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We consider a modified Halpern type iterative algorithm for a family of quasi-φ-nonexpansive
mappings in the framework of Banach spaces. Strong convergence theorems of the purposed
iterative algorithms are established.

1. Introduction

Let E be a Banach space, C a nonempty closed and convex subset of E, and T : C → C a
nonlinear mapping. Recall that T is nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.1)

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of
T , that is, F(T) = {x ∈ C : Tx = x}.
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One classical way to study nonexpansive mappings is to use contractions to
approximate a nonexpansive mapping; see ([1, 2]). More precisely, take t ∈ (0, 1) and define
a contraction Tt : C → C by

Ttx = tu + (1 − t)Tx, ∀x ∈ C, (1.2)

where u ∈ C is a fixed element. Banach Contraction Mapping Principle guarantees that Tt has
a unique fixed point xt in C. It is unclear, in general, what the behavior of xt is as t → 0 even
if T has a fixed point. However, in the case of T having a fixed point, Browder [1] proved the
following well-known strong convergence theorem.

Theorem B. Let C be a bounded closed convex subset of a Hilbert space H and T a nonexpansive
mapping on C. Fix u ∈ C and define zt ∈ C as zt = tu + (1 − t)Tzt for any t ∈ (0, 1). Then {zt}
converges strongly to an element of F(T) nearest to u.

Motivated by Theorem B, Halpern [3] considered the following explicit iteration:

x0 ∈ C, xn+1 = αnu + (1 − αn)Txn, ∀n ≥ 0, (1.3)

and obtained the following theorem.

Theorem H. Let C be a bounded closed convex subset of a Hilbert space H and T a nonexpansive
mapping on C. Define a real sequence {αn} in [0, 1] by αn = n−θ, 0 < θ < 1. Then the sequence {xn}
defined by (1.3) converges strongly to the element of F(T) nearest to u.

In [4], Lions improved the result of Halpern [3], still in Hilbert spaces, by proving
the strong convergence of {xn} to a fixed point of T provided that the control sequence {αn}
satisfies the following conditions:

(C1) limn→∞αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3) limn→∞((αn+1 − αn)/α2
n+1) = 0.

It was observed that both the Halpern’s and Lion’s conditions on the real sequence
{αn} excluded the canonical choice {αn} = 1/(n + 1). This was overcome by Wittmann [5],
who proved, still in Hilbert spaces, the strong convergence of {xn} to a fixed point of T if {αn}
satisfies the following conditions:

(C1) limn→∞αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C4)
∑∞

n=1 |αn+1 − αn| < ∞.

In [6], Shioji and Takahashi extended Wittmann’s results to the setting of Banach
spaces under the assumptions (C1), (C2), and (C4) imposed on the control sequences {αn}. In
[7], Xu remarked that the conditions (C1) and (C2) are necessary for the strong convergence
of the iterative sequence defined in (1.3) for all nonexpansive self-mappings. It is well
known that the iterative algorithm (1.3) is widely believed to have slow convergence because



Fixed Point Theory and Applications 3

the restriction of condition (C2). Thus, to improve the rate of convergence of the iterative
process (1.3), one cannot rely only on the process itself.

Recently, hybrid projection algorithms have been studied for the fixed point problems
of nonlinear mappings by many authors; see, for example, [8–24]. In 2006, Martinez-Yanes
and Xu [10] proposed the following modification of the Halpern iteration for a single
nonexpansive mapping T in a Hilbert space. To be more precise, they proved the following
theorem.

Theorem MYX. Let H be a real Hilbert space, C a closed convex subset of H, and T : C → C a
nonexpansive mapping such that F(T)/= ∅. Assume that {αn} ⊂ (0, 1) is such that limn→∞αn = 0.
Then the sequence {xn} defined by

x0 ∈ C chosen arbitrarily,

yn = αnx0 + (1 − αn)Txn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 ≤ ‖xn − z‖2 + αn

(

‖x0‖2 + 2〈xn − x0, z〉
)}

,

Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(1.4)

converges strongly to PF(T)x0.

Very recently, Qin and Su [17] improved the result of Martinez-Yanes and Xu [10] from
Hilbert spaces to Banach spaces. To be more precise, they proved the following theorem.

Theorem QS. Let E be a uniformly convex and uniformly smooth Banach space, C a nonempty
closed convex subset of E, and T : C → C a relatively nonexpansive mapping. Assume that {αn} is a
sequence in (0, 1) such that limn→∞αn = 0. Define a sequence {xn} in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJx0 + (1 − αn)JTxn),

Cn =
{

v ∈ C : φ
(

v, yn

) ≤ αnφ(v, x0) + (1 − αn)φ(v, xn)
}

,

Qn = {v ∈ C : 〈Jx0 − Jxn, xn − v〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, ∀n ≥ 0,

(1.5)

where J is the single-valued duality mapping on E. If F(T) is nonempty, then {xn} converges to
ΠF(T)x0.

In this paper, motivated by Kimura and Takahashi [8], Martinez-Yanes and Xu [10],
Qin and Su [17], and Qin et al. [19], we consider a hybrid projection algorithm to modify the
iterative process (1.3) to have strong convergence under condition (C1) only for a family of
closed quasi-φ-nonexpansive mappings.



4 Fixed Point Theory and Applications

2. Preliminaries

Let E be a Banach space with the dual space E∗. We denote by J the normalized duality
mapping from E to 2E

∗
defined by

Jx =
{

f∗ ∈ E∗ :
〈

x, f∗〉 = ‖x‖2 = ∥
∥f∗∥∥2

}

, ∀x ∈ E, (2.1)

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that, if E∗ is strictly
convex, then J is single-valued and, if E∗ is uniformly convex, then J is uniformly continuous
on bounded subsets of E.

We know that, if C is a nonempty closed convex subset of a Hilbert space H and
PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact actually
characterizes Hilbert spaces and, consequently, it is not available in more general Banach
spaces. In this connection, Alber [25] recently introduced a generalized projection operator
ΠC in a Banach space E, which is an analogue of the metric projection in Hilbert spaces.

A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x /=y. The space E is said to be uniformly convex if limn→∞‖xn−yn‖ = 0 for
any two sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞‖(xn+yn)/2‖ = 1.
Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the space E is said to be smooth if

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.2)

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly
for x, y ∈ E. It is well known that, if E is uniformly smooth, then J is uniformly norm-to-norm
continuous on each bounded subset of E.

In a smooth Banach space E, we consider the functional defined by

φ
(

x, y
)

= ‖x‖2 − 2
〈

x, Jy
〉

+
∥
∥y

∥
∥
2
, ∀x, y ∈ E. (2.3)

Observe that, in a Hilbert space H, (2.3) reduces to φ(x, y) = ‖x − y‖2 for all x, y ∈ H. The
generalized projection ΠC : E → C is a mapping that assigns to an arbitrary point x ∈ E
the minimum point of the functional φ(x, y), that is, ΠCx = x, where x is the solution to the
minimization problem:

φ(x, x) = min
y∈C

φ
(

y, x
)

. (2.4)

The existence and uniqueness of the operator ΠC follows from some properties of the
functional φ(x, y) and the strict monotonicity of the mapping J (see, e.g., [25–28]). In Hilbert
spaces, ΠC = PC. It is obvious from the definition of the function φ that

(∥
∥y

∥
∥ − ‖x‖)2 ≤ φ

(

y, x
) ≤ (∥

∥y
∥
∥ + ‖x‖)2, ∀x, y ∈ E. (2.5)

Remark 2.1. If E is a reflexive, strictly convex, and smooth Banach space, then, for any x, y ∈ E,
φ(x, y) = 0 if and only if x = y. In fact, it is sufficient to show that, if φ(x, y) = 0, then x = y.
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From (2.5), we have ‖x‖ = ‖y‖. This implies 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J,
one has Jx = Jy. Therefore, we have x = y (see [27, 29] for more details).

LetC be a nonempty closed and convex subset of E and T amapping fromC into itself.
A point p ∈ C is said to be an asymptotic fixed point of T ([30]) if C contains a sequence {xn}
which converges weakly to p such that limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed
points of T will be denoted by ˜F(T). A mapping T from C into itself is said to be relatively
nonexpansive ([27, 31, 32]) if ˜F(T) = F(T) and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T).
The asymptotic behavior of a relatively nonexpansive mapping was studied by some authors
([27, 31, 32]).

Amapping T : C → C is said to be φ-nonexpansive ([18, 19, 24]) if φ(Tx, Ty) ≤ φ(x, y)
for all x, y ∈ C. The mapping T is said to be quasi-φ-nonexpansive ([18, 19, 24]) if F(T)/= ∅
and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T).

Remark 2.2. The class of quasi-φ-nonexpansive mappings is more general than the class of
relatively nonexpansive mappings, which requires the strong restriction: F(T) = ˜F(T).

In order to prove our main results, we need the following lemmas.

Lemma 2.3 (see [28]). Let E be a uniformly convex and smooth Banach space and {xn}, {yn} two
sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded, then xn − yn → 0.

Lemma 2.4 (see [25, 28]). Let C be a nonempty closed convex subset of a smooth Banach space E
and x ∈ E. Then x0 = ΠCx ∈ C if and only if

〈

x0 − y, Jx − Jx0
〉 ≥ 0, ∀y ∈ C. (2.6)

Lemma 2.5 (see [25, 28]). Let E be a reflexive, strictly convex, and smooth Banach space, C a
nonempty closed convex subset of E and x ∈ E. Then

φ
(

y,ΠCx
)

+ φ(ΠCx, x) ≤ φ
(

y, x
)

, ∀y ∈ C. (2.7)

Lemma 2.6 (see [7, 18]). Let E be a uniformly convex and smooth Banach space, C a nonempty,
closed, and convex subset of E and T a closed quasi-φ-nonexpansive mapping from C into itself. Then
F(T) is a closed and convex subset of C.

3. Main Results

From now on, we use I to denote an index set. Now, we are in a position to prove our main
results.

Theorem 3.1. Let C be a nonempty closed and convex subset of a uniformly convex and uniformly
smooth Banach space E and {Ti}i∈I : C → C a family of closed quasi-φ-nonexpansive mappings
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such that F =
⋂

i∈IF(Ti)/= ∅. Let {αn} be a real sequence in (0, 1) such that limn→∞αn = 0. Define a
sequence {xn} in C in the following manner:

x0 ∈ C chosen arbitrarily,

y(n,i) = J−1[αnJx0 + (1 − αn)JTixn],

C(n,i) =
{

z ∈ C : φ
(

z, y(n,i)
) ≤ αnφ(z, x0) + (1 − αn)φ(z, xn)

}

,

Cn =
⋂

i∈IC(n,i),

Q0 = C,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, ∀n ≥ 0,

(3.1)

then the sequence {xn} defined by (3.1) converges strongly toΠFx0.

Proof. We first show thatCn andQn are closed and convex for each n ≥ 0. From the definitions
of Cn and Qn, it is obvious that Cn is closed and Qn is closed and convex for each n ≥ 0. We,
therefore, only show that Cn is convex for each n ≥ 0. Indeed, note that

φ
(

z, y(n,i)
) ≤ αnφ(z, x0) + (1 − αn)φ(z, xn) (3.2)

is equivalent to

2αn〈z, Jx0〉 + 2(1 − αn) 〈z, Jxn〉 − 2
〈

z, Jyn,i

〉 ≤ αn‖x0‖2 + (1 − αn)‖xn‖2 −
∥
∥y(n,i)

∥
∥
2
. (3.3)

This shows that C(n,i) is closed and convex for each n ≥ 0 and i ∈ I. Therefore, we obtain that
Cn =

⋂

i∈IC(n,i) is convex for each n ≥ 0.
Next, we show that F ⊂ Cn for all n ≥ 0. For each w ∈ F and i ∈ I, we have

φ
(

w,y(n,i)
)

= φ
(

w, J−1[αnJx0 + (1 − αn)JTixn]
)

= ‖w‖2 − 2〈w,αnJx0 + (1 − αn)JTixn〉 + ‖αnJx0 + (1 − αn)JTixn‖2

≤ ‖w‖2 − 2αn〈w, Jx0〉 + 2(1 − αn) 〈w, JTixn〉 + αn‖x0‖2 + (1 − αn)‖Tixn‖2

≤ αnφ(w,x0) + (1 − αn)φ(w, Tixn)

≤ αnφ(w,x0) + (1 − αn)φ(w,xn),

(3.4)

which yields that w ∈ C(n,i) for all n ≥ 0 and i ∈ I. It follows that w ∈ Cn =
⋂

i∈IC(n,i). This
proves that F ⊂ Cn for all n ≥ 0.
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Next, we prove that F ⊂ Qn for all n ≥ 0. We prove this by induction. For n = 0, we
have F ⊂ C = Q0. Assume that F ⊂ Qn−1 for some n ≥ 1. Next, we show that F ⊂ Qn for the
same n. Since xn is the projection of x0 onto Cn−1 ∩Qn−1,we obtain that

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn−1 ∩Qn−1. (3.5)

Since F ⊂ Cn−1 ∩ Qn−1 by the induction assumption, (3.5) holds, in particular, for all w ∈ F.
This together with the definition of Qn implies that F ⊂ Qn for all n ≥ 0. Noticing that xn+1 =
ΠCn∩Qnx0 ∈ Qn and xn = ΠQnx0, one has

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (3.6)

We, therefore, obtain that {φ(xn, x0)} is nondecreasing. From Lemma 2.5, we see that

φ(xn, x0) = φ(ΠCnx0, x0)

≤ φ(w,x0) − φ(w,xn)

≤ φ(w,x0), ∀w ∈ F ⊂ Cn, ∀n ≥ 0.

(3.7)

This shows that {φ(xn, x0)} is bounded. It follows that the limit of {φ(xn, x0)} exists. By the
construction ofQn, we see thatQm ⊂ Qn and xm = ΠQmx0 ∈ Qn for any positive integerm ≥ n.
Notice that

φ(xm, xn) = φ(xm,ΠCnx0)

≤ φ(xm, x0) − φ(ΠCnx0, x0)

= φ(xm, x0) − φ(xn, x0).

(3.8)

Taking the limit as m,n → ∞ in (3.8), we get that φ(xm, xn) → 0. From Lemma 2.3, one has
xm −xn → 0 asm,n → ∞. It follows that {xn} is a Cauchy sequence in C. Since E is a Banach
space and C is closed and convex, we can assume that xn → q ∈ C as n → ∞.

Finally, we show that q = ΠFx0. To end this, we first show q ∈ F. By taking m = n + 1
in (3.8), we have

φ(xn+1, xn) −→ 0 (n −→ ∞). (3.9)

From Lemma 2.3, we arrive at

xn+1 − xn −→ 0 (n −→ ∞). (3.10)

Noticing that xn+1 ∈ Cn, we obtain

φ
(

xn+1, y(n,i)
) ≤ αnφ(xn+1, x0) + (1 − αn)φ(xn+1, xn). (3.11)



8 Fixed Point Theory and Applications

It follows from the assumption on {αn} and (3.9) that limn→∞φ(xn+1, y(n,i)) = 0 for each i ∈ I.
From Lemma 2.3, we obtain

lim
n→∞

∥
∥xn+1 − y(n,i)

∥
∥ = 0, ∀i ∈ I. (3.12)

On the other hand, we have ‖Jy(n,i) − JTixn‖ = αn‖Jx0 − JTixn‖. By the assumption
on {αn}, we see that limn→∞‖Jy(n,i) − JTixn‖ = 0 for each i ∈ I. Since J−1 is also uniformly
norm-to-norm continuous on bounded sets, we obtain that

lim
n→∞

∥
∥y(n,i) − Tixn

∥
∥ = 0. (3.13)

On the other hand, we have

‖xn − Tixn‖ ≤ ‖xn − xn+1‖ +
∥
∥xn+1 − y(n,i)

∥
∥ +

∥
∥y(n,i) − Tixn

∥
∥. (3.14)

From (3.10)–(3.13), we obtain limn→∞‖Tixn −xn‖ = 0. From the closedness of Ti, we get q ∈ F.
Finally, we show that q = ΠFx0. From xn = ΠCnx0, we see that

〈xn −w, Jx0 − Jxn〉 ≥ 0, ∀w ∈ F ⊂ Cn. (3.15)

Taking the limit as n → ∞ in (3.15), we obtain that

〈

q −w, Jx0 − Jq
〉 ≥ 0, ∀w ∈ F, (3.16)

and hence q = ΠFx0 by Lemma 2.4. This completes the proof.

Remark 3.2. Comparing the hybrid projection algorithm (3.1) in Theorem 3.1 with algorithm
(1.5) in Theorem QS, we remark that the set Qn is constructed based on the set Qn−1 instead
of C for each n ≥ 1.We obtain that the sequence generated by the algorithm (3.1) is a Cauchy
sequence. The proof is, therefore, different from the one presented in Qin and Su [17].

As a corollary of Theorem 3.1, for a single quasi-φ-nonexpansive mapping, we have
the following result immediately.

Corollary 3.3. Let C be a nonempty, closed, and convex subset of a uniformly convex and uniformly
smooth Banach space E and T : C → C a closed quasi-φ-nonexpansive mappings with a fixed point.
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Let {αn} be a real sequence in (0, 1) such that limn→∞αn = 0. Define a sequence {xn} in C in the
following manner:

x0 ∈ C chosen arbitrarily,

yn = J−1[αnJx0 + (1 − αn)JTxn],

Cn =
{

z ∈ C : φ
(

z, yn

) ≤ αnφ(z, x0) + (1 − αn)φ(z, xn)
}

,

Q0 = C,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, ∀n ≥ 0,

(3.17)

then the sequence {xn} converges strongly toΠFx0.

Remark 3.4. Corollary 3.3 mainly improves Theorem 2.2 of Qin and Su [17] from the class
of relatively nonexpansive mappings to the class of quasi-φ-nonexpansive mappings, which
relaxes the strong restriction: ˜F(T) = F(T).

In the framework of Hilbert spaces, Theorem 3.1 is reduced to the following result.

Corollary 3.5. Let C be a nonempty closed and convex subset of a Hilbert spaceH and {Ti}i∈I : C →
C a family of closed quasi-nonexpansive mappings such that F =

⋂

i∈IF(Ti)/= ∅. Let {αn} be a real
sequence in (0, 1) such that limn→∞αn = 0. Define a sequence {xn} in C in the following manner:

x0 ∈ C chosen arbitrarily,

y(n,i) = αnx0 + (1 − αn)Tixn,

C(n,i) =
{

z ∈ C :
∥
∥z − y(n,i)

∥
∥
2 ≤ αn‖z − x0‖2 + (1 − αn)‖z − xn‖2

}

,

Cn =
⋂

i∈IC(n,i),

Q0 = C,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(3.18)

then the sequence {xn} converges strongly to PFx0.

Remark 3.6. Corollary 3.5 includes the corresponding result of Martinez-Yanes and Xu [10] as
a special case. To be more precise, Corollary 3.5 improves Theorem 3.1 of Martinez-Yanes and
Xu [10] from a single mapping to a family of mappings and from nonexpansive mappings to
quasi-nonexpansive mappings, respectively.
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