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Motivated by the method of Xu (2006) and Matsushita and Takahashi (2008) , we characterize
the set of all common fixed points of a family of nonexpansive mappings by the notion of Mosco
convergence and prove strong convergence theorems for nonexpansive mappings and semigroups
in a uniformly convex Banach space.

1. Introduction

Let C be a nonempty bounded closed convex subset of a Banach space and T : C → C
a nonexpansive mapping; that is, T satisfies ‖Tx − Ty‖ ≤ ‖x − y‖ for any x, y ∈ C, and
consider approximating a fixed point of T . This problem has been investigated by many
researchers and various types of strong convergent algorithm have been established. For
implicit algorithms, see Browder [1], Reich [2], Takahashi and Ueda [3], and others. For
explicit iterative schemes, seeHalpern [4], Wittmann [5], Shioji and Takahashi [6], and others.
Nakajo and Takahashi [7] introduced a hybrid type iterative scheme by using the metric
projection, and recently Takahashi et al. [8] established a modified type of this projection
method, also known as the shrinking projection method.

Let us focus on the following methods generating an approximating sequence to a
fixed point of a nonexpansive mapping. Let C be a nonempty bounded closed convex subset
of a uniformly convex and smooth Banach space E and let T be a nonexpansive mapping of
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C into itself. Xu [9] considered a sequence {xn} generated by

x1 = x ∈ C,

Cn = clco {z ∈ C : ‖z − Tz‖ ≤ tn‖xn − Txn‖},
Dn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Dnx

(1.1)

for each n ∈ N, where clco D is the closure of the convex hull of D, ΠCn∩Dn is the generalized
projection onto Cn ∩ Dn, and {tn} is a sequence in (0, 1) with tn → 0 as n → ∞. Then, he
proved that {xn} converges strongly to ΠF(T)x. Matsushita and Takahashi [10] considered a
sequence {yn} generated by

y1 = x ∈ C,

Cn = clco
{
z ∈ C : ‖z − Tz‖ ≤ tn

∥∥yn − Tyn

∥∥},

Dn =
{
z ∈ C :

〈
yn − z, J

(
x − yn

)〉 ≥ 0
}
,

yn+1 = PCn∩Dnx

(1.2)

for each n ∈ N, where PCn∩Dn is the metric projection onto Cn ∩ Dn and {tn} is a sequence in
(0, 1) with tn → 0 as n → ∞. They proved that {yn} converges strongly to PF(T)x.

In this paper, motivated by these results, we characterize the set of all common fixed
points of a family of nonexpansive mappings by the notion of Mosco convergence and prove
strong convergence theorems for nonexpansive mappings and semigroups in a uniformly
convex Banach space.

2. Preliminaries

Throughout this paper, we denote by E a real Banach space with norm ‖ · ‖. We write xn ⇀ x
to indicate that a sequence {xn} converges weakly to x. Similarly, xn → x will symbolize
strong convergence. Let G be the family of all strictly increasing continuous convex functions
g : [0,∞) → [0,∞) satisfying that g(0) = 0. We have the following theorem [11, Theorem 2]
for a uniformly convex Banach space.

Theorem 2.1 (Xu [11]). E is a uniformly convex Banach space if and only if, for every bounded
subset B of E, there exists gB ∈ G such that

∥∥λx + (1 − λ)y
∥∥2 ≤ λ‖x‖2 + (1 − λ)

∥∥y
∥∥2 − λ(1 − λ)gB

(∥∥x − y
∥∥) (2.1)

for all x, y ∈ B and 0 ≤ λ ≤ 1.

Bruck [12] proved the following result for nonexpansive mappings.
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Theorem 2.2 (Bruck [12]). Let C be a bounded closed convex subset of a uniformly convex Banach
space E. Then, there exists γ ∈ G such that

γ

(∥
∥
∥
∥
∥
T

(
n∑

i=1

λixi

)

−
n∑

i=1

λiTxi

∥
∥
∥
∥
∥

)

≤ max
1≤j<k≤n

(∥∥xj − xk

∥
∥ − ∥

∥Txj − Txk

∥
∥) (2.2)

for all n ∈ N, {x1, x2, . . . , xn} ⊂ C, {λ1, λ2, . . . , λn} ⊂ [0, 1] with
∑n

i=1 λi = 1 and nonexpansive
mapping T of C into E.

Let {Cn} be a sequence of nonempty closed convex subsets of a reflexive Banach space
E. We denote the set of all strong limit points of {Cn} by s-LinCn, that is, x ∈ s-LinCn if and
only if there exists {xn} ⊂ E such that {xn} converges strongly to x and that xn ∈ Cn for all
n ∈ N. Similarly the set of all weak subsequential limit points by w-LsnCn; y ∈ w-LsnCn if
and only if there exist a subsequence {Cni} of {Cn} and a sequence {yi} ⊂ E such that {yi}
converges weakly to y and that yi ∈ Cni for all i ∈ N. If C0 satisfies that C0 = s-LinCn =
w-LsnCn, then we say that {Cn} converges to C0 in the sense of Mosco and we write C0 =
M-limnCn. By definition, it always holds that s-LinCn ⊂ w-LsnCn. Therefore, to prove C0 =
M-limnCn, it suffices to show that

w-Ls
n
Cn ⊂ C0 ⊂ s-Li

n
Cn. (2.3)

One of the simplest examples of Mosco convergence is a decreasing sequence {Cn} with
respect to inclusion. The Mosco limit of such a sequence is

⋂∞
n=1Cn. For more details, see

[13].
Suppose that E is smooth, strictly convex, and reflexive. The normalized duality

mapping of E is denoted by J , that is,

Jx =
{
x∗ ∈ E∗ : ‖x‖2 = 〈x, x∗〉 = ‖x∗‖2

}
(2.4)

for x ∈ E. In this setting, we may show that J is a single-valued one-to-one mapping onto E∗.
For more details, see [14–16].

Let C be a nonempty closed convex subset of a strictly convex and reflexive Banach
space E. Then, for an arbitrarily fixed x ∈ E, a function C  y �→ ‖y − x‖2 ∈ R has a unique
minimizer yx ∈ C. Using such a point, we define the metric projection PC : E → C by PCx =
yx for every x ∈ E. The metric projection has the following important property: x0 = PCx if
and only if x0 ∈ C and 〈x0 − z, J(x − x0)〉 ≥ 0 for all z ∈ C.

In the same manner, we define the generalized projection [17] ΠC : E → C for a
nonempty closed convex subset C of a strictly convex, smooth, and reflexive Banach space E
as follows. For a fixed x ∈ E, a function C  y �→ ‖y‖2 − 2〈y, J(x)〉 + ‖x‖2 ∈ R has a unique
minimizer and we define ΠCx by this point. We know that the following characterization
holds for the generalized projection [17, 18]: x0 = ΠCx if and only if x0 ∈ C and 〈x0 − z, Jx −
Jx0〉 ≥ 0 for all z ∈ C.

Tsukada [19] proved the following theorem for a sequence of metric projections in a
Banach space.

Theorem 2.3 (Tsukada [19]). Let E be a reflexive and strictly convex Banach space and let {Cn}
be a sequence of nonempty closed convex subsets of E. If C0 = M-limnCn exists and nonempty, then,
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for each x ∈ E, {PCnx} converges weakly to PC0x, where PK is the metric projection onto a nonempty
closed convex subset K of E. Moreover, if E has the Kadec-Klee property, the convergence is in the
strong topology.

On the other hand, Ibaraki et al. [20] proved the following theorem for a sequence of
generalized projections in a Banach space.

Theorem 2.4 (Ibaraki et al. [20]). Let E be a strictly convex, smooth, and reflexive Banach space
and let {Cn} be a sequence of nonempty closed convex subsets of E. If C0 = M-limnCn exists and
nonempty, then, for each x ∈ E, {ΠCnx} converges weakly to ΠC0x, where ΠK is the generalized
projection onto a nonempty closed convex subset K of E. Moreover, if E has the Kadec-Klee property,
the convergence is in the strong topology.

Kimura [21] obtained the further generalization of this theorem by using the Bregman
projection; see also [22].

Theorem 2.5 (Kimura [21]). Let C be a nonempty closed convex subset of a reflexive Banach space
E and let f : E → (−∞,∞] be a Bregman function on C; that is, (i)f is lower semicontinuous and
strictly convex; (ii) C is contained by the interior of the domain of f ; (iii)f is Gâteaux differentiable
on C; (iv) the subsets {u ∈ C : Df(y, u) ≤ α} and {v ∈ C : Df(v, x) ≤ α} of C are both bounded for
all x, y ∈ C and α ≥ 0, whereDf(y, x) = f(y)− f(x) + 〈∇f(x), x−y〉 for all y ∈ D and x ∈ C. Let
{Cn} be a sequence of nonempty closed convex subsets of C such that C0 = M-limnCn exists and is
nonempty. Suppose that f is sequentially consistent; that is, for any bounded sequence {xn} of C and
{yn} of the domain of f , limn→∞Df(yn, xn) = 0 implies limn→∞‖yn − xn‖ = 0. Then, the sequence

{Πf

Cn
x} of Bregman projections converges strongly toΠf

C0
x for all x ∈ C.

We note that the generalized duality mapping J coincides with ∇f if the function f is
defined by f(x) = ‖x‖2/2 for x ∈ E. In this case, the Bregman projectionΠf

K with respect to f
becomes the generalized projection ΠK for any nonempty closed convex subset K of E.

3. Main Results

Let C be a nonempty closed convex subset of E and let {Tn} be a sequence of mappings of C
into itself such that F =

⋂∞
n=1F(Tn)/= ∅. We consider the following conditions.

(I) For every bounded sequence {zn} in C, limn→∞‖zn −Tnzn‖ = 0 implies ωw(zn) ⊂ F,
where ωw(zn) is the set of all weak cluster points of {zn}; see [23–25].

(II) for every sequence {zn} in C and z ∈ C, zn → z and Tnzn → z imply z ∈ F.

We know that condition (I) implies condition (II). Then, we have the following results.

Theorem 3.1. LetC be a nonempty bounded closed convex subset of a uniformly convex Banach space
E and let {Tn} be a family of nonexpansive mappings of C into itself with F =

⋂∞
n=1F(Tn)/= ∅. Let

Cn(tn) = clco {z ∈ C : ‖z − Tnz‖ ≤ tn} for each n ∈ N, where {tn} ⊂ [0,∞). Then, the following are
equivalent:

(i) {Tn} satisfies condition (I);

(ii) for every {tn} ⊂ [0,∞) with tn → 0 as n → ∞,M-limnCn(tn) = F.
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Proof. First, let us prove that (i) implies (ii). Let {tn} ⊂ [0,∞) with tn → 0 as n → ∞. It is
obvious that F ⊂ Cn(tn) and Cn(tn) is closed and convex for all n ∈ N. Thus we have

F ⊂ s-Li
n
Cn(tn). (3.1)

Let z ∈ w-LsnCn(tn). Then, there exists a sequence {zi} such that zi ∈ Cni(tni) for all i ∈ N

and zi ⇀ z as i → ∞. Let {un} be a sequence in C such that un ∈ Cn(tn) for every n ∈ N

and that uni = zi for all i ∈ N. Fix n ∈ N. From the definition of Cn(tn), there exist m ∈ N,
{λ1, λ2, . . . , λm} ⊂ [0, 1], and {y1, y2, . . . , ym} ⊂ C such that

m∑

i=1

λi = 1,

∥
∥
∥
∥
∥
un −

m∑

i=1

λiyi

∥
∥
∥
∥
∥
< tn,

∥
∥yi − Tnyi

∥
∥ ≤ tn (3.2)

for each i = 1, 2, . . . , m. On the other hand, by Theorem 2.2, there exists a strictly increasing
continuous convex function γ : [0,∞) → [0,∞) with γ(0) = 0 such that

γ

(∥∥∥∥∥
T

(
n∑

i=1

λixi

)

−
n∑

i=1

λiTxi

∥∥∥∥∥

)

≤ max
1≤j<k≤n

(∥∥xj − xk

∥∥ − ∥∥Txj − Txk

∥∥) (3.3)

for all n ∈ N, {x1, x2, . . . , xn} ⊂ C, {λ1, λ2, . . . , λn} ⊂ [0, 1] with
∑n

i=1 λi = 1 and nonexpansive
mapping T of C into E. Thus we get

‖un − Tnun‖ ≤
∥∥∥∥∥
un −

m∑

i=1

λiyi

∥∥∥∥∥
+

∥∥∥∥∥

m∑

i=1

λiyi −
m∑

i=1

λiTnyi

∥∥∥∥∥

+

∥∥∥∥∥

m∑

i=1

λiTnyi − Tn

(
m∑

i=1

λiyi

)∥∥∥∥∥
+

∥∥∥∥∥
Tn

(
m∑

i=1

λiyi

)

− Tnun

∥∥∥∥∥

≤ 3tn + γ−1
(

max
1≤j<k≤m

(∥∥yj − yk

∥∥ − ∥∥Tnyj − Tnyk

∥∥)
)

≤ 3tn + γ−1
(

max
1≤j<k≤m

(∥∥yj − Tnyj

∥∥ +
∥∥yk − Tnyk

∥∥)
)

≤ 3tn + γ−1(2tn)

(3.4)

for every n ∈ N, which implies ‖un − Tnun‖ → 0 as n → ∞. From condition (I), we get
z ∈ ωw(zi) ⊂ ωw(un) ⊂ F, that is,

w-Ls
n
Cn(tn) ⊂ F. (3.5)

By (3.1) and (3.5), we have

M-lim
n

Cn(tn) = F. (3.6)
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Next we show that (ii) implies (i). Let {zn} be a sequence in C such that

lim
n→∞

‖zn − Tnzn‖ = 0 (3.7)

and define {tn} by tn = ‖zn − Tnzn‖ for each n ∈ N. Suppose that a subsequence {znk} of {zn}
converges weakly to z. Then since zn ∈ Cn(tn) for all n ∈ N and M-limnCn(tn) = F, we have
z ∈ F; that is, condition (I) holds.

For a sequence of mappings satisfying condition (II), we have the following
characterization.

Theorem 3.2. LetC be a nonempty bounded closed convex subset of a uniformly convex Banach space
E and let {Tn} be a family of nonexpansive mappings of C into itself with F =

⋂∞
n=1F(Tn)/= ∅. Let

D0(t0) = C andDn(tn) = clco {z ∈ Dn−1(tn−1) : ‖z−Tnz‖ ≤ tn} for each n ∈ N, where {tn} ⊂ [0,∞).
Then, the following are equivalent:

(i) {Tn} satisfies condition (II);

(ii) for every {tn} ⊂ [0,∞) with tn → 0 as n → ∞,M-limnDn(tn) = F.

Proof. Let us show that (i) implies (ii). Let {tn} ⊂ [0,∞) with tn → 0 as n → ∞. We have
F ⊂ Dn(tn) ⊂ Dn−1(tn−1) for all n ∈ N. Thus we get

F ⊂
∞⋂

n=0

Dn(tn) = M-lim
n

Dn(tn). (3.8)

Let z ∈ ⋂∞
n=0Dn(tn). We have z ∈ Dn(tn) for all n ∈ N. As in the proof of Theorem 3.1, we

get limn→∞‖z − Tnz‖ = 0. By condition (II), we obtain z ∈ F, which implies
⋂∞

n=0Dn(tn) ⊂ F.
Hence we have M-limnDn(tn) = F.

Suppose that condition (ii) holds. Let {zn} be a sequence in C and z ∈ C such that
zn → z and that Tnzn → z. Since

‖z − Tnz‖ ≤ ‖z − zn‖ + ‖zn − Tnzn‖ + ‖Tnzn − Tnz‖
≤ 2‖zn − z‖ + ‖zn − Tnzn‖

(3.9)

for each n ∈ N, we have limn→∞‖z − Tnz‖ = 0. Letting tn = ‖z − Tnz‖ for each n ∈ N, we have
z ∈ Dn(tn) for every n ∈ N and tn → 0 as n → ∞, which implies z ∈ M-limnDn(tn) = F.
Hence (i) holds, which is the desired result.

Remark 3.3. In Theorem 3.2, it is obvious by definition that {Dn(tn)} is a decreasing sequence with
respect to inclusion. Therefore, conditions (i) and (ii) are also equivalent to

(ii′) for every {tn} ⊂ [0,∞) with tn → 0 as n → ∞, PK-limnDn(tn) = F,

where PK-limnDn(tn) is the Painlevé-Kuratowski limit of {Dn(tn)}; see, for example, [13] for more
details.
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In the next section, we will see various types of sequences of nonexpansive mappings
which satisfy conditions (I) and (II).

4. The Sequences of Mappings Satisfying Conditions (I) and (II)

First let us show some known results which play important roles for our results.

Theorem 4.1 (Browder [1]). Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and T a nonexpansive mapping on C with F(T)/= ∅. If {xn} converges weakly to
z ∈ C and {xn − Txn} converges strongly to 0, then z is a fixed point of T .

Theorem 4.2 (Bruck [26]). Let C be a nonempty closed convex subset of a strictly convex Banach
space E and Tk : C → C a nonexpansive mapping for each k ∈ N. Let {βk} be a sequence of positive
real numbers such that

∑∞
k=1 βk = 1. If

⋂∞
k=1F(Tk) is nonempty, then the mapping T =

∑∞
k=1 βkTk is

well defined and

F(T) =
∞⋂

k=1

F(Tk). (4.1)

Theorems 4.3, 4.5(i), 4.6–4.9 show the examples of a family of nonexpansive mappings
satisfying condition (I). Theorems 4.5(ii), 4.11, and 4.12 show those satisfying condition (II).

Theorem 4.3. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and
let T be a nonexpansive mapping of C into itself with F(T)/= ∅. Let Tn = T for all n ∈ N. Then, {Tn}
is a family of nonexpansive mappings of C into itself with

⋂∞
n=1F(Tn) = F(T) and satisfies condition

(I).

Proof. This is a direct consequence of Theorem 4.1.

Remark 4.4. In the previous theorem, if C is bounded, then F(T) is guaranteed to be nonempty by
Kirk’s fixed point theorem [27].

Let E be a Banach space and A a set-valued operator on E. A is called an accretive
operator if ‖x1 − x2‖ ≤ ‖(x1 − x2) + λ(y1 − y2)‖ for every λ > 0 and x1, x2, y1, y2 ∈ E with
y1 ∈ Ax1 and y2 ∈ Ax2.

Let A be an accretive operator and r > 0. We know that the operator I + rA has a
single-valued inverse, where I is the identity operator on E. We call (I + rA)−1 the resolvent
of A and denote it by Jr . We also know that Jr is a nonexpansive mapping with F(Jr) = A−10
for any r > 0, where A−10 = {z ∈ E : 0 ∈ Az}. For more details, see, for example, [15].

We have the following result for the resolvents of an accretive operator by [25]; see
also [15, Theorem 4.6.3], and [16, Theorem 3.4.3] .

Theorem 4.5. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and
letA ⊂ E×E be an accretive operator with clD(A) ⊂ C ⊂ ⋂

r>0R(I + rA) andA−10/= ∅. Let Tn = Jrn
for every n ∈ N, where rn > 0 for all n ∈ N. Then, {Tn} is a family of nonexpansive mappings of C
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into itself with
⋂∞

n=1F(Tn) = A−10 and the following hold:

(i) if infn∈Nrn > 0, then {Tn} satisfies condition (I),

(ii) if there exists a subsequence {rni} of {rn} such that infi∈Nrni > 0, then {Tn} satisfies
condition (II).

Proof. It is obvious that Tn is a nonexpansive mapping of C into itself and F(Tn) = A−10 for all
n ∈ N.

For (i), suppose infn∈Nrn > 0 and let {zn} be a bounded sequence in C such that
limn→∞‖zn − Tnzn‖ = 0. By [25, Lemma 3.5], we have limn→∞‖zn − J1zn‖ = 0. Using
Theorem 4.1 we obtain ωw(zn) ⊂ F(J1) = A−10.

Let us show (ii). Let {rni} be a subsequence of {rn} with infi∈Nrni > 0 and let {zn} be
a sequence in C and z ∈ C such that zn → z and Tnzn → z. As in the proof of (i), we get
limi→∞‖zni − J1zni‖ = 0 and z ∈ A−10.

Let C be a nonempty closed convex subset of E. Let {Sn} be a family of mappings of
C into itself and let {βn,k : n, k ∈ N, 1 ≤ k ≤ n} be a sequence of real numbers such that
0 ≤ βi,j ≤ 1 for every i, j ∈ N with i ≥ j. Takahashi [16, 28] introduced a mappingWn of C into
itself for each n ∈ N as follows:

Un,n = βn,nSn +
(
1 − βn,n

)
I,

Un,n−1 = βn,n−1Sn−1Un,n +
(
1 − βn,n−1

)
I,

...

Un,k = βn,kSkUn,k+1 +
(
1 − βn,k

)
I,

...

Un,2 = βn,2S2Un,3 +
(
1 − βn,2

)
I,

Wn = Un,1 = βn,1S1Un,2 +
(
1 − βn,1

)
I.

(4.2)

Such a mapping Wn is called the W-mapping generated by Sn, Sn−1, . . . , S1 and βn,n, βn,n−1,
. . . , βn,1. We have the following result for the W-mapping by [29, 30]; see also [25, Lemma
3.6].

Theorem 4.6. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and
let {Sn} be a family of nonexpansive mappings of C into itself with F =

⋂∞
n=1F(Sn)/= ∅. Let {βn,k :

n, k ∈ N, 1 ≤ k ≤ n} be a sequence of real numbers such that 0 < a ≤ βi,j ≤ b < 1 for every i, j ∈ N

with i ≥ j and let Wn be the W-mapping generated by Sn, Sn−1, . . . , S1 and βn,n, βn,n−1, . . . , βn,1. Let
Tn = Wn for every n ∈ N. Then, {Tn} is a family of nonexpansive mappings of C into itself with⋂∞

n=1F(Tn) = F and satisfies condition (I).

Proof. It is obvious that {Tn} is a family of nonexpansive mappings of C into itself. By [29,
Lemma 3.1], F(Tn) =

⋂n
i=1F(Si) for all n ∈ N, which implies

⋂∞
n=1F(Tn) = F. Let {zn} be a

bounded sequence inC such that limn→∞‖zn−Tnzn‖ = 0.We have limn→∞‖zn−S1Un,2zn‖ = 0.
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Let z ∈ F. From Theorem 2.1, for a bounded subset B of C containing {zn} and z, there exists
gB0 ∈ G, where B0 = {y ∈ E : ‖y‖ ≤ 2 supx∈B‖x‖}, such that

‖zn − z‖2 ≤ (‖zn − S1Un,2zn‖ + ‖S1Un,2zn − z‖)2

= ‖zn − S1Un,2zn‖(‖zn − S1Un,2zn‖ + 2‖S1Un,2zn − z‖)

+ ‖S1Un,2zn − z‖2

≤ M‖zn − S1Un,2zn‖ + ‖Un,2zn − z‖2

≤ M‖zn − S1Un,2zn‖ + βn,2‖S2Un,3zn − z‖2 + (
1 − βn,2

)‖zn − z‖2

− βn,2
(
1 − βn,2

)
gB0(‖S2Un,3zn − zn‖)

≤ M‖zn − S1Un,2zn‖ + ‖zn − z‖2 − βn,2
(
1 − βn,2

)
gB0(‖S2Un,3zn − zn‖)

(4.3)

for every n ∈ N, where M = supn∈N
(‖zn − S1Un,2zn‖ + 2‖S1Un,2zn − z‖). Thus we obtain

limn→∞‖S2Un,3zn − zn‖ = 0. Let m ∈ N. Similarly, we have

lim
n→∞

‖SmUn,m+1zn − zn‖ = lim
n→∞

‖Sm+1Un,m+2zn − zn‖ = 0. (4.4)

As in the proof of [30, Theorem 3.1], we get limn→∞‖zn − Skzn‖ = 0 for each k ∈ N. Using
Theorem 4.1 we obtain ωw(zn) ⊂ F.

We have the following result for a convex combination of nonexpansive mappings
which Aoyama et al. [31] proposed.

Theorem 4.7. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and
let {Sn} be a family of nonexpansive mappings of C into itself such that F =

⋂∞
n=1F(Sn)/= ∅. Let {βkn}

be a family of nonnegative numbers with indices n, k ∈ N with k ≤ n such that

(i)
∑n

k=1 β
k
n = 1 for every n ∈ N,

(ii) limn→∞βkn > 0 for each k ∈ N,

and let Tn = αnI + (1 − αn)
∑n

k=1 β
k
nSk for all n ∈ N, where {αn} ⊂ [a, b] for some a, b ∈ (0, 1) with

a ≤ b. Then, {Tn} is a family of nonexpansive mappings of C into itself with
⋂∞

n=1F(Tn) = F and
satisfies condition (I).

Proof. It is obvious that {Tn} is a family of nonexpansive mappings of C into itself. By
Theorem 4.2, we have F(

∑n
k=1 β

k
nSk) =

⋂n
k=1F(Sk) and thus F(Tn) =

⋂n
k=1F(Sk). It follows

that

F =
∞⋂

n=1

F(Sn) =
∞⋂

n=1

n⋂

k=1

F(Sk) =
∞⋂

n=1

F(Tn). (4.5)
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Let {zn} be a bounded sequence in C such that limn→∞‖zn − Tnzn‖ = 0. Let z ∈ F,m ∈ N, and
γmn = αn + (1 − αn)βmn for n ∈ N. By Theorem 2.1, for a bounded subset B of C containing {zn}
and z, there exists gB0 ∈ G with B0 = {y ∈ E : ‖y‖ ≤ 2 supx∈B‖x‖} which satisfies that

‖zn − z‖2 ≤ (‖zn − Tnzn‖ + ‖Tnzn − z‖)2 ≤ M‖zn − Tnzn‖ + ‖Tnzn − z‖2

= M‖zn − Tnzn‖ +
∥
∥
∥
∥
∥
αn(zn − z) + (1 − αn)

n∑

k=1

βkn(Skzn − z)

∥
∥
∥
∥
∥

2

≤ M‖zn − Tnzn‖ + γmn

∥∥
∥
∥
αn(zn − z) + (1 − αn)βmn (Smzn − z)

γmn

∥∥
∥
∥

2

+
(
1 − γmn

)

∥
∥
∥
∥
∥
∥∥

(1 − αn)
(∑m−1

k=1 βkn(Skzn − z) +
∑n

k=m+1 β
k
n(Skzn − z)

)

1 − γmn

∥
∥
∥
∥
∥
∥∥

2

≤ M‖zn − Tnzn‖ + αn‖zn − z‖2 + (1 − αn)βmn ‖Smzn − z‖2

− αn(1 − αn)βmn
γmn

gB0(‖zn − Smzn‖) +
(
1 − γmn

)‖zn − z‖2

= M‖zn − Tnzn‖ + ‖zn − z‖2 − αn(1 − αn)βmn
αn + (1 − αn)βmn

gB0(‖zn − Smzn‖)

(4.6)

for n ∈ N, where M = supn∈N
{‖zn − Tnzn‖ + 2‖Tnzn − z‖}. Since a ≤ αn ≤ b for all n ∈ N and

limn→∞βmn > 0, we get limn→∞gB0
(‖zn − Smzn‖) = 0 and hence limn→∞‖zn − Smzn‖ = 0 for

each m ∈ N. Therefore, using Theorem 4.1 we obtain ωw(zn) ⊂ F.

Let C be a nonempty closed convex subset of a Banach space E and let S be a
semigroup. A family S = {T(t) : t ∈ S} is said to be a nonexpansive semigroup on C if

(i) for each t ∈ S, T(t) is a nonexpansive mapping of C into itself;

(ii) T(st) = T(s)T(t) for every s, t ∈ S.

We denote by F(S) the set of all common fixed points of S, that is, F(S) =
⋂

t∈SF(T(t)). We
have the following result for nonexpansive semigroups by [25, Lemma 3.9]; see also [32, 33].

Theorem 4.8. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and
let S be a semigroup. Let S = {T(t) : t ∈ S} be a nonexpansive semigroup on C such that F(S)/= ∅
and let X be a subspace of B(S) such that X contains constants, X is ls-invariant (i.e., ls(X) ⊂ X) for
each s ∈ S, and the function t �→ 〈T(t)x, x∗〉 belongs to X for every x ∈ C and x∗ ∈ E∗. Let {μn} be
a sequence of means on X such that ‖μn − l∗sμn‖ → 0 as n → ∞ for all s ∈ S and let Tn = Tμn for
each n ∈ N. Then, {Tn} is a family of nonexpansive mappings of C into itself with

⋂∞
n=1F(Tn) = F(S)

and satisfies condition (I).

Proof. It is obvious that {Tn} is a family of nonexpansive mappings of C into itself. By [25,
Lemma 3.9], we have F(S) =

⋂∞
n=1F(Tn). Let {zn} be a bounded sequence in C such that

limn→∞‖zn − Tnzn‖ = 0. Then we get limn→∞‖zn − T(t)zn‖ = 0 for every t ∈ S. Using
Theorem 4.1 we have ωw(zn) ⊂ F(S).
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Let C be a nonempty closed convex subset of a Banach space E. A family S = {T(s) :
0 ≤ s < ∞} of mappings of C into itself is called a one-parameter nonexpansive semigroup
on C if it satisfies the following conditions:

(i) T(0)x = x for all x ∈ C;

(ii) T(s + t) = T(s)T(t) for every s, t ≥ 0;

(iii) ‖T(s)x − T(s)y‖ ≤ ‖x − y‖ for each s ≥ 0 and x, y ∈ C;

(iv) for all x ∈ C, s �→ T(s)x is continuous.

We have the following result for one-parameter nonexpansive semigroups by [25,
Lemma 3.12].

Theorem 4.9. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and
let S = {T(s) : 0 ≤ s < ∞} be a one-parameter nonexpansive semigroup on C with F(S)/= ∅. Let
{rn} ⊂ (0,∞) satisfy limn→∞rn = ∞ and let Tn be a mapping such that

Tnx =
1
rn

∫ rn

0
T(s)x ds (4.7)

for all x ∈ C and n ∈ N. Then, {Tn} is a family of nonexpansive mappings of C into itself satisfying
that

⋂∞
n=1F(Tn) = F(S) and condition (I).

Remark 4.10. If C is bounded, then F(S) is guaranteed to be nonempty; see [34].

Proof. It is obvious that {Tn} is a family of nonexpansive mappings of C into itself. By [25,
Lemma 3.12], we have F(S) =

⋂∞
n=1F(Tn). Let {zn} be a bounded sequence in C such that

limn→∞‖zn − Tnzn‖ = 0. We get limn→∞‖zn − T(t)zn‖ = 0 for every t ∈ S. Hence, using
Theorem 4.1 we have ωw(zn) ⊂ F(S).

Motivated by the idea of [23, page 256], we have the following result for nonexpansive
mappings.

Theorem 4.11. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and
let I be a countable index set. Let i : N → I be an index mapping such that, for all j ∈ I, there exist
infinitely many k ∈ N satisfying j = i(k). Let {Si : i ∈ I} be a family of nonexpansive mappings of
C into itself satisfying F =

⋂
i∈IF(Si)/= ∅ and let Tn = Si(n) for all n ∈ N. Then, {Tn} is a family of

nonexpansive mappings of C into itself with
⋂∞

n=1F(Tn) = F and satisfies condition (II).

Proof. It is obvious that
⋂∞

n=1F(Tn) = F. Let {zn} be a sequence in C and z ∈ C such that
zn → z and Tnzn → z. Fix j ∈ I. There exists a subsequence {i(nk)} of {i(n)} such that
i(nk) = j for all k ∈ N. Thus we have limk→∞‖znk − Tnkznk‖ = limn→∞‖znk − Sjznk‖ = 0.
Therefore, using Theorem 4.1 z ∈ F(Sj) for every j ∈ I and hence we get z ∈ F.

From Theorem 4.11, we have the following result for one-parameter nonexpansive
semigroups.

Theorem 4.12. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and
let S = {T(t) : 0 ≤ t < ∞} be a one-parameter nonexpansive semigroup on C such that F(S)/= ∅.
Let Sn = T(rn) for every n ∈ N with {rn} ⊂ (0,∞) and rn → 0 as n → ∞ and Tn = Si(n) for all
n ∈ N, where i : N → N is an index mapping satisfying, for all j ∈ N, there exist infinitely many
k ∈ N such that j = i(k). Then, {Tn} is a family of nonexpansive mappings of C into itself with⋂∞

n=1F(Tn) = F(S) and satisfies condition (II).
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Remark 4.13. If C is bounded, it is guaranteed that F(S)/= ∅. See [34].

Proof. We have
⋂∞

n=1F(Tn) = F(S) by [35, Lemma 2.7]; see also [36]. By Theorem 4.11, we
obtain the desired result.

5. Strong Convergence Theorems

Throughout this section, we assume that C is a nonempty bounded closed convex subset of a
uniformly convex Banach space E and {Tn} is a family of nonexpansive mappings of C into
itself with F =

⋂∞
n=1F(Tn)/= ∅. Then, we know that F is closed and convex.

We get the following results for the metric projection by using Theorems 2.3, 3.1, and
3.2.

Theorem 5.1. Let x ∈ E and let {xn} be a sequence generated by

Cn = clco {z ∈ C : ‖z − Tnz‖ ≤ tn},
xn = PCnx

(5.1)

for each n ∈ N, where {tn} ⊂ (0,∞) such that tn → 0 as n → ∞, and PCn is the metric projection
onto Cn. If {Tn} satisfies condition (I), then {xn} converges strongly to PFx.

Theorem 5.2. Let x ∈ E and let {yn} be a sequence generated by

C0 = C,

Cn = clco {z ∈ Cn−1 : ‖z − Tnz‖ ≤ tn},
yn = PCnx

(5.2)

for each n ∈ N, where {tn} ⊂ (0,∞) such that tn → 0 as n → ∞. If {Tn} satisfies condition (II), then
{yn} converges strongly to PFx.

On the other hand, we have the following results for the Bregman projection by using
Theorems 2.5, 3.1, and 3.2.

Theorem 5.3. Let x ∈ C and let f be a Bregman function on C and let f be sequentially consistent.
Let {xn} be a sequence generated by

Cn = clco {z ∈ C : ‖z − Tnz‖ ≤ tn},

xn = Πf

Cn
x

(5.3)

for each n ∈ N, where {tn} ⊂ (0,∞) such that tn → 0 as n → ∞ and Πf

Cn
is the Bregman projection

onto Cn. If {Tn} satisfies condition (I), then {xn} converges strongly toΠf

Fx.
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Theorem 5.4. Let x ∈ C, let f be a Bregman function on C, and let f be sequentially consistent. Let
{yn} be a sequence generated by

C0 = C,

Cn = clco {z ∈ Cn−1 : ‖z − Tnz‖ ≤ tn},

yn = Πf

Cn
x

(5.4)

for each n ∈ N, where {tn} ⊂ (0,∞) such that tn → 0 as n → ∞. If {Tn} satisfies condition (II), then
{yn} converges strongly toΠf

Fx.

In a similar fashion, we have the following results for the generalized projection by
using Theorems 2.4, 3.1, and 3.2.

Theorem 5.5. Suppose that E is smooth. Let x ∈ E and let {xn} be a sequence generated by

Cn = clco {z ∈ C : ‖z − Tnz‖ ≤ tn},
xn = ΠCnx

(5.5)

for each n ∈ N, where {tn} ⊂ (0,∞) such that tn → 0 as n → ∞ and ΠCn is the generalized
projection onto Cn. If {Tn} satisfies condition (I), then {xn} converges strongly toΠFx.

Theorem 5.6. Suppose that E is smooth. Let x ∈ E and let {yn} be a sequence generated by

C0 = C,

Cn = clco {z ∈ Cn−1 : ‖z − Tnz‖ ≤ tn},
yn = ΠCnx

(5.6)

for each n ∈ N, where {tn} ⊂ (0,∞) with tn → 0 as n → ∞. If {Tn} satisfies condition (II), then
{yn} converges strongly toΠFx.

Combining these theorems with the results shown in the previous section, we can
obtain various types of convergence theorems for families of nonexpansive mappings.

6. Generalization of Xu’s and Matsushita-Takahashi’s Theorems

At the end of this paper, we remark the relationship between these results and the
convergence theorems by Xu [9] and Matsushita and Takahashi [10] mentioned in the
introduction.

Let us suppose the all assumptions in their results, respectively. Let {Tn} be a countable
family of nonexpansive mappings of C into itself such that

⋂∞
n=1F(Tn)/= ∅ and suppose that it

satisfies condition (I). Let us define Cn = clco {z ∈ C : ‖z − Tnz‖ ≤ tn‖xn − Tnxn‖} for n ∈ N.



14 Fixed Point Theory and Applications

Then, by definition, we have that
⋂∞

k=1F(Tk) ⊂ Cn for every n ∈ N. On the other hand, we
have

〈ΠCn∩Dnx − z, Jx − JΠCn∩Dnx〉 ≥ 0,

〈PCn∩Dnx − z, J(x − PCn∩Dnx)〉 ≥ 0
(6.1)

for every z ∈ Cn ∩Dn from basic properties of PCn∩Dn andΠCn∩Dn . Therefore, for each theorem
we have

∞⋂

k=1

F(Tk) ⊂ Cn ∩Dn (6.2)

for every n ∈ N by using mathematical induction. Since C is bounded, a sequence
{tn‖xn − Tnxn‖} converges to 0 for any {xn} in C whenever {tn} converges to 0. Thus, using
Theorem 3.1 we obtain

∞⋂

k=1

F(Tk) ⊂ s-Li
n
(Cn ∩Dn) ⊂ w-Ls

n
(Cn ∩Dn) ⊂ M-lim

n
Cn =

∞⋂

k=1

F(Tk), (6.3)

and thereforeM-limn(Cn∩Dn) =
⋂∞

k=1F(Tk). Consequently, by using Theorems 2.3 and 2.4, we
obtain the following results generalizing the theorems of Xu, and Matsushita and Takahashi,
respectively.

Theorem 6.1. Let C be a nonempty bounded closed convex subset of a uniformly convex and
smooth Banach space E and {Tn} a sequence of nonexpansive mappings of C into itself such that
F =

⋂∞
n=1F(Tn)/= ∅ and suppose that it satisfies condition (I). Let {xn} be a sequence generated by

x1 = x ∈ C,

Cn = clco {z ∈ C : ‖z − Tnz‖ ≤ tn‖xn − Tnxn‖},
Dn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Dnx

(6.4)

for each n ∈ N, where {tn} is a sequence in (0, 1) with tn → 0 as n → ∞. Then, {xn} converges
strongly to ΠFx.

Theorem 6.2. Let C be a nonempty bounded closed convex subset of a uniformly convex and
smooth Banach space E and {Tn} a sequence of nonexpansive mappings of C into itself such that
F =

⋂∞
n=1F(Tn)/= ∅ and suppose that it satisfies condition (I). Let {xn} be a sequence generated by

x1 = x ∈ C,

Cn = clco {z ∈ C : ‖z − Tnz‖ ≤ tn‖xn − Tnxn‖},
Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},

xn+1 = PCn∩Dnx

(6.5)
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for each n ∈ N, where {tn} is a sequence in (0, 1) with tn → 0 as n → ∞. Then, {xn} converges
strongly to PFx.
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