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The main purpose of this paper is to introduce and study a new class of generalized nonlinear set-
valued quasi-variational inclusions system involving (A, 77)-accretive mappings in Banach spaces.
By using the resolvent operator due to Lan-Cho-Verma associated with (A, 77)-accretive mappings
and the matrix analysis method, we prove the convergence of a new hybrid proximal point
three-step iterative algorithm for this system of set-valued variational inclusions and an existence
theorem of solutions for this kind of the variational inclusions system. The results presented in this
paper generalize, improve, and unify some recent results in this field.

1. Introduction

The variational inclusion, which was introduced and studied by Hassouni and Moudafi
[1], is a useful and important extension of the variational inequality. It provides us with a
unified, natural, novel, innovative, and general technique to study a wide class of problems
arising in different branches of mathematical and engineering sciences. Various variational
inclusions have been intensively studied in recent years. Ding and Luo [2], Verma [3, 4],
Huang [5], Fang et al. [6], Fang and Huang [7], Fang et al. [8], Lan et al. [9], Zhang et al.
[10] introduced the concepts of 7-subdifferential operators, maximal #-monotone operators,
H-monotone operators, A-monotone operators, (H, 77)-monotone operators, (A, 1)-accretive
mappings, (G,#)-monotone operators, and defined resolvent operators associated with
them, respectively. Moreover, by using the resolvent operator technique, many authors



2 Fixed Point Theory and Applications

constructed some approximation algorithms for some nonlinear variational inclusions in
Hilbert spaces or Banach spaces. Verma has developed a hybrid version of the Eckstein-
Bertsekas [11] proximal point algorithm, introduced the algorithm based on the (A,7)-
maximal monotonicity framework [12], and studied convergence of the algorithm. For
the past few years, many existence results and iterative algorithms for various variational
inequalities and variational inclusion problems have been studied. For details, please see [1-
37] and the references therein.

On the other hand, some new and interesting problems for systems of variational
inequalities were introduced and studied. Peng and Zhu [14], Cohen and Chaplais [15],
Bianchi [16], and Ansari and Yao [17] considered a system of scalar variational inequalities.
Ansari et al. [18] introduced and studied a system of vector equilibrium problems and
a system of vector variational inequalities using a fixed point theorem. Allevi et al. [19]
considered a system of generalized vector variational inequalities and established some
existence results with relative pseudomonotonicity. Kassay and Kolumban [20] introduced
a system of variational inequalities and proved an existence theorem through the Ky
Fan lemma. Kassay et al. [21] studied Minty and Stampacchia variational inequality
systems with the help of the Kakutani-Fan-Glicksberg fixed point theorem. J. K. Kim
and D. S. Kim [22] introduced a new system of generalized nonlinear quasi-variational
inequalities and obtained some existence and uniqueness results on solutions for this
system of generalized nonlinear quasi-variational inequalities in Hilbert spaces. Cho et
al. [23] introduced and studied a new system of nonlinear variational inequalities in
Hilbert spaces. They proved some existence and uniqueness theorems for solutions for the
system of nonlinear variational inequalities. As generalizations of a system of variational
inequalities, Agarwal et al. [24] introduced a system of generalized nonlinear mixed quasi-
variational inclusions and investigated the sensitivity analysis of solutions for this system
of generalized nonlinear mixed quasi-variational inclusions in Hilbert spaces. Kazmi and
Bhat [25] introduced a system of nonlinear variational-like inclusions and gave an iterative
algorithm for finding its approximate solution. Fang and Huang [26], Fang et al. [8]
introduced and studied a new system of variational inclusions involving H-monotone
operators and (H, 7)-monotone operators, respectively. Yan et al. [27] introduced and studied
a system of set-valued variational inclusions which is more general than the model in
[3].

Inspired and motivated by recent research work in this field, in this paper, a general
set-valued quasi-variational inclusions system with (A, 7)-accretive mappings is studied in
Banach spaces, which includes many variational inclusions (inequalities) as special cases.
By using the resolvent operator associated with (A, 7)-accretive operator due to Lan, an
existence theorem of solution for this class of variational inclusions is proved, and a new
hybrid proximal point algorithm is established and suggested, and the convergence of
iterative sequences generated by the algorithm is discussed in g-uniformly smooth Banach
spaces. The results presented in this paper generalize, and unify some recent results in this
field.

2. Preliminaries

Let X be a real Banach space with dual space X*, (-,-) be the dual pair between X and X,
2X denote the family of all the nonempty subsets of X, and CB(X) denote the family of all
nonempty closed bounded subsets of X. The generalized duality mapping J, : X — 2% is
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defined by
T = {f e X ) = Il |F° = Ixl7 ), vaeX, 2.1)

where g > 1 is a constant.
The modulus of smoothness of X is the function px : [0,00) — [0, o) defined by

1
px(t) = sup{g(llx +yll+llx-yl) -1:lxl <1 |yl < f}- (22)
A Banach space X is called uniformly smooth if
tim PXO _ g, (2.3)

t—0 t
X is called g-uniformly smooth if there exists a constant ¢ > 0 such that
px(t) <ctl, (g>1). (2.4)

Remark 2.1. In particular, J; is the usual normalized duality mapping. It is known that, J;(x) =
l||972 ]2 (x) for all x#0, J4 is single-valued if X* is strictly convex [10], or X is uniformly
smooth (Hilbert space and L, (2 < p < o) space are 2 uniformly Banach space), and if
X = H, the Hilbert space, then ], becomes the identity mapping on H. In what follows we
always denote the single-valued generalized duality mapping by J, in real uniformly smooth
Banach space X unless otherwise states.

Let us recall the following results and concepts.

Definition 2.2. A single-valued mapping 1 : X x X — X is said to be 7-Lipschitz continuous
if there exists a constant 7 > 0 such that

In(x )| <zllx-yl, YxyeX (2.5)

Definition 2.3. A single-valued mapping A : X — X is said to be

(i) accretive if

(A(x1) — A(x2), Jo(x1 —x2)) 20, Vxy,x € X; (2.6)

(ii) strictly accretive if A is accretive and (A(x1) — A(x2), J4(x1 — x2)) = 0 if and only if
x1 = xp forall x1,x, € X;

(iii) r-strongly n-accretive if there exists a constant > 0 such that

(A(x1) = A(x2), Ja(n(x1,x2))) = rllx1 —=x2|l?, VYx,x€X; (2.7)
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(iv) a-Lipschitz continuous if there exists a constant a > 0 such that
|A(x1) — A(x)|| < aflx1 — x2|, Vx1,x2 € X. (2.8)
Definition 2.4. A set-valued mapping S : X — CB(X) is said to be
(i) D-Lipschitz continuous if there exists a constant a > 0 such that

D(S(x),S(y)) <al||x-y| Vx,yeX (2.9)

where D(:,-) is the Hausdorff metric on CB(X).

(ii) p-strongly n-accretive if there exists a constant ff > 0 such that
(ur —uz, Jg(n(x1,11))) > Bl =], Vxi,y1 €X, wn€S(x1), up€S(yr).  (2.10)

(iii) (o, §)-relaxed cocoercive if there exist two constants o, > 0 such that

q

7

(ur =, Jo(x1 = 1)) > —0ollug — w27 + &||x1 — 1

@2.11)
Vxi, 1 € X, u1 € S(x1), ux € S(y1).

(iv) yi-strongly r;-accretive with respect to the first argument of the mapping F; : X; x
X, x X3 — X;, if there exists a constant y; > 0 such that

(Fi(ur,- ,-) = Fi(uz,+,-), Jo(i (%1, 1)) ) > yi[1 - ]/1”2
Va1 €X, ur€S(x1), uy€S(y1),

(2.12)

wherei=1,2,3.

Definition 2.5. Let A; : X; — X; be a single-valued mapping and S; : X; — BC(X;) be a set-
valued mapping (i = 1,2,3). Fori = 1,2, 3, a single-valued mapping F; : X1 x Xo x X3 — X;is
said to be

(1) (pi1, Hiz, piz)-Lipschitz continuous if there exist three constants p1, pio, ptiz > 0 such
that

| Fi(x1, x2,x3) = Fi(y1, y2, y3) || < pin || = w1 || + paz |22 = 2 || + s || e = | (2.13)
Vxi,yi € Xi; .

(ii) (¢, xi)-relaxed cocoercive with respect to A;S; in the first argument, if there exist
constants ¢, ; > 0 such that

(Fi(x1,+,-) = Fi(x2,+,-), Jo(Ai(a1) — Ai(b1)))
> _(Pi”Fi(xlr'/') - F(x2/ '/')”qi + Ki”xl - lelqi, (214)
Vxi,x2 € Xj, ay € Si(x1), b1 € Si(x2).
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In a similar way, we can define Lipschitz continuity and (¢, k;)-relaxed cocoercive
with respect to A;S; of Fi(-,-,-)in the second, or the three argument.

Definition 2.6. Let A: X — X and 77: X x X — X be single-valued mappings. A set-valued
mapping M : X x X — 2X is said to be

(i) accretive if

(u1 —uz,]q(xl —y1)> >0, Vxl,yl eX, u € M(Xl,- ), Uy € M(y1,~ ); (2.15)

(ii) r7-accretive if

(ur —uz, Jo(n(x1,41))) 20, Vxi,y1 € X, u; € M(xy,-), us € M(y1,-); (2.16)

(iii) m-relaxed 7-accretive, if there exists a constant m > 0 such that

(u1 —up, Jy((x1,31))) > —ml|x1 =1 ||!, Vxr,p1 € X, wp € M(xy,+), un € M(y1,+); (2.17)

(iv) A-accretive if M is accretive and (A + pM)(X) = X for all p > 0;

(v) (A, n)-accretive if M is m-relaxed n-accretive and (A +pM)(X) = X for every p > 0.
Based on [9], we can define the resolvent operator R;‘,’]zl as follows.

Definition 2.7 (see [9]). Let 1 : X x X — X be a single-valued mapping A : X — X be
a strictly n-accretive single-valued mapping and M : X x X — 2X be a (A, n)-accretive
mapping. The resolvent operator R;:’;\l,l : X — X is defined by

A

RO

(x) = (A+pM) "' (x) VxeX, (2.18)

where p > 0 is a constant.

Remark 2.8. The (A, n)-accretive mappings are more general than (H,#)-monotone map-
pings, H-accretive mappings, A-monotone operators, #-subdifferential operators, and m-
accretive mappings in Banach space or Hilbert space, and the resolvent operators associated
with (A, #n)-accretive mappings include as special cases the corresponding resolvent
operators associated with (H,7)-monotone operators, m-accretive mappings, H-accretive
mappings, A-monotone operators, 7-subdifferential operators [5, 6, 11, 14, 15, 26, 27, 35-37].

Lemma 2.9 (see [9]). Let 1; : X; x X; — X; be T-Lipschtiz continuous mapping, A; : X; — X;
be an r;-strongly n-accretive mapping, and M; : X; x X; — 2% (j = (1 + i) mode 3) be set-valued
(A, n;)-accretive mapping, respectively. Then the generalized resolvent operator R:’;’]ZL 1 Xi — Xjis
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qu'fl / (ri — mip;)-Lipschitz continuous, that is,

| R ) = Rov ()| < = - wll vy e X, (2.19)

where p; € (0,1i/m;), g >1,andi=1,2,3.

In the study of characteristic inequalities in g;-uniformly smooth Banach spaces X;, Xu
[29] proved the following result.

Lemma 2.10 (see [29]). Let X; be a real uniformly smooth Banach space. Then X; is gi-uniformly
smooth if andonly if there exists a constant c,, > 0 such that for all x;,y; € X;

”xi + ]/i”qi < ||xi||qi + Qi<yi/ ]q,-(xi)> + qu ”yi”qi (l = 1/ 2/ 3) (220)
Theorem 2.11. Let the function g(x,y) = (x + y)7 — x9 — y1, where x,y > 0 and q > 0, then

(i) g(x,y)>0, asg>1,
(i) g(x,y) =0, asq=1, (2.21)

(iii) g(x,y) <0, asg<1.

Proof. Let h(a,b) = a7+b7-1, where0 < a,b<1,a+b=1,0<gq.Thenh(a,b) =a¥+(1-a)?-1
by the b = 1 — a. We can obtain

q
h(a,b)Zl—Z(%) >0, (V1<gq),

h(a,b) 51—2(%)q<0, (V0<g<1), (2.22)

h(a,b) =0, (gq=1).
Leta=x/(x+y),and b = y/(x + y), where x,y > 0. It follows that

() g(x,y) = (x+y)'h(a,b)>0, as g>1,
(i) g(x,y) = (x+y)'h(a,b) =0, as g=1, (2.23)
(i) g(x,y) = (x +y)"h(a,b) <0, as g<1.

This completes the proof. O

Corollary 2.12. Let a, b, c > 0 be real, for any real g > 1, if a < b9 + ¢4, then

a<b+c. (2.24)
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Proof. The proof directly follows from the (i) in the Theorem 2.11. O

Definition 2.13 (see [38]). Let Z = {(Cij)uxn * Cij € Ris a real} be a real matrix set, then the
mappings

nm 14
”(Cij)mxn”q = { Z |Cij|q} (q > 0)’
ij=1,1 (2.25)

=  max |cjl
[} 1<i<n,1<j<m

is called the g-norm, and co-norm, respectively.

Obviously, (é, | - |I) may be a Banach space on real field R, which is called the real matrix-
Banach space.

Definition 2.14 (see [38]). Let E= {(Cij)mxn : Cij € Ris a real} be a real matrix-Banach Space
with the matrix-norm || - || (|| - | = || - ||q (g>0),0r| ) If

<klim cl-j(k)) = (dij),,., €2 (2.26)

then the matrix (d;j),,., is called the limit matrix of matrix sequence {(c;;(k)),,x,}, noted by
limy . 5 (Cij (K)) yxn = (dij) mxn, Where {cij(k)} is a real sequence, limy _, ;i (k) = dij, m,n,i,j =
1,2,...,andi<m, j<mn.

Lemma 2.15 (see [38]). Limg — o0 (Cij(K)) o = (dij) s if and only if

klgl’;g” (Ci]' (k))mxn - (dij)mxn =0. (227)

Hence, lfhmkﬁoo(cij(k))mxn = (dij)mxn/ then hmk—>oo||(cl](k))m><n” = ”(dl])mxn”

In this paper, the matrix norm symbol || - ||; is noted by || - ||.

Definition 2.16. Let a;,b; (i = 1,-,-,-,n) be real numbers, and a = (a1, -, an)T and ? =
—

(b1, bn)T be two real vectors, then @ = (a1, an)T <b=(by,,, bn)T if and only if

ai; S bi (l = 1/ av: 'In)'

3. Quasi-Variational Inclusions System Problem and Hybrid Proximal

Point Algorithm

Let X; be a real g;-uniformly smooth Banach space with dual space X}, (-, ) be the dual pair
between X; and X7, 2%i denote the family of all the nonempty subsets of X;, and CB(X;)
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denote the family of all nonempty closed bounded subsets of X;. The generalized duality
mapping J, : X; — 2% is defined by

TG = {f €7+ (. f7) = I,

£ =N, vxe X, (3.1)

where g; > 1is a constant. Now, we consider the following generational nonlinear set-valued
quasi-variational inclusions system problem with (A, 77)-accretive mappings (GNSVQVIS)
problem.

Let Ai: Xi — Xi, i : Xi x X; — Xi,and F;, G; : X5 x Xo x X3 — X; be single-valued
mappings fori =1,2,3. Let M; : X; x X; — 2% (j = (1 + i) mode 3) be a set-valued (A;, 1;)-
accretive mapping and S;, T;, U;, V; : X; — CB(X;) be set-valued mappings fori=1,2,3.

For any ¢; € X;, finding (x;, a;, bi, ¢;, d;) such that (x1, x2, x3) € X1 x X5 x X3, a; € Si(x;),
b; € Ti(x;), c; € Ui(x;), d;i € Vi(xi), and

€1 € F1(x1,x2,x3) = G1(a1, a2, a3) + My (dy, dz),
£ € Fa(x1,x2,x3) = Ga(by, bz, b3) + Ma(da, d3), (3.2)

€3 € F3(x1,x2,x3) — Gs(c1,¢2,¢3) + M3(ds, dy),

wherei=1,2,3.

Remark 3.1. Some special cases of problem (3.2) are as follows.

(i) If G =0, Mi(-,-) = M;(:), Vi = g, Ai = H;, & = 0 and X; is a Hilbert space,
then the problem (3.2) reduces to the problem associated with the system of variational
inclusions with (H;, 7;)-monotone operators, which is finding (x,y,z,a,b,c,d,e,p,q,u,v)
such that (x,y,z) € Hi xHy xHj, a € A(x) =51, be B(y) =5, c € C(z) = S3,d € D(x) =Ty,
e€cE(y)=T,,peP(z)=T5,9€Q(x) =U;,ucU(y) =Up, v e V(z) =Uz and

0€Fi(x,y,z) —Gi(a,b,c) + Mi(g1(x)),
0€ F(x,y,z) -Ga(d,e,p) + Ma(g2(y)), (3.3)
0€ F3(x,y,z) - Gs(q,u,v) + M3(g3(2)),

wherei=1,2,3.

Problem (3.3) contains the system of variational inclusions with (H, 77)-monotone
operators in Peng and Zhu [14], and the system of variational inclusions with (H,)-
monotone operators in [8] as special cases.

(i) If G; = 0, & = 0, X; = H; (Hilbert space) and, M;(-,-) = M;(:) = Ayi(),
where ¢; : H; — RU oo is a proper, 7;-subdifferentiable functional and A, ¢; denotes the
ni-subdifferential operator of ¢;, then problem(3.3) changes to the problem associated with
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the following system of variational-like inequalities, which is finding (x,y, z) € H; x Hy x H3
such that
<F1(xry/z)/rll(a/x)> +(P1(a) _(Pl(x) 201 Va€H1/
<P2(x/ylz)/712(brx)> +‘P2(b) _(PZ(x) > 01 Vb € HZ/ (34)
(F3(x,,2),13(c, X)) + ¢3(c) — p3(x) 20, Ve €Hs,

wherei=1,2,3.

(iii) If G; = 0, ni(x;, vi) = xi — yi, & = 0, X; = H; (Hilbert space) and M;(-,-) = M;(-) =
0y;(-), where ¢; : Hi — R U oo is a proper, convex, lower semicontinuous functional and
0y;(-) denotes the subdifferential operator of ¢;(-), then problem (3.3) changes to the problem
associated with the following system of variational inequalities, which is finding (x,y, z) €
H; x H, x H3 such that

(Fi(x,y,2),(a=x)) +¢1(a) —p1(x) 20, VaeH,
(F2(x,y,2),(b-x)) + ¢2(b) —p2(x) >0, VbeHy, (3.5)
(F3(x,y,2), (c—x)) +p3(c) —p3(x) >0, VceH;,
wherei=1,2,3.
(iv) If & = 0, X; = H; (Hilbert space), and M;(-,-) = M;(-) = 06k, (-), where K; C H;
is a nonempty, closed, and convex subsets and 6k, denotes the indicator of K;, then problem
(3.5) reduces to the problem associated with the following system of variational inequalities,
which is finding (x, v, z) € H; x Hy x H3 such that
(Fi(x,y,2z),(a—x)) >0, VYaeKj,
(F2(x,y,2z),(b-x)) >0, VbeK,, (3.6)
(F3(x,y,2),(c—x)) >0, Vc€eKs,
wherei=1,2,3.
(v) If & = 0, and H; = H is a Hilbert space, K; = K is a nonempty, closed and convex
subset, for all x; € K, F;(x1,x2,x3) = 0iT(y,x) + x; = x341 (i+1=nmod (3), n=1,2,3,-,-,-),
where T : KxK — H isamapping on K x K, 0; > 0 is a constant, then problem (3.6) changes
to the following problem: find x; € K such that
(01T (x2,x) +x1 —x2,(a—x1)) >0, Vaek,
(02T (x3,x) +x3—x3,(b—x2)) >0, VbeK, (3.7)
(03T (x1,x) +x3—x1,(c—x3)) >0, VcekKk,

wherei=1,2,3.

Moreover, if o3 = 0, problem (3.7) becomes the problem introduced and studied by
Verma [31].
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We can see that problem (3.2) includes a number of known classes of system of variational
inequalities and variational inclusions as special cases (see, e.g., [2-9, 11-27, 29, 32-37]). It is
worth noting that problems (3.2)—(3.7) are all new mathematical models.

Theorem 3.2. Let X; be a Banach space, n; : X; x X; — X be 1-Lipschtiz continuous mapping,
Ai : Xi — X; be an ri-strongly ni-accretive mapping, and M; : X; x X; — 2%t (j = (1+i) mode3)
be a set-valued (A;, 1;)-accretive mapping for i = 1,2,3. Then the following statements are mutually
equivalent.

(i) An element (x;, ai, bi, ci, d;) is a solution of problem (3.2),i=1,2,3.

(ii) For (x1,x2,x3) € X1 x Xy x Xz and a; € Si(x;), b € Ti(x;), ¢; € Ui(x;), di € Vi(xi), the
following relations hold:

di = R;zl,}(l/}l(dll,) (A1(ch) + pre1 + p1Gi(ar, az, as) — p1Fi(x1,x2,x3)),

dy = R;Zz,}&zl(dy) (A1(da) + pagx + p2Ga (b, by, b3) — poFa(x1, x2,%3)), (3.8)

ds = Rgsl}@s(d&.) (As(ds) + pses + p3Gs(ci, 2, c3) — paFs(x1, x2,x3)),

where p; > 0 is a constant and i = 1,2, 3, respectively.

Proof. This directly follows from definition of R;""n”

M) and the problem (3.2) fori=1,2,3. O

Algorithm 3.3. Let {al'};2o, {&'};20 and {p!'},2, be three nonnegative sequences such that

lim¢' =0, a=limsupa <1, p’'Tpi<ow (n=012,...;i=123). (3.9)

— =
n— oo 11— 00

Step 1. For arbitrarily chosen initial points x{ € X;, a) € S;(x)), b € Ty(x?), ¢! € Ui(x)),
A2 e Vi(x)), y? € X; (1<i<3),Set

= (1)l (- ), @.10)
Qf = Ai(d)) + ple; + pIGi(al, a3, af) — pIFi(x], x5, x3),

where the y! satisfies

o? = RO s (@) || < &0 flw - 2| (3.11)
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By using [39], we can choose suitable a; € S;(x}), b} € Ti(x}), ¢} € U;(x}) and d} € Vi(x])
such that

et - aill < (1+ 1) P(5i(x). (<),
-t (1= 1)) neh),
|e? -l < (1 N %>D<Uz(xl°),ui(x} (3.12)

fori=1,2,3.

Step 2. The sequences {xI'};2,, {al'} 2o, (b}}20, (¢!} 2o, and {dl'};2, are generated by an
iterative procedure:

x = (1-al)x! +al(x" = d' +yl"), (3.13)
Qi = Ai(d]') + pi'ei + p{Gi(ai, a3, a5) - p Fi(x}, x5, x5), (3.14)
where
Aitli n n n n
R () ” <&yt -4t (3.15)

Thus, we can choose suitable a?*l € Si(x}), b;’*l € Ti(xl), C;-'Hl € U;(x!') and d:'Hl € Vi(al)
such that

ar - q! g( . )D S, S (1)),
b — b §< ! ) 1), Ti(x)), .
g< )D(U (), (1)),
- dm < ( >D Vi), V()

fori=1,2,3andn=0,1,2,....

Remark 3.4. 1If we choose suitable some operators A;, i, Fi, Gi, Si, Ti, Ui, Vi, M, €;, and space
Xi, then Algorithm 3.3 can be degenerated to a number of known algorithms for solving the
system of variational inequalities and variational inclusions (see, e.g., [2-9, 11-27, 29, 31—
35,38, 39]).
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4. Existence and Convergence

In this section, we prove the existence of solutions for problem (3.2) and the convergence of
iterative sequences generated by Algorithm 3.3.

Theorem 4.1. Let X; be a g;-uniformly smooth Banach space, 1; : X; x X; — X; be a 7-Lipschtiz
continuous mapping, and A; : X; — X; be a ri-strongly n-accretive mapping and y;-Lipschitz
continuous. Let S;, T;, U;, Vi + X; — CB(X;) be a set-valued mappings of D-Lipschitz continuous
with constants s;, t; - u;, v, and S;, T;, U;, V; be (0i, {i)-relaxed cocoercive, respectively. Let F; : X; x
Xy x X3 — X be Lipschitz continuous with constants (i1, piz, pis) and || Fi(x1, x2, x3)|| < hi (hi >
0) for all (x1,x2,x3) € (X1 x Xp x X3), and (g, x;)-relaxed cocoercive with respect to A;S; in the
first, second and third arquments, respectively. Let G; : X1 x X x X3 — X be Lipschitz continuous
with constants (Vﬂ,viz, vig) and ||Gi(x1,x2,x3)|| < i (g, > 0) fOV all (.‘X'],.X'z,.X'g) € X1 X X2 X X3.
Let My : Xy xXo — 251 M, : Xo x X5 — 2%, My : X3 x X3 — 2%3 be some set-valued
mappings such that for each given (x1,x2,x3) € X1 x Xp x X3, range(V7) N dom M; (-, x2) #0,
range(V2) N dom My (-, x3) #0, range(V3) N dom M3(-, x1) #0 and M; : X; x X; — 2% (j =
(1 + i) mode3) be an (A;, n;)-accretive mapping, respectively. Suppose that {al'}7>,, {&} 2y and
{p!} o are three nonnegative sequences with

lim &' =0, a =limsupal <1, pi = lim p!' < oo, (4.1)
n—oo n— oo n—oo .

M o 1/q:

<1 +q1010; — qi161 + €404 ) - M +piviis1 <1,

a1p1 (H12 + V1282 + paz + vi3s3) < 1,
<1 + qzozvgz —qolo + cqzv;h)l/qz -2+ povmtr < 1,

o202 (o1 + vouty + po3 + vsts) < 1, (4.2)
(1 + q30'3v‘373 —qals + cq30g3>1/q3 - A3 + p3vssus < 1.

azps(ps1 + varug + Pz + vaoup) < 1,

Tl.f’i_l

- a a . 1/4i
_ qi g qi i a5 1T — pacs
Ai = Ti— mip; <qupi Hii ©Yi Ui T qipiit; Psz> ’

where cg, > 0 is the same as in Lemma 2.10, p; € (0,7;/m;), and i = 1,2,3. Then the problem (3.2)
has a solution (x}, a;,b},c;,d;) (i=1,2,3).

Proof. Let
Q"1 = A(dy) + ples + pGi(al at, al) - prF (e, ¢, ) *3)
fori=1,2,3. Then it follows from (3.13) that

n+1 n
X1 X

<(1-a)

n n-1 n n-1 n
xy—xy - <d1 —dj >|| + o

Xl = X ” +af Y-yt ” (4.4)
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Since Vi : X3 — CB(Xj) is D-Lipschitz continuous with constants vy and (o, ¢1)-relaxed
cocoercive,

n n-1 n n-1 o
S N R

n-1 <

qn _ _ _
= |l = || - (ot = T (= i) ) e | - ! (4.5)
T \" 4 L \" 4 1|
< <1 +qlo1<1 + p— 1) vll - q181 + ¢q, <1 + m) vll> “x{’ -x7
By (3.15), we have
-1 A1 A1 -1 -1
v =i < |9 - Rt @D + [ Rt o (@11) - v
A1,711 n Al/fll n-1

| R (@) = Ry o (257 we)

<Elyr-ap||+ &yt - apt

e ny _ pAum n-1
+||RPT,M1<d1,~)(Ql) RpTer(du-)(Ql >||

Since || F1 (1, x2, x3) || £ by and ||Gq (1, x2, x3) || £ g1, by Lemma 2.9, we have

[R5 (@) = Rz (2171
< ilq;;p? Qoo
< qm s - (@) - o (Rt ) - R (7 ) ) |
+p1]|Gi(al, a5, a5) ~ Gu(ai @y @) | + ok = i |+ 1 + )]

= i17711,0{’ [ Av(d}) - A <d}11_1> _p¥<F1 (1,5, x3) = 1 (x?‘l,xg,xg»

n-1 .n .n n-1 .n-1 _n
1—"1<x1 ,xz,x3)—F1<x1 , Xy ,x3>

n
+ P

n n-1 . n-1 _n n-1 n-1 _n-1
+ p F1<x1 , Xy ,x3>—F1<x1 S Xy, Xy )”

+p! ||G1 (at,al,ay) - Gy <a{‘_1, ast, a§_1> ”] )
(4.7)
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Since F; : X1 x X x X3 — Xj is Lipschitz continuous with constants p11, p12, p13, and (¢, x1)-
relaxed cocoercive with respect to A;1S; in the first arguments, G; : Xj x X5 x X3 — X; be
Lipschitz continuous with constants (v;1, vz, vi3), respectively, Lemma 2.10, we have

o) ()
<an (@) [Pt ) - (g )+ ) - () [
~q1py <F1(x1,x2,x3) Fl( ,xz,x3) ]q<A1(d )~ A1<dn 1>>>

< e ()P [P et ) = B (s ) | +||A1<d?>—A1(d¥*1) '

1

q q
+q1p1qJ1“F1(x1,x2,x3) Fl( ,xz,x3> - pir||x =Xy |
< 1 1 N q n q n 1|
(P iy + 7 (14 (n+1) Uy T qpi¥ify — Pk ,
F n 1 xn Y- F xn l A < xn—l —xn
1 27 X3 1 2 X3 )| S Hizf| X 2|
F n— n-1 .n -F n— n-1 _n-1 < n-1 _
1\ X rxz 7 X3 1\ X rxz r X3 Hiz (| X x5
-1
|G (at a2, a2) - Gi (a7 a2, a3 |
-1
<||Gi(a, at, a2) - Gi (a4, 0t a2)
+ ”Gl(a?_l,a;‘, aé‘) - G1<a? ,ay 1,a§> |
G n- n-1 _n-1 -G n- n-1 _n
+||Gi(alt, a) !, af 1(ar?, ay ™, al
< n-1 n n-1 n n-1 n
_v11|a1 - a +v12|a —-a, +v13|a —as||.
(4.8)
By (3.13), we know that [|x]*! — x7|| = af||y} — d?'||. Since G; : Xi x Xo x X5 — X; is Lipschitz

continuous with constants (v;1, vip, vi3), and S; : X; — CB(X;) is D-Lipschitz continuous with
constants s;, respectively, combing (4.4)—(4.8) and using Corollary 2.12, we have

n+1

(1-&)|x

<(1-a))x

n
_xl

n—-1

. 1 \% q1 T \" o /q a1
+ay[(1+qi01 1+n+1 G +eg(1+—= nrl) 1 o]
qi1
T 1 \¢
+1—<< ca: (P")T B+ ( +1> v?wmi’wﬂﬂ—f’?m)

= mpy
ot - ot (i goov ) )] e =17

1/q

n-1
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1
+aipy [#12”’(5!_1 - x5 || + p13 x;"l - x5 ||+ v (1 + — >51 x;’_l - x7
+v 1+ 1 S _xn_l —x™ +v 1+ 1 s xn—l —
. n+1)272 2 13 nr1/%3%s 3|
(4.9)
and so
X -
1 1 qn 1 T 1/q gn—l
gl oot s o )
1
qul_l o g g 1 q q q 1/q1
1, M 1 1 |
S —mp! ((C'ﬁ (P")7 K+ <1+m> Yy +41P?‘Ifllf‘11_P¥K1>
+prvn(1+ : si+|p} —pi (B + g1+ lleall)
! n+1 o
x ||a — x|+ ! alp [ + 12 (l + 1 >52) R
L T-gp it n+1 2 2

1 1 1
+ 1_—§?tx¥p{l |:</413 + V13<1 + o 1)53) xg’ — xg ]
(4.10)
For the sequences {x}},,, we have
= < (- | - | o -t - (- |+ @y - || @D

Since V, : X, — CB(X;) is D-Lipschitz continuous with constant v, and (o, {2)-relaxed
cocoercive, we have

n n-1 n n-1 92
Xy =Xy = <d2 -d >||

q2

_1]]92 _ _ _
= e | - e (o g (- ) )+ |t - (4.12)
1 92 1 92 N9
S<1+q202<1+n+1> vgz—q2§2+cq2<1+n+1> vgz> xg’—xgl
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It follows from (3.15) that

n Ax1,m2 n
Yy~ Rpg,Mz(dz,.) (©5)

<

‘|

A1 n-1\ _  n-1
R () ~ 3

vy -y

Az, n Ao, n-1
| R s (@) = Ry (257

(4.13)
<&llys -yl + & va ' - dy

Az, n Az, n-1
* ||RP2'M2(d2r') (QZ) B RPZ,MZ(dz/') <Q2 >“

Since || F2(x1, x2, x3) || < hy and [|Ga(x1, x2, x3) || £ &2, by using Lemma 2.9, we obtain

RA2M2 (QE‘) _ RAnz,le <Q§_l> “

Py, M(da,) Py, Ma(da,)
g2~1
T -1
<—2 —|Qp-
2 = Mypy
g2-1
T
< ——[[|Aa(dy) - Ax (&) ~ pa(Falg, x5, x3) - Ba (3 x5 ) |
T2 — Map,
+p5|Ga(as, a3, a5) - Ga(ay ™, a3, a3 )|
+|or = pr (ha + g + lleal))|
q2-
T
< 2 [||Ax () - Az (ar) - pr (Pa (o 22, ) = B (57, ) ) |
2 —Mmap,

n n ,n-1 .n n-1 .n-1 _n
+p2||F2(x1,x2 ,x3>—F2<x1 , Xy ,x3>

n
+ P

n-1 n-1 .n n-1 .n-1 _n-1
F2<x1 , Xy ,x3>—F2<x1 , Xy, Xy >|

+p3||Gaor, b2, b) — Ga (b, b b5 ) | + [ - 2

(hy+ g + ||52||)]~
(4.14)

Since F;, : X1 x X, x X3 — X is Lipschitz continuous with constants po1, oo, po3, and (¢, x2)-
relaxed cocoercive with respect to A,S; in the first arguments, G; : Xj x Xp x X3 — X is
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Lipschitz continuous with constants (vi1, vio, vi3), respectively, it follows from Lemma 2.10
that

|42 () - () = po(Fa ey, 23, 25) - Fa (e, 57, 2 ) ||
< e (02 || P2 ot ) = Ba (s o, ) || o+ || e () - Ao ()|

— qap (o, xt, ) = o (o, 270 1), Ty (Ao (d) - Az (7))

< e (05" || ot 5, ) — Ba (e ™ ) |+ [ (et - 4o (a5 ||
+ oy |Fa (a2, ) = Ba (7, o) | - | - 21|
< qu(Pz)qzﬂz1+Yz< . 11)> of + qaphyapsh - piral s - | ",
12 (o o, ) = B (e, )| < e [ = 7,
7o) - < Lt )| sl -
|G (o7, 2, b2) = Go (b b2 b2 |

< ”Gz(b{’,bg,bg) - Go(b b, 1)

+||Ga byt b2 1) - Ga (b b2 1)

+]|Ga by ba i) - Go (b5 b3 1)

n-1 n n-1 n n-1 n
< vy bl _bl + Vo bz —bz + V3 b3 —b3 .

(4.15)

By (3.13), we know that ||x;”1 - x5|| = af|lyy — d||. Since G; : X; x X3 x X3 — X; is Lipschitz
continuous with constants (vi1, vip, viz), and T; : X; — CB(X;) is D-Lipschitz continuous with
constants t;, respectively, combing (4.11)—(4.20) and using Corollary 2.12, we have

n+1

1-&)|x

<(1-a)

n 1 2 92 1 * g2 Ve n-1 1
+ajy <1+q20'2<1+n+1> \4 —q2§2+cq2<1+m> Uz) & 06;’71

-1

TZq 92 92 q2 1 * q2 q2 qu
n
+ 7 (qu (P2) "o + 7, (1 + p— 1> Uy + QapyPapiy — P;’Q)

2 = M2p;

n
_xz

n-1
x5 =Xy
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(ra+ge+leat) )|

+

p5—p5!

n n-1
x|

1
+azpr [#21||x¥_1 B x{‘” +pas || = x|+ V21<1 + 1>t1| X =t
V2 1+ ta||ocy ! =g || +vas( 1+ ! t3|x"71—x" ,
n+1 2 2 n+1 3 3
(4.16)
and so
| x;lJrl x;‘[

1 ., 1 P » 1 @ » 1/42 é;l—l
< 1—& 1-ay|1-( 1+g202 1+_n+1 Uy —@itcg | 1+— ) v, -
2

n+1 a;—l
—Tzqz_l 92 92 92 (1 = 9 n 9 n Ve
- mypl Cq(P3) " poy + 12 (1+ 1) U2 TP abn — prke
+plt 1 1 n_ n-1 h
prvn(1+——= b+ |ps —p3 | (h2 + &2 + leal])
X x"—x"*1'+ ! alpl +v1( 1+ ! t a7t - x
2 2 1_ §721 2P |\ K21 21 ] 1 1 1

n-1 n
X3~ — X5l

1 1
+1_§gtx2p2 H23 + V23 1+TL+1 t3

(4.17)
Using the same as the method, we can obtain
x5 = x5

1 1 a3 1 g3 1/q3 n-1
g—1_§n{1—ag’[l—<1+q303<1+n+1> vgs—q3§3+cq3<l+ ) v?) _s
3

n+1

ag"l
O B9, 4 1 \* , q i
_ n\43 , 93 5(1 3 n 3 _ Hn
r3—m3pg<<cq3(p3) ”33+Y3< +n+1> Y3 T APl P3K3>
1 _
+p§‘v33<1+n+1>u3+ py—pit (h3+g3+||£3||)>]}
X x"—x"‘1|+ ! allpt +vy( 1+ ! u X — X
X! = 2P5 [ a1 +va 1™ 1 1

n-1
X3

1 1
+qa3p3 H32 + V32 1+1’l+1 Uus

n
_x2

(4.18)
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Let

1 1 ¢ o 1 ¢ o 1/q1 én—l
N D R e
1
qul 1 \4¢
B - mlp;l <<C‘71 (P?)qlnullhl + Yfl <1 + nt 1) Utlh +q1p¥q}1l,[tlii — P1K1>

ik

1/q

. i
[a(n) = W“?P?
1 L

( )
I3(n) = - §" alp} :(#13 +V13<1 + n-1|-1>53>]’
( )

In(n) = 1= gn aspy

1 1 \% » 1 \® 0 1/92 én—l
I'n(n) = 1= ‘§2 1-aj 1—<1+q20'2<1+m) v, —q2§2+cq2<1+m> Uz> a;’l

T 2 2 2 ]' qZ 2 n 2 n
s << cq. ()" 12 +77 <1+n+1> vy +quzqu#32—pzkz>
n 1 n n—1
+phvn 1+n+1 tr + |ph — pb |(h2+g2+||£2||) ,
n n 1
I'3(n) = é" a5 P, (#23+V23<1+ n+1>t3>]’
n n 1
I31(n) = é" aspy <,u31 + V31< p— 1)“1)],

1 1
I'3(n) = T—g azpy (,1132 + Vsz( — )uz) ,
3
1/q3 s§1171

1 ® q3 1 ® a3 3
Tss(n) =1 o {1 ay|1- 1+Q303 1+Tl) v, —Q3§3+an<1+m> Us) T

1/q2

gs—1
T3

n\ 493 1 ® n n Ve
T ((Cqs (V5 )q‘ P‘gg +Y§ ’ <1 + m) U;k +4q3p5 ‘P3I‘Z§ —P3 K3>

o )

(4.19)

P -

1
+ng33<1 + P 1)113 +
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Letting @ (n + 1) = ([|Jx! — ||, [l = x2||, |x2*! = 22" (n = 0,1,2,...), then combining

(4.10),(4.17)-(4.19), we have @ (n + 1) < ¥(w, n) a (n), where

I'11(n) Tia(n) T3(n)
¥(w,n) = | Tau(n) T'n(n) Txnn) |, (4.20)
[31(n) Ta(n) T'az(n)

which is called the iterative matrix for Hybrid proximal point three-step algorithm
of nonlinear set-valued quasi-variational inclusions system involving (A,#)-Accretive
mappings. Using (4.20), lim, . ¢" = 0, a = limsup,_, a! < 1, p; = lim,_,p!' < oo, we
have

I'i(n) Tp(n) Tiz(n) I'n T2 I'is
¥(w) =limsup| I'n(n) I'n(n) In(n) | =] Ta In Ixs |, (4.21)
[31(n) Ts2(n) I'z3(n) I31 I';p T3

where limsup, ,_Tij(n) =T;; (i,j=1,2,3),and

-1
1/q Tfl

rll =1- 241 [1 - <1 + q‘lo-l’U?1 - qlgl + qu”?) - T —mip1

1/q1

q a1 a9 1
X(C‘hpl Pt 1 O Y @p1¢ipy - P1K1> + P1V1131] ,

Ty = ap1 (pao + v1282),

Iz =a1p1 (ﬂ13 + v1353)/
Ty = azpp (po1 + vartr),
g2-1
1/q2 T.
Tp=1-a [1 - (1 + 20205 — 2y + qu”?) B rg—z—mng
(4.22)
1/9>
(corb i - el + apaganls ) " + vt
I3 = apo [(,u23 + V23t3)] ’
I'31 = azps [(,usl + V31u1)],
I3 = “;P:& [(/«132 + V32u2)]/
93-1
1/q3 T,
T =1-as [1 - (1 + 430307 — q3gs + an”?) - 7’3‘3—7”3103

1/g3

a3 493 q3._.493 q3
x (%Ps K3zt Y3 U3 +qspP3¢spss — P3K3> + P3V33u3] .
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By using [38], we have
[+ 1| < 1% o, m)]|[[E ()] (4.23)
Letting

¥ (w)|| = max{T11, T2, T13, 121, [2, T23, T31, T32, T3z }- (4.24)

It follows from (4.22) and assumption condition (4.2) that 0 < ||[¥(w)|| < 1 and hence there
exists Ny > 0 and ||¥(w)|l« € (J|¥(w)]|,1) such that ¥(w,n) < ||¥(w)||« for all n > Nj.
Therefore, by (4.23), we have

[dn+ D] <[¥@)i][@a)]|, Vn>No. (4.25)
Without loss of generality we assume
[d@m+D)|| < ¥@)Ifa@], vn>1. (4.26)

By the property of the matrix norm [38], for n > 1, we have

n+l _
i

<@+ < @l a]. (4.27)

x x;

Hence, forany m >n >0and i =1,2,3, we have
m-1 m—1
[EAREAEDY Eartd B (K]} (4.28)
k=n k=n

It follows that [|x!" — x'|| — 0,as n — oo, and so that the {x]'} is a Cauchy sequence in X. Let
x! — x; asn — oo. By the Lipschitz continuity of S;(-), T;(-), U;(-), Vi(:), we can obtain

art—ar|| < (L+n)D(Si(x1), Si(a)) < (14 m)sil | -2

brrt=br | < (Len ) D(n () 1) ) < (et -], (4.29)
-] < (o oL () ) (oo Yl -]
et = ar| < (14 ) D(Vi(xrt) Vi) ) < (1407 Yot -
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It follows that {a'}, {b]'}, {c!'}, and {d]'} are also Cauchy sequences in X;. We can assume that
a! — a;, b’ — b, c' — ci,and d, — d, respectively. Noting that a!' € S;(x'), we have

d(a;,Si(x})) < |\a; - a}'|| +d(a}, Si(x}))
<|laj - af|| + D(Si(x}"), Si(x;)) (4.30)

< [laf =afll +sillxf = || — 0 (n— o).

Hence d(a}, Si(x})) = 0 and therefore a; € S;(x}). Similarly, we can prove that b} € T;(x]),
c; € Uj(x}7), and d; € V;(x}). By the Lipschitz continuity of S;(x}), T;(x}), U;(x}), and Vi(x]),
we have

* A1, * * * * * * *
dy = pllﬁl(d;_) (A1(d7) + pre1 + p1Ga(ai, a3, a3) — prFi(x], x5, X3)),

d; = R:;}Zf] (a3, (A1(d2) + pae2 + p2Ga (b1, 03, B3) = paFa (xf, 3, 33)), (4.31)

* A\, 3 * * * * * % %
ds = RP;A}Z(d;,A) (As(d3) + pses + psGa(ci, 3, ¢5) — paFa(x], x3,%3))

for i = 1,2,3, where p; > 0 is a constant. Thus, by Theorem (3.3), we know that
(x;‘, a;, b;‘, i, alz‘.‘)?:1 is solution of problem (3.2). This completes the proof. O

Corollary 4.2. Let X; be a gi-uniformly smooth Banach space, 1; : X; x X; — X; be a 7-Lipschtiz
continuous mapping, and A; : X; — X; be an ri-strongly n-accretive mapping and y;-Lipschitz
continuous. Let S;, T;, U;, Vi, Fi, Gi, M1, My, M3 be the same as in Theorem 4.1. If

gi—1
T;

) N\ 1/qi 3 o . ) 1/g;

qi qi qi qi qi_4qi qi

<1 + 4i0iv; — qibi + €40 ) -2 P—— <qu/’i Hig Vi Ui * qipiipty; — P1K1>
i=1 1 i

3
i=1
+a1p1 (#12 + V1282 + 13 + V13S3) + (P3V33u3 + p1viis: + P2V22t2)

+ azpr (#21 +vorfy + po3 + V23t3) + azp3 (#31 + V31Ul + U3 + Vszuz) <1,
(4.32)

where cg; > 0 is the same as in Lemma 2.10, p; € (0,7;/m;), and i = 1,2,3. Then problem (3.2) has a
solution (x},a;,b;,c;,dr) (i=1,2,3).

Remark 4.3. For a suitable choice of the mappings A;, n;, Fi, M;, Gi, €, Si, T;, U;, Vi(i = 1,2,3),
we can obtain several known results in [2-5, 9, 11-27, 29, 32-37] as special cases of
Theorem 4.1 and Corollary 4.2.
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