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In the paper by Hu in 2008, the author proved a strong convergence result for nonexpansive
mappings using a modified Halpern’s iteration algorithm. Unfortunately, the case limn→∞βn = 1
does not guarantee the strong convergence of the sequence {xn}. In this note, we provide a counter-
example to the theorem.

In [1], the author introduced a modified Halpern’s iteration. For any u, x0 ∈ C, the sequence
{xn} is defined by

xn+1 = αnu + βnxn + γnTxn, n ≥ 0, (I)

where {αn}, {βn}, and {γn} are three real sequences in (0, 1), satisfying αn + βn + γn = 1. The
author proved the following strong convergence theorem.

Theorem 1 (see [1]). Let C be a nonempty closed convex subset of a real Banach space E which has a
uniformly Gâteaux differentiable norm. Let T : C → C be a nonexpansive mapping with Fix(T)/= ∅.
Assume that {zt} converges strongly to a fixed point z of T as t → 0, where zt is the unique element
ofC which satisfies zt = tu+(1−t)Tzt for any u ∈ C. Let {αn}, {βn}, and {γn} be three real sequences
in (0, 1) which satisfy the following conditions: (C1) limn→∞αn = 0 and (C2)

∑∞
n=0 αn = +∞. For

any x0 ∈ C, the sequence {xn} is defined by the iteration in (I). Then the sequence {xn} converges
strongly to a fixed point of T .

Counter Example

Let E be a real Banach space whose norm is uniformly Gâteaux differentiable. Let C be a
nonempty closed and convex subset of E, defined by
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C =
{
x ∈ E : x = λy, λ ∈ [0, 3]

}
, (1)

where y /= 0, with ‖y‖ = 1 a fixed element of E. Let T : C → C be a mapping defined by
Tx = 0 for all x ∈ C. It is obvious that T is a nonexpansive mapping and Fix(T) = {0}. Take
αn = 1/(n + 2), βn = 1 − 2/(n + 2), and γn = 1/(n + 2) for all n ≥ 0 and x0 = y, u = 3y. We also
can obtain that zt = 3ty → 0 (t → 0). Observe that all conditions of Theorem 1 are satisfied.
However, the iterative sequence {xn} does not converge strongly to the fixed point z = 0 of T .

Claim 1. If ‖xn‖ ≤ 1, then ‖xn+1‖ > ‖xn‖.

Proof. In fact, we have
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(2)

where xn can be denoted as xn = λny. If ‖xn‖ ≤ 1, then 0 < λn = ‖xn‖ ≤ 1. From the above
equality we have
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(3)

Hence {xn} does not converge strongly to z = 0.

Remark 1. Why does the proof of Theorem 1 fail? It is not difficult to check that the proof of
Case 2 (limn→∞βn = 1) is not suitable.
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