that H,, is closed and W, is closed and convex for each n > 0. Let
us show that H, is convex. For z1,z, € H, and t € (0,1), put z = tz; + (1 — t) z,. It is sufficient
to show that z € H,,. We first write y, = a, + &, — a,a, for each n > 0. Next, we prove that

(2, 1) < Yud(2z,x0) + (1 = 1) P(2, x0) (3.6)
is equivalent to
2yu(z, Jx0) + 2(1 = Yu) (2, Jxu) = 22, Jun) < Yallxol® + (1= ya) llxal® = llual . (37)
Indeed, from (2.1) we deduce that there hold the following:

P(z,x0) = ||zII* = 2(z, Jxo) + [|x0]%,
P(z,x0) = 1217 = 2(z, Jxu) + |xal, (3.8)

P(z,un) = ||zII° = 2(z, Jun) + |uall’,
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which combined with (3.6) yield that (3.6) is equivalent to (3.7). Thus we have

2Yn<Z/]x0> +2(1 - Yn)(zr]xn> - 2(z, Jun)
=2yn(tz1 + (L= t)zo, Jx0) + 2(1 =y ) (tz1 + (1 = 1)z, Jx)
—2(tz1 + (1 = t)za, Juy)
(3.9)
= ZtYn(le Jxo) +2(1- t)Yn<ZZI Jxo) + 2(1 - Yn)t<zll Jxn)
+2(1 = ya) (1= t)(z2, Jxn) = 28(z1, Jun) = 2(1 = )22, Jutn)

< Yullxoll® + (1= o) ull” = l1en]|*.

This implies that z € H,. Therefore, H, is closed and convex.

Step 2. We claim that T~'0N T‘lgﬁ EP c H,NW, for each n > 0 and that {x,} is well defined.
Indeed, take w € T'0NT'10NEP arbitrarily. Note that u,, = K, y, is equivalent to

uy € C such that f(u,, y) + (A, y — u,) + rl(y —Up, Jun—Jya) 20, YyeC. (3.10)

Then from Lemma 2.12, we obtain

P, 20) = (0, 7 (BT n + (1= ) T n) )

= el = 2(w0, BuJxn + (1= Bu) T T, 2n) + || BT X + (1= Bu) T ], 260 ||*

< Nlwl? = 2Bu(w0, Jxn) = 2(1 = Bu) (w0, T T, %n) + Bullcall” + (1 = Bu) 1Ty,

= Pudp(w, x) + (1= ) p(w, J1, %)

< Bup(w, x0) + (1= Bn) (10, 2%,) = p(w, x), o)
P, %) = ¢ (w0, T (@0 + (1= @) z) )

= [[w]l* = 2(w, &nJxo + (1 = @u) Jzn) + l|lan]xo0 + (1 - a) Jzul

< [wl? = 2an(w, Jxo) = 2(1 = an) (w0, Jza) + aullxoll* + (1 - an)l|2a]1®

= app(w, x0) + (1 - @) (w0, z,)

< andp(w, xp) + (1 — an)Pp(w, x,).
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Moreover, we have
P, Z0) = ¢ (w0, 7 (BT %o + (1= ) T %))
<Pudp(w, %) + (1= Fu) ¢ (w0, T %)
< Pup@o, %) + (1= P ) (w0, %) = p(w, %),
$(w,yn) = (w0, 7 @aJx0+ (1= &) J2))
< J[eol* = 28 (w0, Jx0) = 2(1 = &) (20, JZ) + Eallol* + (1 = @) |Z,)>  (312)
= dnP(w, x0) + (1 = &) Pp(w, Zp)
< @up(w, x0) + (1= &) P(w, Xn)
< Enp(a0, x0) + (1= &) [wup (w0, %0) + (1 = @) p(w, )]

=[a,+(1- &n)“n]d)(wr x0) + (1 —a,)(1 - “n)(i)(w/ Xn)

<(ap + 0y — a, ) p(w, x0) + (1 — ay) (1 — &) Pp(w, x4),
and hence by Proposition 2.11,

¢(w, un) = ¢p(w, Kr,yn) < ¢(w, yn)

B B B (3.13)
< (an + oy — aytty)P(w, x0) + (1 — an) (1 — ) Pp(w, xp).
So w € H,, for all n > 0. Now, let us show that
T'0NT'ONEPCW, VYn>D0. (3.14)

We prove this by induction. For n = 0, we have T"'0 N T-'0 N EP ¢ C = W,. Assume that
T-'0NT'0NEP c W,,. Since x,,,1 is the projection of xo onto H, NW,, by Lemma 2.3 we have

<xn+1 -z, ]xo - ]xn+1> >0, Vze Hn n Wn~ (315)

AsT0NTONEP c H,NW, by the induction assumption, the last inequality holds, in
particular, for all z € T-'0NnT-'0N EP. This, together with the definition of W,,,; implies that
T'0NT-'0NEP C W,,1. Hence (3.14) holds for all n > 0. So, T"'0nT'0N EP c H, N W,, for
all n > 0. This implies that the sequence {x,} is well defined.

Step 3. We claim that {x,} is bounded and that ¢(x,+1,x,) — Oasn — oo.

Indeed, it follows from the definition of W, that x,, = Ily, xo. Since x, = Iy, xo
and x,41 = Hpg,aw,x0 € Wy, s0 ¢(xn, x0) < $(xn11,%0) for all m > 0, that is, {¢(x,, x0)} is
nondecreasing. It follows from x,, = ITy, xo and Lemma 2.4 that

¢ (xn, x0) = P(TTw, X0, X0) < P(p, x0) — (P, xn) < ¢(p, x0) (3.16)
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for each p € T'0NT~'0N EP ¢ W, for each n > 0. Therefore, {$(x,, xo)} is bounded, which
implies that the limit of {¢(x,, xo)} exists. Since

(lxall = llxol)* < (an, x0) < (xall + Ix0l)?,  ¥m >0, (3.17)

so {x,} is bounded. From Lemma 2.4, we have

P (xXne1, %) = P(xnr1, I, x0) < P(xns1, X0) — (LT, X0, X0)

(3.18)
= ¢ (xXns1, %0) = ¢ (2, X0),
for each n > 0. This implies that
T}ET;O¢(xn+1/ xn) =0. (319)

Step 4. We claim that limy, _, oo ||x, —uy|| = 0, limy, — o ||X5 — Jr, Xx|| = 0, and lim,, _, o, || X5, —frnfcnn =
0.
Indeed, from x,,11 = Iy, Aw, x0 € H,, we have

O (xpa1, Un) < (A + 0y — a0 (X1, x0) + (1 — ) (1 — @) P(Xps1, X4), Y 20. (3.20)

Therefore, from a, — 0, — 0 and ¢(x,41,x,) — 0, it follows that lim,, _, (X1, 1) = 0.
Since limy, -, oo (Xn41, %) = limy, o (xp41,u,) = 0 and X is uniformly convex and
smooth, we have from Lemma 2.2 that

Hm [ =] = M [l = ]l =0, (3.21)

and, therefore, lim, o [|x, — u,|| = 0. Since J is uniformly norm-to-norm continuous on
bounded subsets of X and ||x, — u,|| — 0, then lim,,_, || Jx, — Juy|| = 0.

Let us set Q := T-10nT-'0NEP. Then, according to Lemma 2.5 and Proposition 2.11, we
know that Q is a nonempty closed convex subset of X such that Q C C. Fix u € Q arbitrarily.
As in the proof of Step 2, we can show that ¢(u, z,) < P(u, x,,),

P(u, Xn) < anp(u, x0) + (1 - an)p(u, xn),
P(u, z,) < P(u, Xn),
d)(ur yn) <(ap + @, - “n&n)d’(u/ x0) + (1 —a,)(1 - a11)4’(”/ Xn),

¢(u, Up) < (@ + &y, — an&n)¢(ur x0) + (1 —a,)(1 - &n)(i)(u/ Xn).

(3.22)
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Hence it follows from the boundedness of {x,} that {z,}, {X,}, {Z.}, {yx}, and {u,} are also
bounded. Let r = sup{||xa||, |Xnll, | ]z, xxll, ||frna?n|| : n > 0}. Since X is a uniformly smooth
Banach space, we know that X* is a uniformly convex Banach space. Therefore, by Lemma 2.6
there exists a continuous, strictly increasing, and convex function g, with g(0) = 0, such that

[lax* + (1- Lt)y*”2 <allx*|P+ (1 -a) ||y*||2 —a(l-a)g(|[x* - y*|), (3.23)

for x*,y* € By and a € [0, 1]. So, we have that

¢(u, Zn) = ¢<u, ]_1 (ﬂn]xn + (1 - ﬂn)]]r,,xn)>

= lull? = 2014, BuJ % + (1= Bu) T ) + (| B n + (L= B T 6|
< lel® = 2B, o) =2(1 = Bu) (14, J Jr, X

+ Bullxall® + (1= ), 2all® = Bu (1 = ) g1 X0 = T T )
= Bup(14, ) + (1= ) (1, T, xn) = P (1 = Bu) g (1T = T T, X))
< Bup(u, x0) + (1= Bu) (14, %) = Bu(1 = Pr) g1 T X = J I, 2nll)
= ¢, xn) = Pu (L = Pu) § (T2 = T T, 1),

w20 = ()7 (Bu)Fu+ (1= Ba) T T%n) )

= ”uHZ - 2<urﬁn]3~cn + (1 _ﬁn>]frnin> + ﬁn]k‘n + (1 - ﬁn)]'frnfn ’

< ulP - 26 (u, J%0) - 2(1 —ﬁn) (u, )T, %)

Tl | = Bu (1= Ba) 8 (| 1% = T, o

+Ball%l’ + (1)

)

= ,Bn(;b(urxn) +(1- n (;b<u, Ir, xn> <1 _ﬁn>g<”]§n - ]frnin

)

)

(1)
< Puput, %) + (1= B ) p e, %) = P (1= ) (|17 = 1T %
(1)

1- n g(”]xn ]]r Xn

(3.24)
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and hence

P, %) = (7 (@nfx0 + (1= ) 20))
= [[ull® = 2(u, @aJx0 + (1 = @n) Jzn) + llan]x0 + (1 - @) J 2l
< [lual® = 2, (4, Jx0) = 2(1 = @) (4, J 20 ) + tl|x01” + (1 = @)1zl
= anp(u, x0) + (1 - )P (1, 2,)
< anp(u, x0) + (1= @) [(ut, x0) = Bu (1 = Bu) 8 ([1T%n = T T, xull)]
= anp(1t, x0) + (1= )14, %) = (1 = ) B (1 = B) g T = T T ),

d(u,un) = (u, Ky, yn) < p(u,y,) (using Proposition 2.10)

3.25
= ¢(u/ ]_1 (@, Jxo + (1 - &n)]Zn)> ( :
= |Jull® = 2(u, @ Jxo + (1 = &n) JZ0) + |Enf 20 + (1 = @) JZnll®
< Jul® = 28 (u, Jxo) = 2(1 = &) (1, JZ0) + dnll2o]* + (1 = &) |20l
= anp(u, x0) + (1 - an)P(u, zn)
< G, x0) + (1= &) [p (11, %) = B (1= Bu) (| /%0 — 170 5]
= G, %0) + (1= En)p(tt, %) = (1= &) (1= B )8 ([ /%0 = 1T %)
< dnp(u, x0) + P(u, Xy),

for all n > 0. Consequently, we have
(1 - an)ﬂn(l - ﬂn)g(“]xn - ]]r,,xn”)
< an(/’(ur xO) + (1 - “n)(P(ur xn) - (P(u/ in)
< fxn(,o(u/ Xo) + (P(ur Xn) — (P(ur Xn)
= aup(u, X0) + (1, Xn) — (U, up) + (U, uy) — 9(u, Xn)
(3.26)

= anp(tt, x0) + |2 ]1* = tnll* = 214, Jxn = Jtan) + (1, t0) — p(, %)
< anp(u, x0) + |[1xa]1* = llall*| + 200, Jxtn = Jutn)| + 0 (u, 1) = o, %)

< antp(u, X0) + &ntp (1, x0) + |[|xull = [fuen || ([|2n ]l + ll22nll) + 2l2ell[|J X0 = Jitn]|

< (an + a11)‘)0(1’11-750) + |2 = |[(l|2cnll + [|1nll) + 2|2l | 20 = Jrenll,
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Since ||x,, — u,|| — 0 and J is uniformly norm-to-norm continuous on bounded subsets of X,
we obtain || Jx, — Ju,|| — 0.From liminf, _, »3,(1-p,) > 0and lim, _, o, (a, + &,) = 0, we have

Tim g([lJ 2w = JJr, %all) = 0. (3.27)
Therefore, from the properties of g, we get

nlglgo”]xn = JIrxall = nlijfc}oﬂxn = Jrxall =0, (3.28a)

recalling that ]! is uniformly norm-to-norm continuous on bounded subsets of X*. Next let
us show that

lim ” Ja = J T 5| = lim & - T, %] = . (3.28b)
Observe first that
(,b(un/xn) - ‘;b(xn+1/ un)
= ||xn”2 - ”xn+1||2 - 2<unr ]xn> + 2<xn+1r ]un>
(3.29)
= (llenll = enea [ Alocnll + l126nsal]) + 2¢xne1 = v, J2n) +2(Xns1, Jthn = JXn)

< Mxn = xnsal[ (12l + 1Xnall) + 2lxne1 = wnllllxnll + 2l xnsa[[11 tn = Jn]-

Since ¢(xps1,un) — 0, [xps1 — Xnll — O, ||Xpe1 —unll — O, |Juy — Jxu|| — 0, and {x,} is
bounded, so it follows that ¢(u,, x,) — 0. Also, observe that
P utn, Jr,2n) = P, xn) = [, Xnl* = Ntull* + 2(14n, Jxn = J T, 2n)
= (Ir,xnll = lxall) (N r,2xnll + N2nll) + 2¢0n, J2xn = JJr,x0) — (3.30)
< ”]rnxn - xn”(”]r,,xn” +[[xnll) + 2[[un|lll Jxn - ]]rnxn”'

Since ¢(uy,x,) — O, |[Jr,xn — xull — O, Jxn — JJr,xnll — O, and the sequences
{xn}, {un}, {Jr,xn} are bounded, so it follows that ¢ (u,, J;,x,) — 0. Meantime, observe that

P (up, z,) = ¢<un/]_1 (ﬁn]xn + (1 _ﬂn)]]r,,xn)>
= ”un”2 - 2<un/ﬂn]xn + (1 _ﬂn)]]rnxn> + ”ﬂn]xn +(1 _ﬂn)]]rnxnllz
< uanll? = 2By 1t Ty = 2(1 = ) Gt T 20) + Bullcall? + (1= ) 1ol B3
= ﬂn(;b(unr xn) + (1 - ﬁn)d)(un/ ]r,,xn)

< P(un, xn) + P(n, Jr,xn),
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and hence

P (1t %) = ¢ (10, T (@0nJx0 + (1= @0) ] 22))

= ”un”2 - 2<un1 anJxo+ (1 - “n)]zn> + ”“n]xo +(1- “n)]ZnHz
< 2 _ _ 2 _ 2
<unll® = 2an(tn, Jx0) = 2(1 = an) (Un, Jz0n) + aullxol|” + (1 = an)||zall (3.32)
= a,P(up, x0) + (1 = ap) P(un, z)
< an¢(unl xO) + ¢(u‘rl/ Z‘Vl)
< an¢(unz xO) + ¢(u7l/ xn) + ‘i)(unr ]r,,xn)-
Since a, — 0, ¢(uy, x,) — 0 and P(uy, Jr,xn) — 0, it follows from the boundedness of

{un} that ¢(u,, x,) — 0. Thus, in terms of Lemma 2.2, we have that |lu, — X,|| — 0 and so
%y — Xu|l — 0. Furthermore, it follows from (3.25) that

P, 1) < Fup(ut,%0) + (1= En)p(at, %) = (1= &) (1= )2 (|| 150 =TT,

)

~ ~ ~ (3.33)
< G, %0) + (1t %) = (1= &) (1= B) 8 (|| 150 - 1T 5|
and hence
(1= &) (1= o) (|12~ 1T )
< o (u, x0) + P(u, Xn) — P(u, uy,)
= Fnp(, x0) + | Zull® = lletul® + 204, 1t = J%o) (3.34)

= an@(u, x0) + (1%l = N1t l) (1%l + 22 ll) + 2(1t, Juan = JXn)

< @n(u, x0) + 11X = || (1Xnl| + llsnll) + 2[uell |14 = T X |-

Since ] is uniformly norm-to-norm continuous on bounded subsets of X, it follows from
%y — ]l — O that ||Ju, — J%,|| — 0. Thus from &, — 0, liminf,_,,f,(1 - B,) > 0, and
the boundedness of both {X,} and {u,}, we deduce that g(||JX, — ] Trnin”) — 0. Utilizing
the properties of g, we have that ||J%, — JJ,,%,|| — 0. Since ™! is uniformly norm-to-norm
continuous on bounded subsets of X*, it follows that ||X,, — fr,,fn” — 0.

Step 5. We claim that wy,({x,}) ¢ T'0 N T~10 N EP, where

wy({xy}) := {x € C: x,,, — X for some subsequence {ni} C {n} with ni 1 oo}. (3.35)

Indeed, since {x,} is bounded and X is reflexive, we know that w,, ({x,}) # 0. Take x €
ww({x,}) arbitrarily. Then there exists a subsequence {x,, } of {x,} such that x,, — x. Hence
it follows from [|x, — Xul| — O, [[xn = J5,xull — 0, and [|X, — J;, Xull — O that {Xu,}, {Jr, xn,}
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and {]Nrnk Xp, } converge weakly to the same point x. On the other hand, from (3.28a), (3.28b)
and liminf,, _, .7, > 0, we obtain that

: .
Il Al = i = Tl = 0,
n (3.36)
lim Ar,ﬁn =0.

n—oo

= lim || /&, - T, %

n—owoty,

If z* € Tz and 2* € TZ, then it follows from (2.17) and the monotonicity of the operators T, T
that for all k > 1

(2= T Xy 2" = Ary2n ) 20, (2= T, BB = Ay, Ty ) 20, (3.37)

Letting k — oo, we have that (z — X,z*) > 0 and (Z - X,Z*) > 0. Then the maximality of the
operators T, T implies that X € T~!0 and x € T~10.
Next, let us show that X € EP. Since

P (1, yn) < (an + &y — y8n) (1, x0) + (1 — an) (1 — &) P14, x), (3.38)
from u, = K, y, and Proposition 2.11 it follows that

¢ (tn, Yn) = (K, Yn, Yn) < (1, yn) = §(u, Ky, yn)
< (n + &y — )P (1, x0) + (1 — ) (1= &) (1, x) — P (14, Ky, yn)

< (an + &n - an&n)d)(ur .X'()) + 4’(”/ xn) - ¢(ur un)'

(3.39)
Also, since
|p(at, ) = pGat, )| = [l = laeall® + 2, T = J )
< xnz— un2 +2{u, Ju, — Jx,
< el = NaanlP| + 212, Jan = )] (3.40)
= [lltall = ot Clleall + gl + 204l = Tl
< (1t = sl Ul + lenll) + 202l Tt = Tl
so we get
lim (¢ (u, xn) = P, un)) = 0. (341)

So, from (3.39), a, — 0, a, — 0, and ¢(u, x,,) —p(u, u,) — 0, we have lim,,_, . (un, y») = 0.



Fixed Point Theory and Applications 19

Since X is uniformly convex and smooth, we conclude from Lemma 2.2 that
Jim |4 = yal| = 0. (3.42)

From x,, — X, ||x, — u,|| — 0, and (3.42), we have y,, — X and u,, — X.
Since ] is uniformly norm-to-norm continuous on bounded subsets of X, from (3.42)
we derive

Jim [|J1un = Jya| = 0. (3.43)
From liminf, _, 7, > 0, it follows that

lim ”]””r;]y”” 0. (3.44)

By the definition of u, := K, y,, we have
1
F(un,y) + r—(y — Uy, Jun— Jyn) 20, VyeC, (3.45)

where
F(un,y) = f(un,y) + (Atty, y — ). (3.46)

Replacing n by ny, we have from (A2) that

1
—Y ~ Uny, Jttn, = JYn) 2 ~F (thny, y) 2 F(y,un.), Yy €C. (3.47)

Vg

Since y — f(x,y) + (Ax,y — x) is convex and lower semicontinuous, it is also weakly lower
semicontinuous. Letting nx — oo in the last inequality, from (3.44) and (A4), we have

F(y,x) <0, VyeC (3.48)

Fort,withO<t<1,andy € C, lety; =ty + (1 -t)x. Since y € C and x € C, then y; € C and
hence F(y;, X) < 0. So, from (A1) we have

0=F(y,y) <tF(yoy) + A1 -t)F(y;, X) <tF(y,y). (3.49)
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Dividing by t, we have
F(y;,y) 20, VyeC. (3.50)
Letting t | 0, from (A3) it follows that

F(z,y) >0, VyeC. (3.51)

So, X € EP. Therefore, we obtain that w,({x,}) C T"'0N T-10NEP by the arbitrariness of X.

Step 6. We claim that {x,} converges strongly to w = Il 7-19nppXo0-
Indeed, from x,,,1 = Iy, ~w,xo and w € T'0N T-'10NEP c H,NW,, it follows that

¢(xni1,%0) < P(w, x0). (3.52)
Since the norm is weakly lower semicontinuous, then

§(%,%0) = %] = 2(%, Jx0) + llxoll* < liminf ([l | = 24, Jx0) + 120l
(3.53)
= lilfninf¢(xnk,x0) < lim sup ¢(xy,, x0) < P(w, x0).

k— oo

From the definition of I'l;; 71,,gp, We have X = w. Hence limy _, .. (xy,, X0) = ¢p(w, x0), and

0= lim (§(xa,, %0) = (0, %0)) = lim (I, I = llco] = 2(x, — 0, Jx0) )

(3.54)

= Jim (flx, I = 1),
which implies that limg ., oo||xp, || = [|w||. Since X has the Kadec-Klee property, then x,, —
w = I g f-10nppXo0- Therefore, {x,} converges strongly to I, iy\f-19nppXo0- O

Remark 3.2. In Theorem 3.1, let A = 0, T = 0, and @, = 0, Vn > 0. Then, for all a,7 € (0, x0)
and x,y € C, we have that

2
7

(Ax - Ay, x - y) > a||Ax - Ay

K, (x) = {u €C: f(uy)+(Au,y-u)+ %(y-”ffu—]@ 20, Vy € C} (3.55)

= {uEC:f(u,y)+%(y—u,]u—]x> >0, VyEC} =T, (x).
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Moreover, there hold the following
H,={z€C:¢(z,Kp,yn) < (an + &y — ann)P(z,x0) + (1 — an) (1 - &p)P(2, x) }
={zeC:¢(z,T,yn) < anp(z,x0) + (1 - an)P(z,xn)},

Yn = ]_1 <&n]x0 +(1- &n)(ﬁn]-;c‘n + <1 - ﬁn)]frnin>>

~ ~ - (3.56)
= ]_1 <,Bn]§n + <1 - ﬁn)]]rn§n>
= ]71 <ﬁn]§n + (1 - ﬁn>]§n>
= ]71]£n = fn/
and hence
Yn = Xp = ]_1 (an]xO +(1-an) (ﬂn]xn + (1 - ﬂn)]]r,,xn))~ (3.57)

In this case, Theorem 3.1 reduces to [17, Theorem 3.1].

4. Weak Convergence Theorem

In this section, we present the following algorithm for finding a common element of the
solution set of a generalized equilibrium problem and the set T~'0 N T-10 for two maximal
monotone operators T and T.

Let xo € X be chosen arbitrarily and consider the sequence {x,} generated by

%n =] N an]xo + (1= an) (B Kpyxn + (1= Bn) J 1. K Xn)),

Xn+l = ]_1 <&n]x0 +(1- &n) <ﬁn]Krnin + <1 - ﬁn)]frnKrnin>>r n=0,12,..., (4.1)

where {a,}, (.}, {an}, {ﬁn} C [0,1], {ra} C (0,00), and K, r > 0is defined by (2.14).
Before proving a weak convergence theorem, we need the following proposition.

Proposition 4.1. Suppose that Assumption 2.1 is fulfilled and let {x,} be a sequence defined by (4.1),
where {an}, {Pn}, {an}, {Bn} C [0, 1] satisfy the following conditions:

Say<o,  Sdi<oo,  liminfp,(1-p,) >0, nminfﬁ,,<1 ~B)>0. @2
n:O n:O n—oo n— oo

Then, {TpigqfagnppXn} converges strongly to z € T~10 N T7'0 N EP, where Ty o7 1opp i the
generalized projection of X onto T"'0NT~10N EP.
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Proof. We set Q := T~'0NT-10N EP and

Uy = Ky Xp, Yni= ]_1 (ﬂn]un + (1 _ﬂn)]]rnun)/

~ . (4.3)
iy = Ky %, G i= T (Bl + (1= B ) T in),

so that

5571 = ]_1 (an]xo + (1 - an)]yn)r

Xni1 = ] N (@nJxo+ (1= &) ), n=0,1,2,....

(4.4)

Then, in terms of Lemma 2.5 and Proposition 2.11, £ is a nonempty closed convex subset of
X such that Q C C. We first prove that {x,} is bounded. Fix u € Q. Note that by the first and
third of (4.3), u,, i, € C and

F(un,y)+rl<y—un,]un—]xn>20, Yy eC,
1” (4.5)
F(ﬁn,y)+r—<y—ﬁn,]ﬁn—]§n>20, Yy e C.

Here, each K, is relatively nonexpansive. Then from Proposition 2.11, we obtain

() = (T BuJttn+ (1= Bu) T Trun))
= [l = 2014, BuJun + (1= ) ] Tt} + | Bt + (1= B) T |
< Nl =26, T} =21~ ) (e, Tt + Bullinl P+ (L= Pl ntenl® (g 0
= Pup () + (1= Br) p(, Ty, 1n)
< Pub(ut,un) + (1= ) Plat, 1)
= pu, 1) = (1, Ky, %) < (1, ),
P, Gn) = () (BT iin + (1= B ) T Tl )

2

= ulP =2 (e, Bu it + (1= ) I o ) + || B + (1= Bo) T T

~ 2
Jr, Un

<l = 28w, Jitn) = 2(1 = B ) (14, T i ) + Bl + (1 B
= Pud (i) + (1= B ) d (1 T, 1)
< Pudp (i) + (1= B ) plu, i)

= P(u, iin) = P(u, Ky, Xn) < P(u, Xn),

(4.6b)
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and hence by Proposition 2.11

Bl %) = (1, (@S0 + (1= @) Tyn) )
= llull® = 2(u, a0 Jxo + (1 = @) Jyu) + [ln 0 + (1= an) Jyu|
< lull? = 2 (1, Txo) = 2(1 = ) {1t Ty} + o2 + (1 = ) ||
= anp(u, x0) + (1 - )P (1, yn)
< an(u, %0) + ¢ (u, i)

< P(u, xy) + anPp(u, x0),

(4.60)

P, Xnn) = ¢ (1,77 @S0 + (1= &) JF7n) )
= ull? = 2(u, @0 + (1= &) JGu) + |@n T x0 + (1 = &) T ||*
<l = 28 (u, Jaco) = 2(1 = &n)(tt, TTn) + Fnllol” + (1 = &) || ]|
= Eup(u, x0) + (1= &) P (14, In)
< Gnp(u, x0) + P (14, Gn)

< P(u, Xy) + AnPp(u, x0).

(4.6d)

Consequently, the last two inequalities yield that

P(u, xp41) < P(u, X)) + andp(u, xo)
< P(u, xn) + anP(u, x9) + Ay Pp(u, x0) (4.6€)
= (,b(u, xn) + (an + &n)d)(”/ XO),

for all n > 0. So, from > > ja, < oo, > o&, < oo, and Lemma 2.13, we deduce that
limy,_, ,,$(u, x,) exists. This implies that {¢(u, x,,)} is bounded. Thus, {x,} is bounded and

so are {uy}, {iin}, { ], tn}, and {Jy, iin }-
Define z, = Tlgx, for all n > 0. Let us show that {z,} is bounded. Indeed, observe that

Uzl = 1xalD)?* < P (20, Xn) = p(TTaxn, x) < (P, %) — $(p, Taxy)

(4.7)
= ¢(p, xn) = (P, 2n) < P(p,xn),

for each p € Q. This, together with the boundedness of {x,}, implies that {z,} is bounded
and so is ¢(z,, xg). Furthermore, from z, € Q and (4.6e), we have

(,b(zn/ xn+1) < ¢(an xn) + (an + &n)‘i)(zn/ xO)- (48)
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Since Il is the generalized projection, then, from Lemma 2.4 we obtain

¢(Zn+1; Xnt1) = ()b(l_-[erHl/ Xns1) < (i)(Zn, xn+1) - (;b(zn/ 1_[anﬂ)

= (,b(zn/ xn+1) - ¢(Zn/ Zn+1) < ¢(Zn/ xn+1)-

(4.9)

Hence, from (4.8), it follows that ¢(zn+1, Xn+1) < P(2n, Xn) + (An + &) P(24, X0)-

Note that X7 g a, < 00, Doy &y < oo, and {$(z,, x0)} is bounded, so that > (a, +
An)P(zy, x0) < oo. Therefore, {¢(z,, x,)} is a convergent sequence. On the other hand, from
(4.6e) we derive, for all m > 0,

m-1
G, Xem) < P, x0) + D (Xnej + Gnej) P, X0). (4.10)
=0
In particular, we have
m—1
(;b(zn/ xn+m) < (;b(zn/ xn) + Z (an+j + &n+j)¢(zn/ xO)' (411)
=0

Consequently, from z,., = I1oXy+, and Lemma 2.4, we have

m-1
¢(an Zntm) + ¢(zn+mr Xnem) < P(Zn, Xpam) < (i)(zn/ Xp) + Z (anﬂ' + &nﬂ')(p(znr X0) (4.12)
=0
and hence
m-1
(i)(znr Zn+m) < (i)(Zn, xn) - ¢(Zn+mr xn+m) + Z (fxn+j + &n+j)¢(znr xO)- (4-13)
j=0

Let r = sup{||z,|| : n > 0}. From Lemma 2.7, there exists a continuous, strictly increasing, and
convex function g with g(0) = 0 such that

g(lx-v|) <d(x.y), Vx,yeB,. (4.14)
So, we have

g(”zn - Zn+m||) < ¢(Zn/ Zn+m)

m=1 B (4.15)
< ¢(Zn/ Xn) — ¢(zn+ml Xn+m) + Z (‘xn+j + an+j)¢(znr X0).
j=0

Since {$(zn, x,)} is a convergent sequence, {$(z,, x0)} is bounded and 3,7 (a, + &) is
convergent; from the property of g, we have that {z,} is a Cauchy sequence. Since Q is closed,
{z,} converges strongly to z € Q. This completes the proof. O
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Now, we are in a position to prove the following theorem.

Theorem 4.2. Suppose that Assumption 2.1 is fulfilled and let {x,} be a sequence defined by (4.1),
where {an}, {Pn}, {&n}, {Bn} C [0,1] satisfy the following conditions:

San<oo, <o, lminfp,(1-p,)>0, liminff,(1-5,)>0, (416)
= = n— oo n— oo

and {r,} C (0,00) satisfies iminf,_, 1, > 0. If ] is weakly sequentially continuous, then {x,}
converges weakly to z € T'0NT10N EP, where z = limy _, oI 11 gf-10np pXn-

Proof. We consider the notations (4.3). As in the proof of Proposition 4.1, we have that
{xn}, {un}, Urun}, {Xn}, {tn}, and {J;, i, } are bounded sequences. Let

]rnﬁn

r = sup{ [l I, el I, n20}. (417)

From Lemma 2.6 and as in the proof of Theorem 3.1, there exists a continuous, strictly
increasing, and convex function g with g(0) = 0 such that

lax* + 1= @)y ||* < alx P + A =) ||y*||* - 21 - ) g (||x* - v*|)) (4.18)
for x*,y* € B; and a € [0,1]. Observe that foru € Q :=T710Nn T-10NEP,

P yn) = (T BuTutn + (1= Bu) T Jrun))
= Jlull® = 2(ut, BuTttw + (1 = Bu) T o ttn) + [|BuTttn + (1 = Bu) T Tt |
< lul® = 2B, Jttw) =2(1 = P) (14, J Jr, )
+ Balluall® + (1= Bo) I, snl® = B (1 = o) gt = T T, )
< Bup(ut, 1) + (1= Bu) Pt Tr,ttn) = B (1 = Bu) 8[| Tetn = T T ttnl)
< Bup(ut, 1) + (1= ) (14, 1) = Bu (1 = B) g [Ttk = T T ttnl)

= gb(u, Uy) _ﬁn(l _ﬁn)g(”]un - ]]rnunH)/
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Dt 5n) = ¢ () (BuJiin + (1= B ) TTrstin) )
=l =2 (ot i + (1= P T o)+ | BTt + (1= o) T |
< Jull® = 2 (u, Jiin) - 2(1 ﬁ)(u T tn )

4 Bullinl + (1= B ) | Tt || = Bu (1= B ) g (|| 720 = 172,70 )
< Pup i) + (1 )¢(uf iin) = Pu (1= Ba) g (|| 78— 17071 )
< B ) + (1= B ) pCoa,80) = B (1= ) g (|| 1780 — 1 i)
= $(u i) = B (1= B ) g (|| Jin = 1T, |).

(4.19)

P, %) = ¢, )7 (@S xo + (1 - @) Jya) )
= ||u||2 - 2<ur anJxo+ (1- “n)]yn> + ”“n]xO +(1- “n)]ynllz
< NJul® = 2an u, Jxo) —2(1 = au) (1, Jyn) + aallxoll® + (1 - a) ||ya |’
= a,P(u, x0) + (1 — an) P (1, yn)
< “n¢(ur .X'()) + ¢(u' ]/n)
< and)(ur xO) + d)(ur un) - ﬂn(l - ﬂn)g(”]un - ]]r,,un”)
= an(i)(ur .X'o) + d)(ur Krnxn) - ﬂn(l - ﬁn)g(”]un - ]]rnun”)
< an(i)(u/ Xp) + ‘i’(u/ Xn) — ﬁn(l - ﬁn)g(”]un - ]]rnun“)/

P, xn) = ¢ (1,77 @ %0 + (1= &) JFin) )

= Jlull® = 2(ut, EnJ 0 + (1= &) J i) + ||EnS X0 + (1= &) J ]|
< NJul® = 28 (u, Jx0) = 2(1 = &) (14, J ) + Enllxoll® + (1 = &) || 7 ||’
=, (u, x0) + (1 - &n)zi)(u, gn)
< &n(i)(u/ xO) + ¢(u/ y")
< Fugp(t, %0) + P(at, n) — Bu(1- o) 8|
= and(u, x0) + Pp(u, Ky, X,) - ﬁn <1 - ﬁn>g<
< Fugp, x0) + b0, %) — (1~ B) 3

]ﬁn - ]frnﬁn

)

]ﬁn - ]Trnﬁn

)

)

Jitn = Ty, i

(4.20)
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Consequently, the last two inequalities yield that

P, X01) < Enp (1, %0) + (0, %) = Bu (1= B ) g (|| Tt = T, 700 )
< B b, X0) + bt %0) + B, %) = Bu(1 = B (N ttn = J i, )
~Bu(1=Bn)s (|| - 1T

= 1, Xn) + (@00 + &) (14, X0) = Bu (1= Pr) 81Tt = T I 0]

= Bu(1= B ) g (|70 = T )

Thus, we have

Bu (L= Pu) (1t = T T anll) + B (1= B ) g (|| it = T

< P(u, xn) = P(u, xp41) + (an + &) P(u, x0)-

)
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(4.21)

(4.22)

By the proof of Proposition 4.1, it is known that {¢(u, x,)} is convergent; since lim,, _, ,at, = 0,

lim, , &, = 0, liminf, _, B, (1 — B,) > 0, and liminf, .3, (1 — B,) > 0, then we have

)=0.

Taking into account the properties of g, as in the proof of Theorem 3.1, we have

Tim g1ty = T, tal)) = Timm g (||t = I T i

Lim || Ju, — JJr,unll = im |[uy, = Jp,un|| =0,
n— oo n—oo

= lim ||u, — Jy, Un|| =0,

n— oo

Tim || Tty = J T, i

since J™! is uniformly norm-to-norm continuous on bounded subsets of X*.
Now let us show that

Jim g, x,) = lim $(u, %) = lim (s ) = lim (1, ).
Indeed, from (4.6e) we get
P(u, Xp1) — Anp (1, x0) < P(u, Xp) < P(u, X5) + anP(u, xo),
which, together with lim,, _, &, = lim,, _, ,&,, = 0, yields that

lim ¢p(u, X,) = lim ¢p(u, x,).

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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From (4.6d) it follows that
P, Xn1) = AnP(u, x0) < P (1, ) < P, %),
which, together with lim,, _, ¢ (1, X,,) = lim, _, (1, x,,), yields that
Jim o, §) = Jim (a3
From (4.6¢) it follows that
P, Xn) = anp(u,x0) < (1w, yn) < P(u, xz),
which, together with lim,, -, . (1, X,,) = lim,, _, (1, x,,), yields that
lim ¢(u, yn) = lim p(u, x,).
From (4.6¢) it follows that
P, Fn) < Plu,iin) < Pu, %),
which together with
Tim (%) = im p(, ) = lim (u, ),
yields that
Tim p(u, ) = lim §(ut, x,).
From (4.6a) it follows that
¢, yn) < P, un) < P(u, xy)
which, together with lim,, _, ¢ (1, y,,) = lim,, ., ¢ (1, x,), yields that
Tim (u,4,) = lim ().
On the other hand, let us show that

lim ||x, — X,|| = 0.
n—oo

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)
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Indeed, let s = sup{||xull, [|uall, [ X2]l, |tinll : n > 0}. From Lemma 2.7, there exists a
continuous, strictly increasing, and convex function g; with g;(0) = 0 such that

gi(lx-yl) <¢(xy), Vx,yeB. (4.38)
Since u, = K, x, and i, = K,,X,, we deduce from Proposition 2.11 that for u € Q,

S1(l[tn = xul) < P(un, x0) < P(u, x0) — P(u, un),
gl(”ﬁn = X,|) < ¢(ﬁnr5én) < ¢(u/5én) - ¢(urﬁn)~

(4.39)

This implies that
Jim g1 ([[un = xall) = Tlim g ([[idn = Xull) = 0. (4.40)

Since J is uniformly norm-to-norm continuous on bounded subsets of X, from the properties
of g1, we obtain

lim [|u, — x,|| = im ||Ju, — Jx,|| =0,
n—oo n—oo

(4.41)
r}grgo||ﬁn = Xn|| = nlgrgolljﬁn = Jxu|| = 0.
Note that
(s tn) = Patn, Xn) = 1> = 200, Jan) + it > = [[12all” = 2100, Jo00) + 100

= =2(xp, Jun) +2{uy, Jx,)

= 2<xn/]xn - ]un> + 2(”11 - xn/]xn>

L 2||xullllJxn = Junll + 2[|un — xulll| 22l

¢ (xu, Jr,un) = ”xn”2 = 2(xu, ] Jr,n) + ”]rn”n”z
= ”xn”2 - ||xn||2 + ||],nun||2 - ||xn||2 +2(xn, Jxn = ] Jr,Un) (4.42)

= (I, tnll = xul DT stnll + 2nll) + 22, Jxtn = J T, )
S ttn = Xl (1, sl + 126 l1) + 2[| 2|11 260 = T T, |
= 1 Jr,ttn = v + tn = Xul| (1, tnll + [|xnll)
+ 2/ xnl[|JXn = Jttn + Jtin = J ], ]|
< (W, un = vl + [1tn = 2 |1) (1 T, nll + [|261])

+ 2|\l (1 xn = Jtn|| + || Jrtn — ]]r,,unH)'

Since ¢(uy, x,) — 0, it follows from (4.24) and (4.41) that ¢(x,, u,) — 0and ¢(xy, J;, un) —
0.
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Also, observe that

¢ Consyn) = @ (0n, T (BuTtn + (1= Pu) T T 10n) )

= lall® = 20, BTt + (1= Bu) Iy ttn) + || Bt + (1 = B) T Tt

<11 ll? = 260 (X Tt} = 2(1 = B) Xy T Tyt + Balltl® + (1= B Tl 443
= By Cen ) + (1= B) p(, Jr 1)

< P ) + P, Ty t),

and hence
B, %) = ()7 (@) %0 + (1= @) Jya) )
= ll2all” = 2(20n, an Jx0 + (1= ) Jyn) + || 0 + (1 = @) Jyu|”
< llall® = 20t 6, Jx0) =201 = ) (e, Jyn) + ctnllxoll® + A= a) gl (4 409
= @ (xn, x0) + (1 = @) (X, Y)

< an¢(xnr xO) + d)(x”’ ]/n)

< an(i)(xnr xO) + d)(xnrun) + ¢(xn/ ]Tnun)‘

Thus, from a, — 0, ¢(x,, u,) — 0, and ¢(xy, [, u,) — 0, it follows that ¢(x,, X,) — 0.In
terms of Lemma 2.2, we derive ||x;, — X,|| — 0.

Next, let us show that x, — z, where z = lim,, _, I 11 F-100ppXn-

Indeed, since {x,} is bounded, there exists a subsequence {x,, } of {x,} such that x,,, —
X € C. Hence it follows from (4.24), (4.41), and ||x, — X,|| — O that {u,, }, {1, }, {]r"k Uy, }

and ]N,nk ii,, converge weakly to the same point X. Furthermore, from liminf, .7, > 0 and
(4.24), we have that

, 1
Jim [[Ar, unll = 1 {1 ]2, = J T, unll =0,
! (4.45)

~ . ~ .
lim |Arnun :nh_r)nr— Ju, = J ], unf|| = 0.
O Tn

n— oo

If z* € Tz and 2* € T, then it follows from (2.17) and the monotonicity of the operators T, T
that forall k > 1

<z T unk> >0, <£ T i 2 - A, ﬁnk> > 0. (4.46)

Letting k — oo, we obtain that

(z-%,2")20, (5-%%)>0. (4.47)

Then the maximality of the operators T, T implies that x € T-'0 N T~10.
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Now, by the definition of u, := K, x,, we have
1
F(un,y) + r—(y — Uy, Juy — Jx,) >0, VyeC, (4.48)
where F(x,y) = f(x,y) + (Ax,y — x). Replacing n by n, we have from (A2) that

1
— (Y — tn,, Jttn, = Jxn. ) > =F(tty,,y) > F(y,un,), Yy eC. (4.49)

Ty

Since y +— F(x,y) is convex and lower semicontinuous, it is also weakly lower
semicontinuous. Letting . — oo in the last inequality, from (4.41) and (A4), we have

F(y,x) <0, VyeC (4.50)

Fort,withO<t<1,andy € C, lety; =ty + (1 - t)x. Since y € C and x € C, then y; € C and
hence F(y;, X) < 0. So, from (A1), we have

0= F(yt,yt) < tF(yt,y) +(1- t)F(]/tzf) < tF(yt,y)- (4.51)

Dividing by ¢, we get F(y;,y) > 0, Yy € C. Letting ¢t | 0, from (A3) it follows that F(X,y) >
0, Yy € C.So, x € EP. Therefore, x € Q. Let z,, = [1gx,,. From Lemma 2.3 and x € Q, we get

(2Zn, =X, Jxp, — J2u, ) 2 0. (4.52)

From Proposition 4.1, we also know that z, — z € Q. Note that x,, — X. Since ] is weakly
sequentially continuous, then (z - X, JXx — Jz) > 0as k — oo. In addition, taking into account
the monotonicity of J, we conclude that (z - X, JX — Jz) < 0. Hence

(z=-x,Jx-Jz)=0. (4.53)
From the strict convexity of X, it follows that z = Xx. Therefore, x, — X, where X =
limy, ., o Il 1 g 719nppXn- This completes the proof. O

Remark 4.3. Compared with the algorithm of Theorem 1.2, the above algorithm (4.1) can be
applied to find an element of T-'0 N T~'0 N EP. But, the algorithm of Theorem 1.2 cannot be
applied. Therefore, algorithm (4.1) develops and improves the algorithm of Theorem 1.2.
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