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The purpose of this paper is to study the robustness of Mann type algorithm in the sense that
approximately perturbed mapping does not alter the convergence of Mann type algorithm. It is
proven that Mann type algorithm with perturbed mapping xn+1 = λnxn + (1 − λn)(Txn + en) −
λnμnF(xn) remains convergent in a Banach space setting where λn, μn ∈ [0, 1], T a nonexpansive
mapping, en, n = 0, 1, . . ., errors and F a strongly accretive and strictly pseudocontractive mapping.

1. Introduction

Let C be a nonempty closed convex subset of a real Banach space X, and T : C → C a
nonexpansive mapping (i.e., ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ C). We use Fix(T) to denote the
set of fixed points of T ; that is, Fix(T) = {x ∈ C : Tx = x}. Throughout this paper it is assumed
that Fix(T)/= ∅. Construction of fixed points of nonlinear mappings is an important and
active research area. In particular, iterative methods for finding fixed points of nonexpansive
mappings have received vast investigation since these methods find applications in a variety
of applied areas of variational inequality problems, equilibrium problems, inverse problems,
partial differential equations, image recovery, and signal processing (see, e.g., [1–17]).

In 1953, Mann [18] introduced an iterative algorithm which is now referred to as
Mann’s algorithm. Most of the literature deals with the special case of the general Mann’s
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algorithm; that is, for an arbitrary initial guess x0 ∈ C, the sequence {xn} is generated by the
recursive manner

xn+1 = λnxn + (1 − λn)Txn, ∀n ≥ 0, (1.1)

where C is a convex subset of a Banach space X, T : C → C is a mapping and {λn} is
a sequence in the interval [0, 1]. It is well known that Mann’s algorithm can be employed
to approximate fixed points of nonexpansive mappings and zeros of (strongly) accretive
mappings in Hilbert spaces and Banach spaces. Many convergence theorems have been
announced and published by a large number of authors. A typical convergence result in
connection with the Mann’s algorithm is the following theorem proved by Ishikawa [19].

Theorem IS (see [19])

Let C be a nonempty subset of a Banach space X and let T : C → X be a nonexpansive
mapping. Let {λn} be a real sequence satisfying the following control conditions:

(a)
∑∞

n=0 λn = ∞;

(b) 0 ≤ λn ≤ λ < 1.

Let {xn} be defined by (1.1) such that xn ∈ C for all n ≥ 0. If {xn} is bounded then xn−Txn → 0
as n → ∞.

The interest and importance of Theorem IS lie in the fact that strong or weak
convergence of the sequence {xn} can be achieved under certain appropriate assumptions
imposed on the mapping T , the domainD(T) or the spaceX. In an infinite-dimensional space
X, Mann’s algorithm has only weak convergence, in general. In fact, it is known that if the
sequence {λn} is such that

∑∞
n=0 λn(1 − λn) = ∞, then Mann’s algorithm converges weakly to

a fixed point of T provided that the underlying space X is a Hilbert space or more general, a
uniformly convex Banach space which has a Fréchet differentiable norm or satisfies Opial’s
property. See, for example, [20, 21].

The study of the robustness of Mann’s algorithm is initiated by Combettes [22]
where he considered a parallel projection method algorithm in signal synthesis (design and
recovery) problems in a real Hilbert space H as follows:

xn+1 = xn + λn

(
m∑

i=1

wi(Pixn + ci,n) − xn

)

, (1.2)

where for each i, Pi(x) is the (nearest point) projection of a signal x ∈ H onto a closed
convex subset Si of H [23] (Si is interpreted as the ith constraint set of the signals), {λn}n≥0
is a sequence of relaxation parameters in (0, 2), {wi}mi=1 are strictly positive weights such that
∑m

i=1 wi = 1, and ci,n stands for the error made in computing the projection onto Si at iteration
n. Then he proved the following robustness result of algorithm (1.2).

Theorem 1.1 (see [22]). Assume G :=
⋂m

i=1 Si /= ∅. Assume also

(i)
∑∞

n=0 λn(2 − λn) = ∞,

(ii)
∑∞

n=0 λn‖
∑m

i=1 wici,n‖ < ∞.

Then the sequence {xn} generated by (1.2) converges weakly to a point in G.
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Define a mapping T : H → H by

Tx := 2
m∑

i=1

wiPi(x) − x, ∀x ∈ H, (1.3)

and put

en := 2
m∑

i=1

wici,n, αn :=
λn
2

∈ (0, 1), ∀n ≥ 0. (1.4)

Since Pi is a projection, the mapping Vi := 2Pi−I is nonexpansive. Thus Pi = (I+Vi)/2 and algorithm
(1.2) can be rewritten as

xn+1 = (1 − αn)xn + αn(Txn + en), (1.5)

where T is given by (1.3). Note that T can be written as T =
∑m

i=1 wiVi and thus T is nonexpansive.
Note also that Fix(T) =

⋂m
i=1 Fix(Vi) = G. Furthermore, conditions (i) and (ii) in Theorem 1.1 can be

stated as

(i)′
∑∞

n=0 αn(1 − αn) = ∞
(ii)′′

∑∞
n=0 αn‖en‖ < ∞.

Very early, some authors had considered Mann iterations in the setting of uniformly
convex Banach spaces and established strong and weak convergence results for Mann
iterations; see, e.g., [24, 25]. Recently, Kim and Xu [26] studied the robustness of Mann’s
algorithm for nonexpansive mappings in Banach spaces and extended Combettes’ robustness
result (Theorem 1.1 above) for projections from Hilbert spaces to the setting of uniformly
convex Banach spaces.

Theorem 1.2 (see [26, Theorem3.3]). Assume thatX is a uniformly convex Banach space. Assume,
in addition, that either X∗ has the KK- property or X satisfies Opial’s property. Let T : X → X be a
nonexpansive mapping such that Fix(T)/= ∅. Given an initial guess x0 ∈ X. Let {xn} be generated by
the following perturbed Mann’s algorithm:

xn+1 = (1 − αn)xn + αn(Txn + en), ∀n ≥ 0, (1.6)

where {αn} ⊂ (0, 1) and {en} ⊂ X satisfy the following properties:

(i)
∑∞

n=0 αn(1 − αn) = ∞,

(ii)
∑∞

n=0 αn‖en‖ < ∞.

Then the sequence {xn} converges weakly to a fixed point of T .

Further, Kim and Xu [26] also extended the robustness to nonexpansive mappings
which are defined on subsets of a Hilbert space and to accretive operators.
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Theorem 1.3 (see [26, Theorem4.1]). Let C be a nonempty closed convex subset of a Hilbert space
H and T : C → C a nonexpansive mapping with Fix(T)/= ∅. Let {xn} be generated from an arbitrary
x0 ∈ C via one of the following algorithms (1.7) and (1.7):

xn+1 = (1 − αn)xn + αnPC(Txn + en), ∀n ≥ 0,

xn+1 = PC[(1 − αn)xn + αn(Txn + en)], ∀n ≥ 0,
(1.7)

where the sequences {αn} ⊂ (0, 1) and {en} ⊂ X are such that

(i)
∑∞

n=0 αn(1 − αn) = ∞,

(ii)
∑∞

n=0 αn‖en‖ < ∞.

Then {xn} converges weakly to a fixed point of T .

Theorem 1.4 (see [26, Theorem5.1]). Let X be a uniformly convex Banach space. Assume in
addition that either X∗ has the KK- property or X satisfies Opial’s property. Let A be an m-accretive
operator in X such that A−1(0)/= ∅. Moreover, assume that {αn} ⊂ (0, 1), {cn} ⊂ (0,∞), and
{en} ⊂ X satisfy the following properties:

(i)
∑∞

n=0 αn(1 − αn) = ∞;

(ii)
∑∞

n=0 αn‖en‖ < ∞;

(iii) 0 < c∗ < cn < c∗ < ∞, where c∗ and c∗ are two constants;

(iv)
∑∞

n=0 |cn+1 − cn| < ∞.

Then the sequence {xn} generated from an arbitrary x0 ∈ X by

xn+1 = (1 − αn)xn + αn(Jcnxn + en), ∀n ≥ 0, (1.8)

converges weakly to a point of A−1(0).

Let X be a real reflexive Banach space. Let T : X → X be a nonexpansive
mapping with Fix(T)/= ∅. Assume that F : X → X is δ-strongly accretive and λ-strictly
pseudocontractive with δ + λ ≥ 1 where δ, λ ∈ (0, 1). In this paper, inspired by Combettes’
robustness result (Theorem 1.1 above) and Kim and Xu’s robustness result (Theorem 1.2
above) we will consider the robustness of Mann type algorithm with perturbed mapping,
which generates, from an arbitrary initial guess x0 ∈ X, a sequence {xn} by the recursive
manner

yn = λnxn + (1 − λn)(Txn + en),

xn+1 = yn − λnμnF(xn), ∀n ≥ 0,
(1.9)

where {λn}, {μn}, and {en} are sequences in [0, 1] and in X, respectively, such that

(i)
∑∞

n=0 λn(1 − λn) = ∞;

(ii)
∑∞

n=0(1 − λn)‖en‖ < ∞;

(iii)
∑∞

n=0 λnμn < ∞.
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More precisely, we will prove under conditions (i)–(iii) the weak convergence of the
algorithm (1.9) in a uniformly convex Banach space X which either has the KK-property or
satisfies Opial’s property. This theorem extends Kim and Xu’s robustness result (Theorem 1.2
above) fromMann’s algorithm (1.6)with errors to Mann type algorithm (1.9)with perturbed
mapping F. On the other hand, we also extend Kim and Xu’s robustness results (Theorems
1.3 and 1.4 above) for nonexpansive mappings which are defined on subsets of a Hilbert
space and accretive operators in a uniformly convex Banach space from Mann’s algorithm
with errors to Mann type algorithm with perturbed mapping.

Throughout this paper, we use the following notations:

(i) ⇀ stands for weak convergence and → for strong convergence,

(ii) ωw({xn}) = {x : ∃xnk ⇀ x} denotes the weak ω-limit set of {xn}.

2. Preliminaries

Let X be a real Banach space. Recall that the norm of X is said to be Fréchet differentiable if,
for each x ∈ S(X), the unit sphere of X, the limit

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.1)

exists and is attained uniformly in y ∈ S(X). In this case, we have

1
2
‖x‖2 + 〈h, J(x)〉 ≤ 1

2
‖x + h‖2 ≤ 1

2
‖x‖2 + 〈h, J(x)〉 + b(‖h‖) (2.2)

for all x, h ∈ X, where J is the normalized duality map from X to X∗ defined by

j(x) =
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, (2.3)

〈·, ·〉 is the duality pairing between X and X∗, and b is a function defined on [0,∞) such that
limt↓0b(t)/t = 0. Examples of Banach spaces which have a Fréchet differentiable norm include
lp and Lp for 1 < p < ∞ (these spaces are actually uniformly smooth).

It is known that a Banach space X is Fréchet differentiable if and only if the duality
map J is single-valued and norm-to-norm continuous.

We need the concept of the KK-property. A Banach space X is said to have the KK-
property (the Kadec-Klee property) if, for any sequence {zn} in X, the conditions zn ⇀ z and
‖zn‖ → ‖z‖ imply that zn → z. It is known [27, Remark 3.2] that the dual space of a reflexive
Banach space with a Fréchet differentiable norm has the KK-property.

Recall now thatX satisfies Opial’s property [28] provided that, for each sequence {xn}
in X, the condition xn ⇀ x implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥
∥xn − y

∥
∥, y ∈ X, y /=x. (2.4)
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It is known [28] that each lp (1 ≤ p < ∞) enjoys this property, while Lp does not unless p = 2.
It is known [29] that any separable Banach space can be equivalently renormed so that it
satisfies Opial’s property.

Recall that a Banach space X is said to be uniformly convex if, for each 0 < ε ≤ 2, the
modulus of convexity δX(ε) of X defined by

δX(ε) := inf

{

1 −
∥
∥x + y

∥
∥

2
: x, y ∈ X, ‖x‖ ≤ 1,

∥
∥y
∥
∥ ≤ 1, and

∥
∥x − y

∥
∥ ≥ ε

}

(2.5)

is positive.
We need an inequality characterization of uniform convexity.

Lemma 2.1 (see [30]). Given a number r > 0. A real Banach space X is uniformly convex if and
only if there exists a continuous strictly increasing function ϕ : [0,∞) → [0,∞), ϕ(0) = 0, such that

∥
∥λx + (1 − λ)y

∥
∥2 ≤ λ‖x‖2 + (1 − λ)

∥
∥y
∥
∥2 − λ(1 − λ)ϕ

(∥
∥x − y

∥
∥
)

(2.6)

for all λ ∈ [0, 1] and x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r.

A mapping F with domain D(F) and range R(F) in X is called δ-strongly accretive if
for each x, y ∈ D(F),

〈
Fx − Fy, j

(
x − y

)〉 ≥ δ
∥
∥x − y

∥
∥2, ∀j(x − y

) ∈ J
(
x − y

)
(2.7)

for some δ ∈ (0, 1). F is called λ-strictly pseudocontractive if for each x, y ∈ D(F),

〈
Fx − Fy, j

(
x − y

)〉 ≥ ∥∥x − y
∥
∥2 − λ

∥
∥x − y − (Fx − Fy

)∥
∥2, ∀j(x − y

) ∈ J
(
x − y

)
(2.8)

for some λ ∈ (0, 1). It is easy to see that (2.8) can be rewritten as

〈
(I − F)x − (I − F)y, j

(
x − y

)〉 ≥ λ
∥
∥(I − F)x − (I − F)y

∥
∥2. (2.9)

The following proposition will be used frequently throughout this paper. For the sake
of completeness, we include its proof.

Proposition 2.2. Let X be a real Banach space and F : D(F) → X a mapping.

(i) If F is a λ-strictly pseudocontractive, then F is Lipschitz continuous with constant (1 +
1/λ).

(ii) If F is δ-strongly accretive and λ-strictly pseudocontractive with δ + λ ≥ 1, then for each
fixed μ ∈ [0, 1], the mapping I − μF has the following property:

∥
∥
(
I − μF

)
x − (I − μF

)
y
∥
∥ ≤
⎛

⎝1 − μ

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥
∥x − y

∥
∥, ∀x, y ∈ D(F). (2.10)
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Proof. (i) From (2.9), we derive

λ
∥
∥(I − F)x − (I − F)y

∥
∥2 ≤ 〈(I − F)x − (I − F)y, j

(
x − y

)〉
≤ ∥∥(I − F)x − (I − F)y

∥
∥
∥
∥x − y

∥
∥, ∀j(x − y

) ∈ J
(
x − y

) (2.11)

which implies that

∥
∥(I − F)x − (I − F)y

∥
∥ ≤ 1

λ

∥
∥x − y

∥
∥. (2.12)

Thus

∥
∥Fx − Fy

∥
∥ ≤ ∥∥(I − F)x − (I − F)y

∥
∥ +
∥
∥x − y

∥
∥ ≤
(

1 +
1
λ

)
∥
∥x − y

∥
∥, (2.13)

and so F is Lipschitz continuous with constant (1 + 1/λ).
(ii) From (2.8) and (2.9), we obtain

λ
∥
∥(I − F)x − (I − F)y

∥
∥2 ≤ 〈(I − F)x − (I − F)y, j

(
x − y

)〉

=
∥
∥x − y

∥
∥2 − 〈Fx − Fy, j

(
x − y

)〉

≤ (1 − δ)
∥
∥x − y

∥
∥2.

(2.14)

Since δ + λ ≥ 1 ⇔
√
(1 − δ)/λ ∈ (0, 1], we have

∥
∥(I − F)x − (I − F)y

∥
∥ ≤
⎛

⎝

√
1 − δ

λ

⎞

⎠
∥
∥x − y

∥
∥, ∀x, y ∈ D(F). (2.15)

Consequently, for each fixed μ ∈ [0, 1], we have

∥
∥x − y − μ

(
F(x) − F

(
y
))∥
∥ =
∥
∥
(
1 − μ

)(
x − y

)
+ μ
[
(I − F)x − (I − F)y

]∥
∥

≤ (1 − μ
)∥
∥x − y

∥
∥ + μ

∥
∥(I − F)x − (I − F)y

∥
∥

≤ (1 − μ
)∥
∥x − y

∥
∥ + μ

⎛

⎝

√
1 − δ

λ

⎞

⎠
∥
∥x − y

∥
∥

=

⎛

⎝1 − μ

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥
∥x − y

∥
∥, ∀x, y ∈ D(F).

(2.16)

This shows that inequality (2.10) holds.
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Proposition 2.3. Let X be a uniformly convex Banach space and C a nonempty closed convex subset
of X.

(i) Reference [31] (demiclosedness principle). If T : C → C is a nonexpansive mapping and if
{xn} is a sequence in C such that xn ⇀ x and (I − T)xn → y, then (I − T)x = y.

(ii) Reference [32]. If C is also bounded, then there exists a continuous, strictly increasing, and
convex function γ : [0,∞) → [0,∞) (depending only on the diameter of C) with γ(0) = 0
and such that

γ
(∥
∥T
(
λx + (1 − λ)y

) − (λTx + (1 − λ)Ty
)∥
∥
) ≤ ∥∥x − y

∥
∥ − ∥∥Tx − Ty

∥
∥ (2.17)

for all x, y ∈ C, λ ∈ [0, 1], and nonexpansive mappings T : C → X.

We also use the following elementary lemma.

Lemma 2.4 (see [33]). Let {an} and {bn} be sequences of nonnegative real numbers such that
∑∞

n=0 bn < ∞ and an+1 ≤ an + bn for all n ≥ 1. Then limn→∞an exists.

3. Robustness of Mann Type Algorithm with Perturbed Mapping

Let X be a real reflexive Banach space. Let T : X → X be a nonexpansive mapping with
Fix(T)/= ∅. Assume that F : X → X is δ-strongly accretive and λ-strictly pseudocontractive
with δ + λ ≥ 1. We now discuss the robustness of Mann type algorithm with perturbed
mapping, which generates, from an initial guess x0 ∈ X, a sequence {xn} as follows:

yn = λnxn + (1 − λn)(Txn + en),

xn+1 = yn − λnμnF(xn), ∀n ≥ 0,
(3.1)

where {λn}, {μn}, and {en} are sequences in [0, 1] and in X, respectively, such that

(i)
∑∞

n=0 λn(1 − λn) = ∞;

(ii)
∑∞

n=0(1 − λn)‖en‖ < ∞;

(iii)
∑∞

n=0 λnμn < ∞.

We remark that Mann type algorithm with perturbed mapping is based on Mann
iteration method and steepest-descent method. Indeed, in algorithm (3.1), one iteration step



Fixed Point Theory and Applications 9

“yn = λnxn + (1 − λn)(Txn + en)” is taken from Mann iteration method, and another iteration
step “xn+1 = yn − λnμnF(xn)” is taken from steepest-descent method.

We first discuss some properties of algorithm (3.1).

Lemma 3.1. Let {xn} be generated by algorithm (3.1) and let p ∈ Fix(T).Then limn→∞‖xn − p‖
exists.

Proof. We have

∥
∥xn+1 − p

∥
∥

=
∥
∥yn − λnμnF(xn) − p

∥
∥

=
∥
∥λnxn + (1 − λn)(Txn + en) − λnμnF(xn) − p

∥
∥

≤ ∥∥λn
[(
I − μnF

)
xn − p

]
+ (1 − λn)

(
Txn − p

)∥
∥ + (1 − λn)‖en‖

≤ (1 − λn)
∥
∥Txn − p

∥
∥ + λn

∥
∥
(
I − μnF

)
xn − p

∥
∥ + (1 − λn)‖en‖

≤ (1 − λn)
∥
∥xn − p

∥
∥ + λn

[(
I − μnF

)
xn −

(
I − μnF

)
p

+
∥
∥
(
I − μnF

)
p − p

∥
∥
]
+ (1 − λn)‖en‖

≤ (1 − λn)
∥
∥xn − p

∥
∥ + λn

⎡

⎣1 − μn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎤

⎦
∥
∥xn − p

∥
∥

+ λnμn

∥
∥F
(
p
)∥
∥ + (1 − λn)‖en‖

=

⎛

⎝1 − λnμn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥
∥xn − p

∥
∥ + λnμn

∥
∥F
(
p
)∥
∥ + (1 − λn)‖en‖

≤ ∥∥xn − p
∥
∥ + λnμn

∥
∥F
(
p
)∥
∥ + (1 − λn)‖en‖.

(3.2)

The conclusion of the lemma is a consequence of Lemma 2.4.

Proposition 3.2. Let X be a uniformly convex Banach space.

(i) For all p, q ∈ Fix(T) and 0 ≤ t ≤ 1, limn→∞‖txn + (1 − t)p − q‖ exists.
(ii) If, in addition, the dual space X∗ of X has the KK -property, then the weak ω-limit set of

{xn}, ωw(xn), is a singleton.
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Proof. (i) For integers n,m ≥ 1, define the mappings Tn and Sn,m as follows:

Tnx := λnx + (1 − λn)Tx + (1 − λn)en − λnμnF(x), ∀x ∈ X, (3.3)

and Sn,m := Tn+m−1Tn+m−2 · · · Tn. It is easy to see that xn+m = Sn,mxn. First, let us show that Tn
and Sn,m are nonexpansive. Indeed, for all x, y ∈ X, using Proposition 2.2 no. (ii) we have

∥
∥Tnx − Tny

∥
∥ =
∥
∥
[
λnx + (1 − λn)Tx + (1 − λn)en − λnμnF(x)

]

−[λny + (1 − λn)Ty + (1 − λn)en − λnμnF
(
y
)]∥
∥

=
∥
∥
[
λn
(
I − μnF

)
x + (1 − λn)Tx

] − [λn
(
I − μnF

)
y + (1 − λn)Ty

]∥
∥

≤ λn
∥
∥
(
I − μnF

)
x − (I − μnF

)
y
∥
∥ + (1 − λn)

∥
∥Tx − Ty

∥
∥

≤ λn

⎡

⎣1 − μn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎤

⎦
∥
∥x − y

∥
∥ + (1 − λn)

∥
∥x − y

∥
∥

=

⎡

⎣1 − λnμn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎤

⎦
∥
∥x − y

∥
∥.

(3.4)

Thus Tn : X → X is nonexpansive (due to λnμn ∈ [0, 1]) and so is Sn,m.
Second, let us show that for each v ∈ Fix(T),

‖Sn,mv − v‖ ≤
n+m−1∑

j=n

[(
1 − λj

)∥
∥ej
∥
∥ + λjμj‖F(v)‖

]
. (3.5)

Indeed, whenever m = 1, we have

‖Sn,1v − v‖ = ‖Tnv − v‖
=
∥
∥λnv + (1 − λn)Tv + (1 − λn)en − λnμnF(v) − v

∥
∥

≤ (1 − λn)‖en‖ + λnμn‖F(v)‖

=
n+1−1∑

j=n

[(
1 − λj

)∥
∥ej
∥
∥ + λjμj‖F(v)‖

]
.

(3.6)
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This implies that inequality (3.5) holds form = 1. Assume that inequality (3.5) holds for some
m ≥ 1. Consider the case of m + 1. Observe that

‖Sn,m+1v − v‖ = ‖Tn+mSn,mv − v‖
=
∥
∥λn+mSn,mv + (1 − λn+m)TSn,mv + (1 − λn+m)en+m − λn+mμn+mF(Sn,mv) − v

∥
∥

=
∥
∥λn+m

[(
I − μn+mF

)
Sn,mv − v

]
+ (1 − λn+m)(TSn,mv − v)

∥
∥ + (1 − λn+m)‖en+m‖

≤ (1 − λn+m)‖TSn,mv − v‖ + λn+m
∥
∥
(
I − μn+mF

)
Sn,mv − v

∥
∥ + (1 − λn+m)‖en+m‖

≤ (1 − λn+m)‖Sn,mv − v‖ + λn+m
[∥
∥
(
I − μn+mF

)
Sn,mv − (I − μn+mF

)
v
∥
∥

+
∥
∥
(
I − μn+mF

)
v − v

∥
∥
]
+ (1 − λn+m)‖en+m‖

≤ (1 − λn+m)‖Sn,mv − v‖ + λn+m

⎡

⎣1 − μn+m

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎤

⎦‖Sn,mv − v‖

+ λn+mμn+m‖F(v)‖ + (1 − λn+m)‖en+m‖

=

⎡

⎣1 − λn+mμn+m

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎤

⎦‖Sn,mv − v‖ + λn+mμn+m‖F(v)‖ + (1 − λn+m)‖en+m‖

≤ ‖Sn,mv − v‖ + λn+mμn+m‖F(v)‖ + (1 − λn+m)‖en+m‖

≤
n+m−1∑

j=n

[(
1 − λj

)∥
∥ej
∥
∥ + λjμj‖F(v)‖

]
+ λn+mμn+m‖F(v)‖ + (1 − λn+m)‖en+m‖

=
n+m+1−1∑

j=n

[(
1 − λj

)∥
∥ej
∥
∥ + λjμj‖F(v)‖

]
.

(3.7)

This shows that inequality (3.5) holds for the case ofm+ 1. Thus, by induction, we know that
inequality (3.5) holds for all m ≥ 1.

Now set

an =
∥
∥txn + (1 − t)p − q

∥
∥,

bn,m =
∥
∥Sn,m

(
txn + (1 − t)p

) − (txn+m + (1 − t)p
)∥
∥.

(3.8)

By Proposition 2.3 no. (ii) and noticing inequality (3.5) we deduce that

bn,m ≤ ∥∥Sn,m

(
txn + (1 − t)p

) − (tSn,mxn + (1 − t)Sn,mp
)∥
∥ + (1 − t)

∥
∥Sn,mp − p

∥
∥

≤ γ−1
(∥
∥xn − p

∥
∥ − ∥∥xn+m − Sn,mp

∥
∥
)
+

n+m−1∑

j=n

[(
1 − λj

)∥
∥ej
∥
∥ + λjμj

∥
∥F
(
p
)∥
∥
]

≤ γ−1
(∥
∥xn − p

∥
∥ − ∥∥xn+m − p

∥
∥ +
∥
∥p − Sn,mp

∥
∥
)
+

n+m−1∑

j=n

[(
1 − λj

)∥
∥ej
∥
∥ + λjμj

∥
∥F
(
p
)∥
∥
]
.

(3.9)
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Therefore,

bn,m ≤ γ−1

⎛

⎝
∥
∥xn − p

∥
∥ − ∥∥xn+m − p

∥
∥ +

n+m−1∑

j=n

[(
1 − λj

)∥
∥ej
∥
∥ + λjμj

∥
∥F
(
p
)∥
∥
]
⎞

⎠

+
n+m−1∑

j=n

[(
1 − λj

)∥
∥ej
∥
∥ + λjμj

∥
∥F
(
p
)∥
∥
]
.

(3.10)

Since limn→∞‖xn−p‖ exists and
∑∞

n=0(1−λn)‖en‖ and
∑∞

n=0 λnμn are convergent, we conclude
from (3.10) that

lim
n,m→∞

bn,m = 0. (3.11)

Also, since, for all n,m ≥ 1,

an+m =
∥
∥txn+m + (1 − t)p − q

∥
∥

≤ bn,m +
∥
∥Sn,m

(
txn + (1 − t)p

) − Sn,mq
∥
∥ +
∥
∥Sn,mq − q

∥
∥

≤ an + bn,m +
n+m−1∑

j=n

[(
1 − λj

)∥
∥ej
∥
∥ + λjμj

∥
∥F
(
q
)∥
∥
]
,

(3.12)

it follows from (3.11) and (3.12) that limn→∞an exists.
(ii) This is Lemma3.2 of [27].

Now we can state and prove the main result of this section.

Theorem 3.3. Assume that X is a uniformly convex Banach space. Assume, in addition, that either
X∗ has the KK-property or X satisfies Opial’s property. Let T : X → X be a nonexpansive mapping
such that Fix(T)/= ∅ and F : X → Xδ-strongly accretive and λ-strictly pseudocontractive with
δ+λ ≥ 1. Given an initial guess x0 ∈ X. Let {xn} be generated by the following Mann type algorithm
with perturbed mapping F :

xn+1 = λnxn + (1 − λn)(Txn + en) − λnμnF(xn), ∀n ≥ 0, (3.13)

where {λn}∞n=0, {μn}∞n=0, and {en}∞n=0 satisfy the following properties:

(i)
∑∞

n=0 λn(1 − λn) = ∞;

(ii)
∑∞

n=0(1 − λn)‖en‖ < ∞;

(iii)
∑∞

n=0 λnμn < ∞.

Then the sequence {xn} converges weakly to a fixed point of T .
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Proof. Fix p ∈ Fix(T) and select a number r > 0 large enough so that ‖xn − p‖ ≤ r for all n ≥ 0.
Let M > 0 satisfy M > 2r + (1 − λn)‖en‖ + λnμn‖F(xn)‖ for all n ≥ 0. By Lemma 2.1, we have

∥
∥xn+1 − p

∥
∥2 =

∥
∥λn(xn − p) + (1 − λn)(Txn − p) + (1 − λn)en − λnμnF(xn)

∥
∥2

≤ ∥∥λn(xn − p) + (1 − λn)
(
Txn − p

)∥
∥2

+ 2
∥
∥(1 − λn)en − λnμnF(xn)

∥
∥
∥
∥λn
(
xn − p

)
+ (1 − λn)

(
Txn − p

)∥
∥

+
∥
∥(1 − λn)en − λnμnF(xn)

∥
∥2

≤ λn
∥
∥xn − p

∥
∥2 + (1 − λn)

∥
∥Txn − p

∥
∥2 − λn(1 − λn)φ(‖xn − Txn‖)

+M
[
(1 − λn)‖en‖ + λnμn‖F(xn)‖

]

≤ ∥∥xn − p
∥
∥2 − λn(1 − λn)φ(‖xn − Txn‖) +M

[
(1 − λn)‖en‖ + λnμn‖F(xn)‖

]
.

(3.14)

It follows that

λn(1 − λn)φ(‖xn − Txn‖) ≤
∥
∥xn − p

∥
∥2 − ∥∥xn+1 − p

∥
∥2 +M

[
(1 − λn)‖en‖ + λnμn‖F(xn)‖

]
.

(3.15)

This implies that

∞∑

n=0

λn(1 − λn)φ(‖xn − Txn‖) < ∞. (3.16)

In particular, limn→∞λn(1 − λn)φ(‖xn − Txn‖) = 0. Due to condition (i), we must have that
lim infn→∞φ(‖xn − Txn‖) = 0. Hence

lim inf
n→∞

‖xn − Txn‖ = 0. (3.17)

However, since

Txn+1 − xn+1 = (Txn+1 − Txn) + λn(Txn − xn) − (1 − λn)en + λnμnF(xn), (3.18)

we have

‖Txn+1 − xn+1‖ ≤ ‖Txn+1 − Txn‖ + λn‖Txn − xn‖ + (1 − λn)‖en‖ + λnμn‖F(xn)‖
≤ ‖xn+1 − xn‖ + λn‖Txn − xn‖ + (1 − λn)‖en‖ + λnμn‖F(xn)‖
≤ ‖Txn − xn‖ + 2(1 − λn)‖en‖ + 2λnμn‖F(xn)‖,

(3.19)
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and, by Lemma 2.4, limn→∞‖Txn − xn‖ exists and hence, by (3.17),

lim
n→∞

‖Txn − xn‖ = 0. (3.20)

Notice that, by the demiclosedness principle of I − T , we obtain

ωw(xn) ⊂ Fix(T). (3.21)

Hence to prove that {xn} converges weakly to a fixed point of T , it suffices to show that
ωw(xn) is a singleton. We distinguish two cases. First assume that X∗ has the KK-property.
Then that ωw(xn) is a singleton is guaranteed by Proposition 3.2 no. (ii).

Next assume that X satisfies Opial’s property. Take p1, p2 ∈ ωw(xn) and let {xni} and
{xmj} be subsequences of {xn} such that xni ⇀ p1 and xmj ⇀ p2, respectively. If p1 /= p2, we
reach the following contradiction:

lim
n→∞

∥
∥xn − p1

∥
∥ = lim

i→∞

∥
∥xni − p1

∥
∥

< lim
i→∞

∥
∥xni − p2

∥
∥ = lim

j→∞

∥
∥
∥xmj − p2

∥
∥
∥

< lim
j→∞

∥
∥
∥xmj − p1

∥
∥
∥

= lim
n→∞

∥
∥xn − p1

∥
∥.

(3.22)

This shows that ωw(xn) is a singleton. The proof is therefore complete.

4. The Case Where Mappings Are Defined on Subsets

We observe that if the domainD(T) is a proper closed convex subset C of X, then the vectors
Txn+en and (I−μnF)xn may not belong to C. In this case the next iterate xn+1 may not be well
defined by (3.13). In order to consider this situation, we will use the nearest projection PC and
for the projection to be nonexpansive, we have to restrict our spaces to be Hilbert spaces.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Given a closed
convex subset C of H. Recall that the (nearest point) projection PC from H onto C assigns
each point x ∈ H with its (unique) nearest point in C which is denoted by PCx. Namely,
PCx ∈ C is the unique point in C with the property

‖x − PCx‖ = inf
{∥
∥x − y

∥
∥ : y ∈ C

}
. (4.1)

Note that PC is nonexpansive.
Let T : C → C be a nonexpansive mapping with Fix(T)/= ∅ and F : C → Hδ-strongly

monotone and λ-strictly pseudocontractive with δ+λ ≥ 1. Starting with x0 ∈ C and after xn in
C is defined, we have two ways to define the next iterate xn+1: either applying the projection
PC to the vectors (I − μnF)xn and Txn + en and defining xn+1 as the convex combination of
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PC((I − μnF)xn) and PC(Txn + en), or projecting a convex combination of (I − μnF)xn and
(Txn + en) onto C to define xn+1. More precisely, we define xn+1 as follows:

xn+1 = λnPC

((
I − μnF

)
xn

)
+ (1 − λn)PC(Txn + en), ∀n ≥ 0, (4.2)

or

xn+1 = PC

[
λn
(
I − μnF

)
xn + (1 − λn)(Txn + en)

]
, ∀n ≥ 0. (4.3)

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let T : C → C
be a nonexpansive mapping with Fix(T)/= ∅ and F : C → Hδ-strongly monotone and λ-strictly
pseudocontractive with δ + λ ≥ 1. Let {xn} be generated by either (4.2) or (4.3) where the sequences
{λn}, {μn} and {en} are such that

(i)
∑∞

n=0 λn(1 − λn) = ∞;

(ii)
∑∞

n=0(1 − λn)‖en‖ < ∞;

(iii)
∑∞

n=0 λnμn < ∞.

Then {xn} converges weakly to a fixed point of T .

Proof. Given p ∈ Fix(T). Assume that {xn} is generated by (4.2). Then

∥
∥xn+1 − p

∥
∥ =
∥
∥λnPC

((
I − μnF

)
xn

)
+ (1 − λn)PC(Txn + en) − p

∥
∥

≤ λn
∥
∥PC

((
I − μnF

)
xn

) − p
∥
∥ + (1 − λn)

∥
∥PC(Txn + en) − p

∥
∥

≤ λn
∥
∥
(
I − μnF

)
xn − p

∥
∥ + (1 − λn)

∥
∥(Txn + en) − p

∥
∥

≤ λn
[∥
∥
(
I − μnF

)
xn −

(
I − μnF

)
p
∥
∥ +
∥
∥
(
I − μnF

)
p − p

∥
∥
]

+ (1 − λn)
∥
∥(Txn + en) − p

∥
∥

≤ λn

⎡

⎣

⎛

⎝1 − μn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥
∥xn − p

∥
∥ +
∥
∥
(
I − μnF

)
p − p

∥
∥

⎤

⎦

+ (1 − λn)
∥
∥xn − p

∥
∥ + (1 − λn)‖en‖

≤ λn
∥
∥xn − p

∥
∥ + λnμn

∥
∥F
(
p
)∥
∥ + (1 − λn)

∥
∥xn − p

∥
∥ + (1 − λn)‖en‖

=
∥
∥xn − p

∥
∥ + (1 − λn)‖en‖ + λnμn

∥
∥F
(
p
)∥
∥.

(4.4)

Hence limn→∞‖xn − p‖ exists; in particular, {xn} is bounded. Let M > 0 be a constant such
that M > 2‖xn − p‖ + (1 − λn)‖en‖ + λnμn‖F(xn)‖ for all n ≥ 0.
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We compute

∥
∥xn+1 − p

∥
∥2

=
∥
∥λnPC

((
I − μnF

)
xn

)
+ (1 − λn)PC(Txn + en) − p

∥
∥2

=
∥
∥λn
(
xn − p

)
+ (1 − λn)

(
Txn − p

)
+ λn

[
PC

((
I − μnF

)
xn

) − xn

]

+(1 − λn)[PC(Txn + en) − Txn]‖2

≤ ∥∥λn(xn − p) + (1 − λn)
(
Txn − p

)∥
∥2

+
∥
∥λn
[
PC

((
I − μnF

)
xn

) − xn

]
+ (1 − λn)[PC(Txn + en) − Txn]

∥
∥2

+ 2
∥
∥λn
(
xn − p

)
+ (1 − λn)

(
Txn − p

)∥
∥
∥
∥λn
[
PC

((
I − μnF

)
xn

) − xn

]

× + (1 − λn)[PC(Txn + en) − Txn]
∥
∥

≤ λn
∥
∥xn − p

∥
∥2 + (1 − λn)

∥
∥Txn − p

∥
∥2 − λn(1 − λn)‖xn − Txn‖2

+M
[
(1 − λn)‖en‖ + λnμn‖F(xn)‖

]

≤ ∥∥xn − p
∥
∥2 − λn(1 − λn)‖xn − Txn‖2 +M

[
(1 − λn)‖en‖ + λnμn‖F(xn)‖

]
.

(4.5)

That is,

λn(1 − λn)‖xn − Txn‖2 ≤
∥
∥xn − p

∥
∥2 − ∥∥xn+1 − p

∥
∥2 +M

[
(1 − λn)‖en‖ + λnμn‖F(xn)‖

]
. (4.6)

This implies that

∞∑

n=0

λn(1 − λn)‖xn − Txn‖2 < ∞. (4.7)

In particular (noticing assumption (i)),

lim inf
n→∞

‖xn − Txn‖ = 0. (4.8)

We also have

‖xn+1 − xn‖ =
∥
∥λnPC

((
I − μnF

)
xn

)
+ (1 − λn)PC(Txn + en) − xn

∥
∥

≤ λn
∥
∥PC

((
I − μnF

)
xn

) − xn

∥
∥ + (1 − λn)‖PC(Txn + en) − xn‖

≤ λnμn‖F(xn)‖ + (1 − λn)(‖Txn − xn‖ + ‖en‖).
(4.9)

Moreover, noticing

Txn+1 − xn+1 = (Txn+1 − Txn) + λn
[
Txn − PC

((
I − μnF

)
xn

)]
+ (1 − λn)[Txn − PC(Txn + en)],

(4.10)
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we have

‖Txn+1 − xn+1‖ ≤ ‖Txn+1 − Txn‖ + λn
∥
∥Txn − PC

((
I − μnF

)
xn

)∥
∥

+ (1 − λn)‖Txn − PC(Txn + en)‖
≤ ‖xn+1 − xn‖ + λn

[‖Txn − xn‖ + μn‖F(xn)‖
]
+ (1 − λn)‖en‖

≤ λnμn‖F(xn)‖ + (1 − λn)(‖Txn − xn‖ + ‖en‖)
+ λn

[‖Txn − xn‖ + μn‖F(xn)‖
]
+ (1 − λn)‖en‖

= ‖Txn − xn‖ + 2(1 − λn)‖en‖ + 2λnμn‖F(xn)‖.

(4.11)

Similarly, if {xn} is generated by algorithm (4.3), then relations (4.4)–(4.11) still hold.
It is now readily seen that (4.11) together with Lemma 2.4 implies that limn→∞‖xn −

Txn‖ exists, which together with (4.8) further implies that

lim
n→∞

‖xn − Txn‖ = 0. (4.12)

Equation (4.12) implies that ωw(xn) ⊂ Fix(T), due to the demiclosedness principle. Finally,
repeating the last part of the proof of Theorem 3.3 in the case of Opial’s property, we see that
{xn} converges weakly to a fixed point of T . The proof is therefore complete.

Finally in this section, we consider the case of accretive operators. Recall that a
multivalued operatorAwith domainD(A) and range R(A) in a Banach space X is said to be
accretive if, for each xi ∈ D(A) and yi ∈ Axi (i = 1, 2), there is j(x2 −x1) ∈ J(x2 −x1) such that

〈y2 − y1, j(x2 − x1)〉 ≥ 0, (4.13)

where J is the dualitymap fromX to the dual spaceX∗. An accretive operatorA ism-accretive
if R(I + λA) = X for all λ > 0.

Denote by Ω the zero set of A; that is,

Ω := A−1(0) = {x ∈ D(A) : 0 ∈ Ax}. (4.14)

Throughout the rest of this paper it is always assumed that A is m-accretive and Ω is
nonempty.

Denote by Jr the resolvent of A for r > 0:

Jr = (I + rA)−1. (4.15)

It is known that Jr is a nonexpansive mapping from X to C := D(A) which will be assumed
convex (this is so if X is uniformly convex). It is also known that Fix(Jr) = Ω for r > 0.

Now consider the problem of finding a zero of an m-accretive operator A in a Banach
space X,

0 ∈ Ax. (4.16)
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We will study the convergence of the following algorithm:

xn+1 = λnxn + (1 − λn)(Jcnxn + en) − λnμnF(xn), (4.17)

where F : X → X is a perturbed mapping, the initial guess x0 ∈ X is arbitrary, {λn} and
{μn} are two sequences in [0, 1], {cn} is a sequence of positive numbers, and {en} is an error
sequence in X.

Theorem 4.2. Let X be a uniformly convex Banach space. Assume in addition that either X∗ has the
KK -property or X satisfies Opial’s property. Let A be an m-accretive operator in X such that Ω/= ∅
and let F : X → X be δ-strongly accretive and λ-strictly pseudocontractive with δ+λ ≥ 1. Moreover,
assume that {λn}, {μn}, {cn}, and {en} satisfy the following properties:

(i)
∑∞

n=0 λn(1 − λn) = ∞;

(ii)
∑∞

n=0(1 − λn)‖en‖ < ∞;

(iii)
∑∞

n=0 λnμn < ∞;

(iv) 0 < c∗ < cn < c∗ < ∞, where c∗ and c∗ are two constants;

(v)
∑∞

n=0 |cn+1 − cn| < ∞.

Then the sequence {xn} generated by algorithm (4.17) converges weakly to a point of Ω.

Proof. The proof is a refinement of that of Theorem 3.3 given in Section 3 and [34,
Theorem3.3] together with Proposition 3.2. So we only sketch it.

Let p ∈ Ω. By (4.17), we have

∥
∥xn+1 − p

∥
∥ =
∥
∥λnxn + (1 − λn)(Jcnxn + en) − λnμnF(xn) − p

∥
∥

≤ λn
∥
∥
(
I − μnF

)
xn − p

∥
∥ + (1 − λn)

∥
∥Jcnxn − p

∥
∥ + (1 − λn)‖en‖

≤ λn
[∥
∥
(
I − μnF

)
xn −

(
I − μnF

)
p
∥
∥ +
∥
∥
(
I − μnF

)
p − p

∥
∥
]

+ (1 − λn)
∥
∥xn − p

∥
∥ + (1 − λn)‖en‖

≤ λn

⎡

⎣1 − μn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎤

⎦
∥
∥xn − p

∥
∥ + λnμn

∥
∥F
(
p
)∥
∥

+ (1 − λn)
∥
∥xn − p

∥
∥ + (1 − λn)‖en‖

≤ λn
∥
∥xn − p

∥
∥ + λnμn

∥
∥F
(
p
)∥
∥ + (1 − λn)

∥
∥xn − p

∥
∥ + (1 − λn)‖en‖

=
∥
∥xn − p

∥
∥ + λnμn

∥
∥F
(
p
)∥
∥ + (1 − λn)‖en‖.

(4.18)

By Lemma 2.4, we see that limn→∞‖xn − p‖ exists.
With slight modifications of the proof of Theorem 3.3 (replacing Txn by Jcnxn), we can

obtain that

lim inf
n→∞

‖xn − Jcnxn‖ = 0. (4.19)
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Now noticing

Jcn+1xn+1 − xn+1 = Jcn+1xn+1 − Jcnxn + λn
[
Jcnxn −

(
I − μnF

)
xn

] − (1 − λn)en, (4.20)

and letting sn := ‖Jcnxn − xn‖ for all n ≥ 0, we deduce that

sn+1 ≤ λn
∥
∥Jcnxn −

(
I − μnF

)
xn

∥
∥ + ‖Jcn+1xn+1 − Jcnxn‖ + (1 − λn)‖en‖

≤ λnsn + ‖Jcn+1xn+1 − Jcnxn‖ + (1 − λn)‖en‖ + λnμn‖F(xn)‖.
(4.21)

By mimicking the proof of Theorem3.3 in [34], we can show that, in the case of cn ≤ cn+1,

sn+1
cn+1

≤ sn
cn

+
2
cn

[
(1 − λn)‖en‖ + λnμn‖F(xn)‖

]
, (4.22)

and in the case of cn > cn+1,

sn+1
cn+1

≤ sn
cn

+
2s∗

c2∗
|cn − cn+1| + 2

c∗

[
(1 − λn)‖en‖ + λnμn‖F(xn)‖

]
, (4.23)

where s∗ is such that sn ≤ s∗ for all n ≥ 0. In either case we conclude from (4.22) and (4.23)
that {sn} satisfies

sn+1
cn+1

≤ sn
cn

+ σn, ∀n ≥ 0, (4.24)

where σn := 2s∗|cn+1 − cn|/c2∗ + 2[(1 − λn)‖en‖ + λnμn‖F(xn)‖]/c∗ fulfills
∑∞

n=0 σn < ∞. By
Lemma 2.4, (4.24) implies that limn→∞(sn/cn) exists. This together with the assumption (iv)
and (4.19) implies that lim supn→∞‖xn − Jcnxn‖ = 0. So, by Lemma3.3 in [34], we have

‖xn − Jc∗xn‖ ≤ 2‖xn − Jcnxn‖ −→ 0. (4.25)

By the demiclosedness principle, (4.25) ensures that ωw(xn) ⊂ Fix(Jc∗) = Ω. Repeating the
last part of the proof of Theorem 3.3, we conclude that {xn} converges weakly to a point of
Ω.
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