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The notion of coupled fixed point is introduced by Bhaskar and Lakshmikantham, (2006). In this
manuscript, some result of Mitrović, (2010) extended to the class of cone Banach spaces.

1. Introduction and Preliminaries

Banach, valued metric space was considered by Rzepecki [1], Lin [2], and lately by Huang
and Zhang [3]. Basically, for nonempty setX, the definition of metric d : X×X → R

+ = [0,∞)
is replaced by a new metric, namely, by an ordered Banach space E: d : X × X → E.
Such metric spaces are called cone metric spaces (in short CMSs). In 1980, by using this
idea Rzepecki [1] generalized the fixed point theorems of Maia type. Seven years later,
Lin [2] extends some results of Khan and Imdad [4] by considering this new metric space
construction. In 2007, Huang and Zhang [3] discussed some properties of convergence of
sequences and proved the fixed point theorems of contractive mapping for cone metric
spaces: any mapping T of a complete cone metric space X into itself that satisfies, for some
0 ≤ k < 1, the inequality

d
(
Tx, Ty

) ≤ kd
(
x, y

)
(1.1)

for all x, y ∈ X, has a unique fixed point. Recently, many results on fixed point theorems have
been extended to cone metric spaces (see, e.g., [3, 5–11]). In [3], the authors extends to cone
metric spaces over regular cones. In this manuscript, some results of some result of Mitrović
in [12] are extended to the class of cone metric spaces.
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Throughout this paper E stands for real Banach space. Let P := PE always be closed
subset of E. P is called cone if the following conditions are satisfied:

(C1) P /= ∅,
(C2) ax + by ∈ P for all x, y ∈ P and nonnegative real numbers a, b,

(C3) P ∩ (−P) = {0} and P /= {0}.
For a given cone P , one can define a partial ordering (denoted by ≤ or ≤P ) with respect to P
by x ≤ y if and only if y − x ∈ P . The notation x < y indicates that x ≤ y and x /=y while
x � y will show y − x ∈ intP , where intP denotes the interior of P . It can be easily shown
that intP + intP ⊂ intP and λ(intP) ⊂ intP where 0 < λ ∈ R. Throughout this manuscript
intP /= ∅.

The cone P is called

(N) normal if there is a number K ≥ 1 such that for all x, y ∈ E,

0 ≤ x ≤ y =⇒ ‖x‖ ≤ K
∥∥y

∥∥; (1.2)

(R) regular if every increasing sequence which is bounded from above is convergent.
That is, if {xn}n≥1 is a sequence such that x1 ≤ x2 ≤ · · · ≤ y for some y ∈ E, then
there is x ∈ E such that limn→∞‖xn − x‖ = 0.

In (N), the least positive integer K satisfying (1.2) is called the normal constant of (P). Note
that, in [3, 5], normal constant K is considered a positive real number, (K > 0), although it is
proved that there is no normal cone for K < 1 in (see e.g., Lemma 2.1, [5]).

Lemma 1.1 (see e.g., [13]). One has the following.

(i) Every regular cone is normal.

(ii) For each k > 1, there is a normal cone with normal constant K > k.

(iii) The cone P is regular if every decreasing sequence which is bounded from below is
convergent.

Definition 1.2 (see [14]). P is called minihedral cone if sup{x, y} exists for all x, y ∈ E; and
strongly minihedral if every subset of E which is bounded from above has a supremum.

Example 1.3. Let E = C[0, 1] with the supremum norm and P = {f ∈ E : f ≥ 0}. Since the
sequence xn is monotonically decreasing, but not uniformly convergent to 0, thus, P is not
strongly minihedral.

Definition 1.4. Let X be nonempty set. Suppose that the mapping d : X ×X → E satisfies the
following:

(M1) 0 ≤ d(x, y) for all x, y ∈ X,

(M2) d(x, y) = 0 if and only if x = y,

(M3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y ∈ X.

(M4) d(x, y) = d(y, x) for all x, y ∈ X.

Then d is called cone metric on X, and the pair (X, d) is called a cone metric space (CMS).
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Example 1.5. Let E = R
3 and P = {(x, y, z) ∈ E : x, y, z ≥ 0} and X = R. Define d : X ×X → E

by d(x, x̃) = (α|x − x̃|, β|x − x̃|, γ |x − x̃|), where α, β, γ are positive constants. Then (X, d) is a
CMS. Note that the cone P is normal with the normal constant K = 1.

It is quite natural to consider Cone Normed Spaces (CNSs).

Definition 1.6 (see e.g., [9, 15, 16]). Let X be a vector space over R. Suppose that the mapping
‖ · ‖P : X → E satisfies the following:

(N1) ‖x‖P > 0 for all x ∈ X,

(N2) ‖x‖P = 0 if and only if x = 0,

(N3) ‖x + y‖P ≤ ‖x‖P + ‖y‖P , for all x, y ∈ X.

(N4) ‖kx‖P = |k|‖x‖P for all k ∈ R.

Then ‖ · ‖P is called cone norm on X, and the pair (X, ‖ · ‖P ) is called a cone normed space
(CNS).

Note that each CNS is CMS. Indeed, d(x, y) = ‖x − y‖P .

Definition 1.7. Let (X, ‖ · ‖P ) be a CNS, x ∈ X, and {xn}n≥1 a sequence in X. Then one has the
following.

(i) {xn}n≥1 converges to x whenever for every c ∈ E with 0 � c there is a natural
numberN, such that ‖xn − x‖P � c for all n ≥ N. It is denoted by limn→∞xn = x or
xn → x.

(ii) {xn}n≥1 is a Cauchy sequence whenever for every c ∈ E with 0 � c there is a natural
number N, such that ‖xn − x‖P � c for all n,m ≥ N.

(iii) (X, ‖ · ‖P ) is a complete cone normed space if every Cauchy sequence is convergent.

Complete cone-normed spaces will be called cone Banach spaces.

Lemma 1.8. Let(X, ‖ · ‖P ) be a CNS, let P be a normal cone with normal constantK, and let {xn} be
a sequence in X. Then, one has the following:

(i) the sequence {xn} converges to x if and only if ‖xn − x‖P → 0, as n → ∞,

(ii) the sequence {xn} is Cauchy if and only if ‖xn − xm‖P → 0 as n,m → ∞,

(iii) the sequence {xn} converges to x and the sequence {yn} converges to y and then
‖xn − yn‖P → ‖x − y‖P .

The proof is direct by applying Lemmas 1, 4, and 5 in [3] to the cone metric space
(X, d), where d(x, y) = ‖x − y‖P , for all x, y ∈ X.

Lemma 1.9 (see, e.g., [6, 7]). Let (X, ‖·‖P ) be a CNS over a cone P in E. Then (1) Int(P)+Int(P) ⊆
Int(P) and λ Int(P) ⊆ Int(P), λ > 0. (2) If c � 0, then there exists δ > 0 such that ‖b‖ < δ implies
b � c. (3) For any given c � 0 and c0 � 0 there exists n0 ∈ N such that (c0/n0) � c. (4) If an, bn
are sequences in E such that an → a, bn → b and an ≤ bn, for all n, then a ≤ b.
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Definition 1.10. Let (X, d) be a CNS and let I = [0, 1] be the closed unit interval. A continuous
mapping W : X × X × I :→ X is said to be a convex structure on X if for all x, y ∈ X and
t ∈ I

∥
∥u −W

(
x, y, t

)∥∥
P ≤ t‖u − x‖P + (1 − t)

∥
∥u − y

∥
∥
P (1.3)

holds for all u ∈ X. A CNS (X, d) together with a convex structure is said to be convex CNS.
A subset Y ⊂ X is convex, ifW(x, y, t) ∈ Y holds for all x, y ∈ X and t ∈ I.

Definition 1.11. Let X be a CNS, andK and C the nonempty convex subsets of X. A mapping
g : K → X is said to be almost quasiconvex with respect to C if

∥∥g
(
tx + (1 − t)y

) − z
∥∥ ≤ cg

([
tx + (1 − t)y

]
, z
)
, (1.4)

where cg([tx + (1 − t)y], z) ∈ {‖g(x) − z‖P , ‖g(y) − z‖P} for all x, y ∈ K, z ∈ C, and
0 < t < 1.

2. Couple Fixed Theorems on Cone Metric Spaces

Let (X, d) be a CMS and X2 := X × X. Then the mapping ρ := X2 × X2 :→ E such
that ρ((x1, y1), (x2, y2)) := d(x1, x2) + d(y1, y2) forms a cone metric on X2. A sequence
({xn}, {yn}) ∈ X2 is said to be a double sequence of X. A sequence ({xn}, {yn}) ∈ X2 is
convergent to (x,y) ∈ X2 if, for every c ∈ int(P), there exists a natural number M > 0 such
that ρ((xn, yn), (x, y)) � c for all n > M.

Lemma 2.1. Let zn = (xn, yn) ∈ X2 and z = (x, y) ∈ X2. Then, zn → z if and only if xn → x and
yn → y.

Proof. Suppose zn → z. Thus, for any c ∈ int(P), there exist M > 0 such that
ρ((xn, yn), (x, y)) = d(xn, x) + d(yn, y) � c for all n > M. Hence, d(xn, x) � c and
d(yn, y) � c for all n > M, that is, xn → x and yn → y.

Conversely, assume xn → x and yn → y. Thus, for any c ∈ int(P), there exist
M0,M1 > 0 such that d(xn, x) � c/2 for all n > M0, and also d(yn, y) � c/2 for
all n > M1. Hence, ρ((xn, yn), (x, y)) = d(xn, x) + d(yn, y) � c for all n > M, where
M := max{M0,M1}.

Definition 2.2. Let (X, d) be a CMS. A function f : X → X is said to be sequentially
continuous if d(xn, x) → 0 implies that d(f(xn), f(x)) → 0. Analogously, a function
F : X × X :→ X is sequentially continuous if ρ((xn, yn), (x, y)) → 0 implies that
d(F(xn, yn), F(x, y)) → 0.

Lemma 2.3 (see [6]). Let (X, d) be a CNS. Then f : (X, d) → (X, d) is continuous if and only if f
is sequentially continuous.
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Definition 2.4 (see [10, 17, 18]). Let (X,�) be partially ordered set and F : X × X → X. F
is said to have mixed monotone property if F(x, y) is monotone nondecreasing in x and is
monotone nonincreasing in y, that is, for any x, y ∈ X,

x1 � x2 =⇒ F
(
x1, y

) � F
(
x2, y

)
, for x1, x2 ∈ X,

y1 � y2 =⇒ F
(
x, y2

) � F
(
x, y1

)
, for y1, y2 ∈ X.

(2.1)

Note that this definition reduces the notion of mixed monotone function on R
2 where

� represents usual total order ≤ in R
2.

Definition 2.5 (see [10, 17, 18]). An element (x, y) ∈ X ×X is said to be a couple fixed point of
the mapping F : X ×X → X if

F
(
x, y

)
= x, F

(
y, x

)
= y. (2.2)

Throughout this paper, let (X,�) be partially ordered set and let d be a cone metric on
X such that (X, d) is a complete CMS over the normal cone P with the normal constant K.
Further, the product spaces X ×X satisfy the following:

(u, v) � (
x, y

) ⇐⇒ u � x, y � v; ∀(x, y), (u, v) ∈ X ×X. (2.3)

Definition 2.6 (see [3]). Let (X, d) be a CMS andA ⊂ X.A is said to be sequentially compact if
for any sequence {xn} inA there is a subsequence {xnk} of {xn} such that {xnk} is convergent
in A.

Remark 2.7 (see [19]). Every cone metric space (X, d) is a topological space which is denoted
by (X, τc). Moreover, a subset A ⊂ X is sequentially compact if and only if A is compact.

Definition 2.8. LetK be a nonempty subset of a CNS (X, d). A set-valued mapH : K → 2X is
called KKM map if for every finite subset {x1, x2, . . . , xn} of K

co{x1, x2, . . . , xn} ⊂
n⋃

i=1

H(xi), (2.4)

where co denotes the convex hull.

Lemma 2.9. Let X be a topological vector space, let K be a nonempty subset of X, and let H :
K → 2X be called KKM map with closed values. If H(x) is compact for at least one x ∈ K, then⋂

x∈K H(x)/= ∅.
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Theorem 2.10. Let (X, ‖ · ‖P ) be a CNS over strongly minidhedral cone P , and let K be a nonempty
convex compact subset ofX. If F : K×K → X is continuous mapping and g : K → X is continuous
almost quasiconvex mapping with respect to F(K ×K), then there exists (x0, y0) ∈ K ×K such that

∥
∥g(x0) − F(x, y)

∥
∥
P +

∥
∥g(y0) − F(y, x)

∥
∥
P

= inf
(x,y)∈K×K

{∥∥g(x) − F
(
x, y

)∥∥
P +

∥
∥g(y) − F

(
y, x

)∥∥
P

}
.

(2.5)

Proof. Let H : K ×K → 2K×K by

H(u, v) =
{(

x, y
) ∈ K ×K :

∥
∥g(x) − F

(
x0, y0

)∥∥
P +

∥
∥g

(
y
) − F

(
y0, x0

)∥∥
P

≤ ∥
∥g(u) − F(x0, y0)

∥
∥
P +

∥
∥g(v) − F(y0, x0)

∥
∥
P

} (2.6)

for each (u, v) ∈ K ×K. Since (u, v) ∈ H(u, v), thenH(u, v)/= ∅. Regarding that the mappings
F and g are continuous, H(u, v) is closed for each (u, v). Since K is compact, then H(u, v) is
compact for each (u, v). Thus, H is a KKMmap.

Let (ui, vj) ∈ K ×K, i ∈ I, j ∈ J where I and J are finite subsets of N. Then, there exists

(u0, v0)∈co
{(

ui, vj

)
:
(
i, j

) ∈ I×J}, so that (u0, v0)/∈ ∪ {
H
(
ui, vj

)
:
(
i, j

)∈I×J}. (2.7)

From the first expression in (2.7), one can get that there exist tij ≥ 0, (i, j) ∈ I × J such
that (u0, v0) =

∑
(i,j)∈I×J tij(ui, vj) and

∑
(i,j)∈I×J tij = 1. Set ti =

∑
j∈J tij and zj =

∑
i∈I tij

then
∑

j∈J zj = 1,
∑

i∈I ti = 1 and
∑

j∈J zjvj = v0,
∑

i∈I tiui = u0. Regarding that g is almost
quasiconvex with respect to F : K ×K → X yields

∥∥g(u0) − F(u0, v0)
∥∥
P ≤ cg((u0), F(u0, v0)),

∥∥g(v0) − F(v0, u0)
∥∥
P ≤ cg((v0), F(v0, v0)).

(2.8)

where cg(u0, F(u0, v0)) ∈ {‖g(ui) − F(u0, v0)‖P : i ∈ I} and cg(v0, F(v0, u0)) ∈ {‖g(vj) −
F(v0, u0)‖P : j ∈ J}.

Thus

∥∥g(u0) − F(u0, v0)
∥∥
P +

∥∥g(v0) − F(v0, u0)
∥∥
P

≤ inf
{∥∥g(ui) − F(u0, v0)

∥∥
P : i ∈ I

}
+ inf

{∥∥g
(
vj

) − F(v0, u0)
∥∥
P
: j ∈ J

}
.

(2.9)

Taking (2.7) into account, one can get

∥∥g(u0) − F(u0, v0)
∥∥
P +

∥∥g(v0) − F(v0, u0)
∥∥
P >

∥∥g(ui) − F(u0, v0)
∥∥
P +

∥∥g(vj) − F(v0, u0)
∥∥
P

(2.10)
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for all (i, j) ∈ I × J which is a contradiction. HenceH is a KKMmapping. It follows that there
exists (x0, y0) ∈ K ×K such that (x0, y0) ∈ H(x, y) for all (x, y) ∈ K ×K. Thus,

∥
∥g(x0) − F

(
x0, y0

)∥∥
P +

∥
∥g

(
y0
) − F

(
y0, x0

)∥∥
P

≤ ∥
∥g(x) − F

(
x0, y0

)∥∥
P +

∥
∥g

(
y
) − F

(
y0, x0

)∥∥
P , ∀(x, y) ∈ K ×K.

(2.11)

Theorem 2.11. Let (X, ‖ · ‖P ) be a CNS over strongly minidhedral cone P , and let K be a nonempty
convex compact subset ofX. If F : K×K → X is continuous mapping and g : X → K is continuous
almost quasiconvex mapping with respect to F(K × K) such that F(K × K) ⊂ g(K), then F and g
have a coupled coincidence point.

Proof. Due to Theorem 2.10, there exists (x0, y0) ∈ K ×K such that

∥∥g(x0) − F
(
x0, y0

)∥∥ +
∥∥g

(
y0
) − F

(
y0, x0

)∥∥
P

= inf
(x,y)∈K×K

{∥∥g(x) − F
(
x0, y0

)∥∥
P +

∥∥g
(
y
) − F

(
y0, x0

)∥∥
P

}
.

(2.12)

Since F(K ×K) ⊂ g(K),

inf
(x,y)∈K×K

{∥∥g(x) − F
(
x0, y0

)∥∥
P +

∥∥g
(
y
) − F

(
y0, x0

)∥∥
P

}
= 0, (2.13)

then ‖g(x0) − F(x0, y0)‖P + ‖g(y0) − F(y0, x0)‖P = 0.
Thus, g(x0) = F(x0, y0) and g(y0) = F(y0, x0).

If we take g : K → X as an identity, g(x) = x, in Theorem 2.11, then we get the
following result.

Theorem 2.12. Let (X, ‖ · ‖P ) be a CNS over strongly minidhedral cone P , and let K be a nonempty
convex compact subset of X. If F : K × K → K is continuous mapping, then F has a coupled fixed
point.

Theorem 2.13. Let (X, ‖ · ‖P ) be a CNS over strongly minidhedral cone P , and let K be a nonempty
convex compact subset of X. If F : K ×K → X is continuous mapping, then either F has a coupled
fixed point or there exists (x0, y0) ∈ (∂K ×K ∪K × ∂K) such that

0 <
∥∥x0 − F(x0, y0)

∥∥
P +

∥∥y0 − F(y0, x0)
∥∥
P ≤ ∥∥x − F(x0, y0)

∥∥
P +

∥∥y − F(y0, x0)
∥∥
P (2.14)

for all (x, y) ∈ K ×K.
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Proof. If F has a coupled fixed point, then we are done. Suppose that F has no coupled fixed
points. Due to Theorem 2.10, there exists (x0, y0) ∈ K ×K such that

∥
∥g(x0) − F(x0, y0)

∥
∥
P +

∥
∥g(y0) − F(y0, x0)

∥
∥
P

= inf
(x,y)∈K×K

{∥∥g(x) − F
(
x0, y0

)∥∥
P +

∥
∥g

(
y
) − F

(
y0, x0

)∥∥
P

}
.

(2.15)

Take g(x) = x which implies (2.14). It is sufficient to show that (x0, y0) ∈ (∂K ×K ∪K × ∂K).
The inequality (2.14) implies that either F(x0, y0)/∈K or F(y0, x0)/∈K.

Consider the first case: F(x0, y0)/∈K. Suppose x0 ∈ int(K). Since K is convex, then
there exists t ∈ (0, 1) such that x = tx0 + (1 − t)F(x0, y0) ∈ K. Thus ‖x − F(x0, y0)‖P = t‖x0 −
F(x0, y0)‖P and

inf
x∈K

∥∥x − F(x0, y0)
∥∥
P ≤ t

∥∥x0 − F(x0, y0)
∥∥
P <

∥∥x0 − F(x0, y0)
∥∥
P . (2.16)

This is a contradiction. Analogously one can get the contradiction from the case F(y0, x0)/∈K.
Thus, (x0, y0) ∈ (∂K ×K ∪K × ∂K).

Theorem 2.14. Let (X, ‖ · ‖P ) be a CNS over strongly minidhedral cone P , and let K be a nonempty
convex compact subset of X. Suppose that F : K × K → X is continuous mapping. Then F has a
coupled fixed point if one of the following conditions is satisfied for all (x0, y0) ∈ (∂K ×K ∪K × ∂K)
such that (x, y)/= (F(x, y), F(y, x)):

(i) there exists a (u, v) ∈ K ×K such that

∥∥u − F(x, y)
∥∥
P <

∥∥x − F(x, y)
∥∥
P ,

∥∥v − F(y, x)
∥∥
P <

∥∥y − F(y, x)
∥∥
P , (2.17)

(ii) there exists an t ∈ (0, 1) such that

K∩(B(F(x, y), t∥∥x−F(x, y)∥∥P

))
/= ∅, K∩(B(F(y, x), t∥∥y−F(y, x)∥∥P

))
/= ∅
(2.18)

(iii) {F(x, y), F(y, x)} ⊂ K.

Proof. It is clear that (iii)⇒(ii)⇒(i). To finalize proof, it is sufficient to show that (i) is satisfied.
Suppose that (i) holds but F has no coupled fixed point. Take Theorem 2.13 into account; then
there exist (x0, y0) ∈ (∂K ×K ∪K × ∂K) such that (2.14) holds which contradicts (i).
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