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The concept of weakly quasi-nonexpansive mappings with respect to a sequence is introduced.
This concept generalizes the concept of quasi-nonexpansive mappings with respect to a sequence
due to Ahmed and Zeyada (2002). Mainly, some convergence theorems are established and their
applications to certain iterations are given.

1. Introduction

In 1916, Tricomi [1] introduced originally the concept of quasi-nonexpansive for real
functions. Subsequently, this concept has studied for mappings in Banach and metric spaces
(see, e.g., [2–7]). Recently, some generalized types of quasi-nonexpansive mappings in metric
and Banach spaces have appeared. For example, see Ahmed and Zeyada [8], Qihou [9–11]
and others.

Unless stated to the contrary, we assume that (X, d) is a metric space. Let T : D ⊆ X →
X be any mapping and let F(T) be the set of all fixed points of T . If F : X → R where R is
the set of all real numbers and if c ∈ R, set Lc := {x ∈ X : F(x) ≤ c}. We use the symbol μ
to denote the usual Kuratowski measure of noncompactness. For some properties of μ, see
Zeidler [12, pages 493–495]. For a given x0 ∈ D, the Picard iteration (xn) is determined by:

(I) xn = T(xn−1) = Tn(x0), n ∈ N

where N is the set of all positive integers.
If X is a normed space, D is a convex set, and T : D → D, Ishikawa [13] gave the

following iteration:

(II) xn = Tα,β(xn−1) = Tn
α,β

(x0), Tα,β = (1 − α)I + αT[(1 − β)I + βT],
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for each n ∈ N, where α ∈ (0, 1) and β ∈ [0, 1). When β = 0, it yields that Tα,0 = (1−α)I +αT =
Tα. Therefore, the iteration scheme (II) becomes

xn = Tα(xn−1) = Tn
α (x0). (1.1)

This iteration is called Mann iteration [14].
The concepts of quasi-nonexpansive mappings, with respect to a sequence and

asymptotically regular mappings at a point were given in metric spaces as follows.

Definition 1.1 (see [6]). T : D → X is said to be quasi-nonexpansive mapping if for each
x ∈ D and for every p ∈ F(T), d(T(x), p) ≤ d(x, p).

Definition 1.2 (see [8]). The map T : D → X is said to be quasi-nonexpansive with respect to
(xn) ⊆ D if for all n ∈ N ∪ {0} and for every p ∈ F(T), d(xn+1, p) ≤ d(xn, p).

Lemma 2.1 in [8] stated that quasi-nonexpansiveness converts to quasi-
nonexpansiveness with respect to (Tn(x0)) (resp., (Tn

α (x0)), (Tn
α,β(x0))) for each x0 ∈ D.

The reverse implication is not true (see, [8, Example 2.1]). Also, the authors [8] showed that
the continuity of T : D → X leads to the closedness of F(T) and the converse is not true (see,
[8, Example 2.2]).

Definition 1.3 (see [15]). The mapping T : X → X is called an asymptotically regular at a
point x0 ∈ X if limn→∞d(Tn(x0), Tn+1(x0)) = 0.

The following definition is given by Angrisani and Clavelli.

Definition 1.4 (see [16]). Let X be a topological space. The function F : X → R is said to be
a regular-global-inf (r.g.i) at x ∈ X if F(x) > infX(F) implies that there exists ε > 0 such that
ε < F(x) − infX(F) and a neighborhood Nx of x such that F(y) > F(x) − ε for each y ∈ Nx. If
this condition holds for each x ∈ X, then F is said to be an r.g.i on X.

Definition 1.5 (see [17]). Let D be a convex subset of a normed space X. A mapping T : D →
D is called directionally nonexpansive if ‖T(x) − T(m)‖ ≤ ‖x −m‖ for each x ∈ D and for all
m ∈ [x, T(x)]where [x, y] denotes the segment joining x and y; that is, [x, y] = {λx+(1−λ)y :
0 ≤ λ ≤ 1}.

Our objective in this paper is to introduce the concept of weakly quasi-nonexpansive
mappings with respect to a sequence. Mainly, we establish some convergence theorems of a
sequence in complete metric spaces. These theorems generalize and improve [8, Theorems
2.1 and 2.2], of [7, Theorems 1.1 and 1.1′], [5, Theorem 3.1], and [6, Proposition 1.1].

2. Main Result

In this section, we introduce the concept of weak quasi-nonexpansiveness of a mapping with
respect to a sequence that generalizes quasi-nonexpansiveness of a mapping with respect
to a sequence in [8]. We give a lemma and a counterexample to show the relation between
our new concept; the previous one appeared in [8] and a monotonically decreasing sequence
(d(xn, F(T))).
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Definition 2.1. Let (X, d) be a metric space and let (xn) be a sequence in D ⊆ X. Assume that
T : D → X is a mapping with F(T)/=φ satisfying limn→∞d(xn, F(T)) = 0. Thus, for a given
ε > 0 there is a n1(ε) ∈ N such that d(xn, F(T)) < ε for all n ≥ n1(ε). T is called weakly
quasi-nonexpansive with respect to (xn) ⊆ D if for each ε > 0 there exists a p(ε) ∈ F(T) such
that for all n ∈ N with n ≥ n1(ε), d(xn, p(ε)) < ε.

We state the following lemma without proof.

Lemma 2.2. Let (X, d) be a metric space and, (xn) be a sequence inD ⊆ X. Assume that T : D → X
is a mapping with F(T)/=φ satisfying limn→∞d(xn, F(T)) = 0. If T is quasi-nonexpansive with
respect to (xn), then

(A) T is weakly quasi-nonexpansive with respect to (xn);

(B) (d(xn, F(T))) is a monotonically decreasing sequence in [0,∞).

The following example shows that the converse of Lemma 2.2 may not be true.

Example 2.3. Let X = [0, 1] be endowed with the Euclidean metric d. We define the map
T : X → X by T(x) = (3/4)x2 + (1/4)x for each x ∈ X. Assume that xn = 1/n for all n ∈
N − {1, 2, 3}. Then

F(T) = {0, 1}, lim
n→∞

d(xn, F(T)) = lim
n→∞

d

(
1
n
, F(T)

)
= 0. (2.1)

Given ε > 0, there exists n1(ε) ∈ N − {1, 2, 3} such that for all n ∈ N − {1, 2, 3} with n ≥ n1(ε),
there exists p = 0 ∈ F(T),

d(xn, 0) =
∣∣∣∣ 1n − 0

∣∣∣∣ < ε. (2.2)

Thus, T is weakly quasi-nonexpansive with respect to (xn). But, T is not quasi-nonexpansive
with respect to (xn) (Indeed, there exists 1 ∈ F(T) such that for all n ∈ N−{1, 2, 3}, d(xn+1, 1) >
d(xn, 1)). Furthermore, the sequence (d(xn, F(T))) = (1/n) is monotonically decreasing in
[0,∞).

Before stating the main theorem, let us introduce the following lemma without proof.

Lemma 2.4. Let (X, d) be a metric space and let (xn) be a sequence inD ⊆ X. Assume that T : D →
X is weakly quasi-nonexpansive with respect to (xn) with F(T)/=φ satisfying limn→∞d(xn, F(T)) =
0. Then, (xn) is a Cauchy sequence.

Now, we give the main theorem without proof in the following way.

Theorem 2.5. Let (xn) be a sequence in a subset D of a metric space (X, d) and let T : D → X be a
map such that F(T)/=φ. Then

(a) limn→∞d(xn, F(T)) = 0 if (xn) converges to a point in F(T);

(b) (xn) converges to a point in F(T) if limn→∞d(xn, F(T)) = 0, F(T) is a closed set, T is
weakly quasi-nonexpansive with respect to (xn), and X is complete.
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As corollaries of Theorem 2.5, we have the following.

Corollary 2.6. For each x0 ∈ D, let (Tn(x0)) be a sequence in a subsetD of a metric space (X, d) and
let T : D → X be a map such that F(T)/=φ. Then

(a) limn→∞d(Tn(x0), F(T)) = 0 if (Tn(x0)) converges to a point in F(T);

(b) (Tn(x0)) converges to a point in F(T) if limn→∞d(Tn(x0), F(T)) = 0, F(T) is a closed
set, T is weakly quasi-nonexpansive with respect to (Tn(x0)) and X is complete.

Corollary 2.7. For each x0 ∈ D, let (Tn
α (x0)) be a sequence in a subsetD of a normed space (X, ‖ · ‖)

and let T : D → X be a map such that F(T)/=φ. Then

(a) limn→∞d(Tn
α (x0), F(T)) = 0 if (Tn

α (x0)) converges to a point in F(T);

(b) (Tn
α (x0)) converges to a point in F(T) if limn→∞d(Tn

α (x0), F(T)) = 0, F(T) is a closed
set, T is weakly quasi-nonexpansive with respect to (Tn

α (x0)), and X is a Banach space.

Corollary 2.8. For each x0 ∈ D, let (Tn
α,β(x0)) be a sequence in a subsetD of a normed space (X, ‖ ·‖)

and let T : D → X be a map such that F(T)/=φ. Then

(a) limn→∞d(Tn
α,β

(x0), F(T)) = 0 if (Tn
α,β

(x0)) converges to a point in F(T);

(b) (Tn
α,β

(x0)) converges to a point in F(T) if limn→∞d(Tn
α,β

(x0), F(T)) = 0, F(T) is a closed
set, T is weakly quasi-nonexpansive with respect to (Tn

α,β
(x0)), and X is a Banach space.

Remark 2.9. (I) Theorem 2.5 generalizes and improves [8, Theorem 2.1] since T is weakly
quasi-nonexpansive with respect to (xn) instead of T being quasi-nonexpansive with respect
to (xn).

(II) Corollary 2.6 generalizes and improves [7, Theorem 1.1 page 462] for some
reasons. These reasons are the following:

(1) the closedness of D is superfluous;

(2) F(T) is closed instead of T being continuous;

(3) X is a complete metric space instead of X is a Banach space;

(4) T is weakly quasi-nonexpansive with respect to (Tn(x0)) in lieu of T being quasi-
nonexpansive.

(III)Corollary 2.7 (resp. Corollary 2.8) generalizes and improves [7, Theorem 1.1′ page
469] (resp. of [5, Theorem 3.1 page 98]) since the reasons (1) and (2) in (II) hold and

(1)′ the convexity of D in Theorem 1.1′ is superfluous;

(2)′ T is weakly quasi-nonexpansive with respect to (Tn
α (x0)) (resp. (Tn

α,β(x0)) instead of
T being quasi-nonexpansive.

(IV) If we take T : D → X instead of T : X → X, F(T) is closed in lieu of T : X → X
being continuous and T is weakly quasi-nonexpansive with respect to (Tn(x0)) in lieu of T
being quasi-nonexpansive, then Corollary 2.6 generalizes and improves Kirk [6, Proposition
1.1].

In the light of Lemma 2.2 and Example 2.3, we state the following theorem.
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Theorem 2.10. Let (xn) be a sequence in a subsetD of a complete metric space (X, d) and T : D → X
be a map such that F(T)/=φ is a closed set. Assume that

(i) T is weakly quasi-nonexpansive with respect to (xn);

(ii) (d(xn, F(T))) is a monotonically decreasing sequence in [0,∞);

(iii) limn→∞d(xn, xn+1) = 0;

(iv) if the sequence (yn) satisfies limn→∞d(yn, yn+1) = 0, then

lim inf
n
d
(
yn, F(T)

)
= 0 or lim sup

n
d
(
yn, F(T)

)
= 0. (2.3)

Then (xn) converges to a point in F(T).

Proof. From the boundedness from below by zero of the sequence (d(xn, F(T))) and
(ii), we obtain that limn→∞d(xn, F(T)) exists. So, from (iii) and (iv), we have that
lim infnd(xn, F(T)) = 0 or lim supnd(xn, F(T)) = 0. Then limn→∞d(xn, F(T)) = 0 (see, [18,
page 37]). Therefore, by Theorem 2.5(b), the sequence (xn) converges to a point in F(T).

Corollary 2.11. For each x0 ∈ D, let (Tn(x0)) be a sequence in a subsetD of a complete metric space
(X, d) and let T : D → X be a map such that F(T)/=φ is a closed set. Assume that

(i) T is weakly quasi-nonexpansive with respect to (Tn(x0));

(ii) (d(Tn(x0), F(T))) is a monotonically decreasing sequence in [0,∞);

(iii) limn→∞d(Tn(x0), Tn+1(x0)) = 0;

(iv) if the sequence (yn) satisfies limn→∞d(yn, yn+1) = 0, then

lim inf
n
d
(
yn, F(T)

)
= 0 or lim sup

n
d
(
yn, F(T)

)
= 0. (2.4)

Then (Tn(x0)) converges to a point in F(T).

Corollary 2.12. For each x0 ∈ D, let (Tn
α (x0)) be a sequence in a subset D of a Banach space X and

let T : D → X be a map such that F(T)/=φ is a closed set. Assume that

(i) T is weakly quasi-nonexpansive with respect to (Tn
α (x0));

(ii) (d(Tn
α (x0), F(T))) is a monotonically decreasing sequence in [0,∞);

(iii) limn→∞‖Tn
α (x0) − Tn+1

α (x0)‖ = 0;

(iv) if the sequence (yn) satisfies limn→∞‖yn − yn+1‖ = 0, then

lim inf
n
d
(
yn, F(T)

)
= 0 or lim sup

n
d
(
yn, F(T)

)
= 0. (2.5)

Then (Tn
α (x0)) converges to a point in F(T).

Corollary 2.13. For each x0 ∈ D, let (Tn
α,β

(x0)) be a sequence in a subset D of a Banach space X and
let T : D → X be a map such that F(T)/=φ is a closed set. Assume that
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(i) T is weakly quasi-nonexpansive with respect to (Tn
α,β(x0));

(ii) (d(Tn
α,β(x0), F(T))) is a monotonically decreasing sequence in [0,∞);

(iii) limn→∞‖Tn
α,β

(x0) − Tn+1
α,β

(x0)‖ = 0;

(iv) if the sequence (yn) satisfies limn→∞‖yn − yn+1‖ = 0, then

lim inf
n
d
(
yn, F(T)

)
= 0 or lim sup

n
d
(
yn, F(T)

)
= 0. (2.6)

Then (Tn
α,β

(x0)) converges to a point in F(T).

Remark 2.14. From Lemma 2.2, we find that [8, Theorem 2.2] is a special case of Theorem 2.10.
Also, Corollary 2.11 generalizes and improves [7, Theorem 1.2 page 464] for the same reasons
in Remark 2.9(II).

We establish another consequence of Theorem 2.5 as follows.

Theorem 2.15. Let (xn) be a sequence in a subset D of a complete metric space (X, d). Furthermore,
let T : D → X be a mapping such that F(T)/=φ is a closed set. Assume that the conditions (i) and
(ii) in Theorem 2.10 hold and

(iii)′ the sequence (xn) contains a convergent subsequence (xnj ) converging to x
∗ ∈ D such that

there exists a continuous mapping S : D → D satisfying S(xnj ) = xnj+1 for all j ∈ N and
d(S(x∗), p) < d(x∗, p) for some p ∈ F(T).

Then x∗ ∈ F(T) and limn→∞xn = x∗.

Proof. From (ii), one can deduce that limn→∞d(xn, F(T)) exists, say equal r ∈ [0,∞). Suppose
that x∗ does not belong to F(T). So, we have from (iii)′ that for some p ∈ F(T),

d
(
x∗, p

)
>d

(
S(x∗), p

)
=d

(
S

(
lim
j→∞

xnj

)
, p

)
=d

(
lim
j→∞

S
(
xnj

)
, p

)
=d

(
lim
j→∞

xnj+1, p

)
=d

(
x∗, p

)
.

(2.7)

This contradiction implies that x∗ ∈ F(T). Then,

r = lim
n→∞

d(xn, F(T)) = lim
j→∞

d
(
xnj , F(T)

)
= d

(
lim
j→∞

xnj , F(T)
)

= d(x∗, F(T)) = 0. (2.8)

From Theorem 2.5(b), we obtain that limn→∞xn = x∗.

Corollary 2.16. For each x0 ∈ D, let (Tn(x0)) be a sequence in a subsetD of a complete metric space
(X, d). Furthermore, let T : D → X be a mapping such that F(T)/=φ is a closed set. Assume that the
conditions (i) and (ii) in Corollary 2.11 hold and

(iii)′ the sequence (Tn(x0)) contains a convergent subsequence (Tnj (x0)) converging to x∗ ∈ D
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such that there exists a continuous mapping S : D → D satisfying S(Tnj (x0)) =
Tnj+1(x0) for all j ∈ N and d(S(x∗), p) < d(x∗, p) for some p ∈ F(T).

Then x∗ ∈ F(T) and limn→∞Tn(x0) = x∗.

Corollary 2.17. For each x0 ∈ D, let (Tn
α (x0)) be a sequence in a subsetD of a complete metric space

(X, d). Furthermore, let T : D → X be a mapping such that F(T)/=φ is a closed set. Assume that the
conditions (i) and (ii) in Corollary 2.12 hold and

(iii)′ the sequence (Tn
α (x0)) contains a convergent subsequence (T

nj

α (x0)) converging to x∗ ∈
D such that there exists a continuous mapping S : D → D satisfying S(T

nj

α (x0)) =
T
nj+1
α (x0) for all j ∈ N and d(S(x∗), p) < d(x∗, p) for some p ∈ F(T).

Then x∗ ∈ F(T) and limn→∞Tn
α (x0) = x∗.

Corollary 2.18. For each x0 ∈ D, let (Tn
α,β

(x0)) be a sequence in a subsetD of a complete metric space
(X, d). Furthermore, let T : D → X be a mapping such that F(T)/=φ is a closed set. Assume that the
conditions (i) and (ii) in Corollary 2.13 hold and

(iii)′ the sequence (Tn
α,β

(x0)) contains a convergent subsequence (T
nj

α,β
(x0)) converging to x∗ ∈

D such that there exists a continuous mapping S : D → D satisfying S(T
nj

α,β(x0)) =

T
nj+1
α,β

(x0) for all j ∈ N and d(S(x∗), p) < d(x∗, p) for some p ∈ F(T).

Then x∗ ∈ F(T) and limn→∞Tn
α,β(x0) = x∗.

Remark 2.19. Theorem 1.3 in [7] is a special case of Corollary 2.16 for the same reasons in
Remark 2.9(II) and for the generalization of the conditions (1.6) and (1.7) in [7, Theorem 1.3]
to the condition (iii)′ in Corollary 2.16.

From [17, Corollary 2.4] and Theorem 2.5(b), one can prove the following theorem.

Theorem 2.20. Let T : X → X be a mapping of a complete metric space (X, d) satisfying

(i) d(T(x), T2(x)) ≤ hd(x, T(x)) for some h ∈ (0, 1) and for all x ∈ X;

(ii) μ(T(Lc)) ≤ kμ(Lc) for some k < 1 and for all c > 0;

(iii) F is an r.g.i. on X;

(iv) (xn) is a sequence in X such that limn→∞d(xn, Txn) = 0 and T is weakly quasi-
nonexpansive with respect to (xn).

Then (xn) converges to a point in F(T).

Corollary 2.21. Let T : X → X be a mapping of a complete metric space (X, d) satisfying

(i) d(T(x), T2(x)) ≤ hd(x, T(x)) for some h ∈ (0, 1) and for all x ∈ X;

(ii) μ(T(Lc)) ≤ kμ(Lc) for some k < 1 and for all c > 0;

(iii) F is an r.g.i. on X;

(iv) (Tn(x0)) is a sequence satisfying limn→∞d(Tn(x0), Tn+1(x0)) = 0 for each x0 ∈ X and T
is weakly quasi-nonexpansive with respect to (Tn(x0)).

Then (Tn(x0)) converges to a point in F(T).
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Corollary 2.22. Let T : X → X be a mapping of a Banach space (X, d) satisfying

(i) ‖T(x) − T2(x)‖ ≤ h‖x − T(x)‖ for some h ∈ (0, 1) and for all x ∈ X;

(ii) μ(T(Lc)) ≤ kμ(Lc) for some k < 1 and for all c > 0;

(iii) F is an r.g.i. on X;

(iv) (Tn
α (x0)) is a sequence in X such that limn→∞‖Tn

α (x0) − TTn
α (x0)‖ = 0 for each x0 ∈ X

and T is weakly quasi-nonexpansive with respect to (Tn
α (x0)).

Then (Tn
α (x0)) converges to a point in F(T).

Corollary 2.23. Let T : X → X be a mapping of a Banach space (X, d) satisfying

(i) ‖T(x) − T2(x)‖ ≤ h‖x − T(x)‖ for some h ∈ (0, 1) and for all x ∈ X;

(ii) μ(T(Lc)) ≤ kμ(Lc) for some k < 1 and for all c > 0;

(iii) F is an r.g.i. on X;

(iv) (Tn
α,β

(x0)) is a sequence inX such that limn→∞‖Tn
α,β

(x0)−TTn
α,β

(x0)‖ = 0 for each x0 ∈ X

and T is weakly quasi-nonexpansive with respect to (Tn
α,β(x0)).

Then (Tn
α,β

(x0)) converges to a point in F(T).

Theorem 2.24. LetD be a bounded closed convex subset of a Banach space X. Suppose that T : D →
D satisfies

(i) T is directionally nonexpansive on D;

(ii) μ(T(Lc)) ≤ kμ(Lc) for some k < 1 and for all c > 0;

(iii) F is an r.g.i. on D;

(iv) (xn) ⊆ D satisfies limn→∞‖xn−Txn‖ = 0 and T is weakly quasi-nonexpansive with respect
to (xn).

Then (xn) converges to a point in F(T).

Proof. The conclusion is obtained by combining [17, Theorem 3.3] and Theorem 2.5(b).

Corollary 2.25. LetD be a bounded closed convex subset of a Banach spaceX. Suppose that T : D →
D satisfies

(i) T is directionally nonexpansive on D;

(ii) μ(T(Lc)) ≤ kμ(Lc) for some k < 1 and for all c > 0;

(iii) F is an r.g.i. on D;

(iv) (Tn(x0)) for each x0 ∈ D satisfies limn→∞‖Tn(x0) − Tn+1(x0)‖ = 0 and T is weakly
quasi-nonexpansive with respect to (Tn(x0)).

Then (Tn(x0)) converges to a point in F(T).

Corollary 2.26. LetD be a bounded closed convex subset of a Banach spaceX. Suppose that T : D →
D satisfies

(i) T is directionally nonexpansive on D;
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(ii) μ(T(Lc)) ≤ kμ(Lc) for some k < 1 and for all c > 0;

(iii) F is an r.g.i. on D;

(iv) (Tn
α (x0)) for each x0 ∈ D satisfies limn→∞‖Tn

α (x0) − TTn
α (x0)‖ = 0 and T is weakly

quasi-nonexpansive with respect to (Tn
α (x0)).

Then (Tn
α (x0)) converges to a point in F(T).

Corollary 2.27. LetD be a bounded closed convex subset of a Banach spaceX. Suppose that T : D →
D satisfies

(i) T is directionally nonexpansive on D;

(ii) μ(T(Lc)) ≤ kμ(Lc) for some k < 1 and for all c > 0;

(iii) F is an r.g.i. on D;

(iv) (Tn
α,β(x0)) for each x0 ∈ D satisfies limn→∞‖Tn

α,β(x0) − TTn
α,β(x0)‖ = 0 and T is weakly

quasi-nonexpansive with respect to (Tn
α,β

(x0)).

Then (Tn
α,β

(x0)) converges to a point in F(T).

Remark 2.28. It is worth to mention that Corollaries 2.12, 2.13, 2.17, 2.18, 2.21–2.23, 2.25–2.27
are new results.
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