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Some fixed point theorems of half-continuous mappings which are possibly discontinuous defined
on topological vector spaces are presented. The results generalize the work of Philippe Bich (2006)
and several well-known results.

1. Introduction

Almost a century ago, L. E. J. Brouwer proved a famous theorem in fixed point theory, that
any continuous mapping from the closed unit ball of the Euclidean space R

n to itself has a
fixed point. Later in 1930, J. Schauder extended Brouwer’s theorem to Banach spaces (see
[1]).

In 2008, Herings et al. (see [2]) proposed a new type of mapping which is possibly
discontinuous. They called such mappings locally gross direction preserving and proved that
every locally gross direction preserving mapping defined on a nonempty polytope (the
convex hull of a finite subset of R

n) has a fixed point. Their work both allows discontinuities
of mappings and generalizes Brouwer’s theorem.

Later, Bich (see [3]) extended the work of Herings et al. to an arbitrary nonempty
compact convex subset of R

n. Moreover, in [4], Bich established a new class of mappings
which contains the class of locally gross direction preserving mappings. He called the
mappings in that class half-continuous and proved that if C is a nonempty compact convex
subset of a Banach space and f : C → C is half-continuous, then f has a fixed point.
Furthermore, in the same work, Bich extended the notion of half-continuity to multivalued
mappings and proved fixed point theorems which generalize several well-known results.

All vector spaces considered are real vector spaces. In this paper, we prove that some
results of Bich (see [4]) are also valid in locally convex Hausdorff topological vector spaces
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and also show that several well-known theorems can be obtained from our results. The paper
is organized as follows. In Section 2, some notations, terminologies, and fundamental facts
are reviewed. Sections 3 and 4, the fixed point theorems are proved. Finally, in Section 5, we
give some consequent results on inward and outward mappings.

2. Preliminaries

A mapping F from a set X into 2Y (the set of nonempty subsets of a set Y ) is called a
multivalued mapping from X into Y , and the fibers of F at y ∈ Y are the set F−(y) = {x ∈
X : y ∈ F(x)}. A mapping f : X → Y is called a selection of F if f(x) ∈ F(x) for all x ∈ X.

Let X,Y be topological spaces. A mapping F : X → 2Y is called upper semicontinuous
(u.s.c.) if for each x0 ∈ X and neighborhood V of F(x0) in Y , there exists a neighborhood U
of x0 in X such that F(x) ⊆ V for all x ∈ U. By a neighborhood of a point x in X, we mean any
open subset of X that contains x.

Let E be a topological vector space (t.v.s.), not necessarily Hausdorff and E∗ the
topological dual of E. In this paper, we consider E∗ equipped with the topology of compact
convergence. Then E∗ is a t.v.s. We say that E∗separates points of E, if whenever x and y are
distinct points of E, then p(x)/= p(y) for some p ∈ E∗. If E∗ separates points of E, then a
topology on E is Hausdorff. By Hahn-Banach theorem, if E is locally convex Hausdorff, then
E∗ separates points of E, but the converse is not true, for an example, see [5, 6].

Let C ⊆ E and F : C → 2E. A mapping F is called upper demicontinuous (u.d.c) if
for each x0 ∈ C and any open half-space (the set of the form {x ∈ E : p(x) > α}, where
p ∈ E∗ \ {0} and α ∈ R) H in E containing F(x0), there exists a neighborhood U of x0 in C
such that F(x) ⊆ H for all x ∈ U. It is clear that a u.s.c. multivalued mapping is u.d.c. but the
converse is not true (see [7]). It is convenient to write 〈p, x〉 instead of p(x) for p ∈ E∗ and
x ∈ E. The reason for this is that often the vector x and/or the continuous linear functional p
may be given in a notation already containing parentheses or other complicated form.

The following useful results are recalled to be referred.

Theorem 2.1 (Browder [8]). Let C be a nonempty compact convex subset of a locally convex
Hausdorff t.v.s. E. If ϕ : C → E∗ is a continuous mapping, then there exists u0 ∈ C such that
〈ϕ(u0), v − u0〉 ≤ 0 for all v ∈ C.

Theorem 2.2 (Ben-El-Mechaiekh et al. [1]). Let X be a paracompact Hausdorff space and Y a
convex subset of a t.v.s. Suppose Φ : X → 2Y is a multivalued mapping having nonempty convex
values and open fibers, then Φ has a continuous selection.

Theorem 2.3 (see [6]). Let A,B be disjoint nonempty convex subsets of a locally convex Hausdorff
t.v.s. E. If A is compact and B is closed, then there exists p ∈ E∗ and α1, α2 ∈ R such that 〈p, x〉 <
α1 < α2 < 〈p, y〉 for all x ∈ A and y ∈ B.

Theorem 2.4 (see [6]). Let E be a t.v.s. whose E∗ separates points. Suppose thatA and B are disjoint
nonempty compact convex sets in E. Then there exists p ∈ E∗ such that sup{〈p, x〉 : x ∈ A} <
inf{〈p, y〉 : y ∈ B}.

Theorem 2.5 (see [9]). Let X be a topological space, Y a compact Hausdorff space, and F : X → 2Y

a multivalued mapping with nonempty closed values. Then F is u.s.c. if and only if the graph {(x, y) :
x ∈ X, y ∈ F(x)} of F is closed in X × Y .
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3. Half-Continuous Mappings

Now, we introduce the notion of half-continuity on t.v.s., and investigate some of their
properties.

Definition 3.1. Let C be a subset of a t.v.s. E.Amapping f : C → E is said to be half-continuous
if for each x ∈ C with x /= f(x) there exist p ∈ E∗ and a neighborhood W of x in C such that

〈
p, f

(
y
) − y

〉
> 0 (3.1)

for all y ∈ W with y /= f(y).

By the name “half-continuous,” it induces us to think that continuous mappings
should be half-continuous. The following theorem tells us that if E∗ separates points of E,
then the statement is affirmative.

Proposition 3.2. Let E be a t.v.s. whose E∗ separates points and C a nonempty subset of E. Then
every continuous mapping f : C → E is half-continuous.

Proof. Let x ∈ C be such that x /= f(x). Since E∗ separates points on E, we may assume that,
〈p, f(x) − x〉 > 0 for some p ∈ E∗. Since the mapping z 	→ 〈p, f(z) − z〉 is continuous, there
exists a neighborhood W of x in C such that 〈p, f(y) − y〉 > 0 for all y ∈ W. Therefore, f is
half-continuous.

The hypothesis that E∗ separates points of E cannot be relaxed as will be shown in the
following examples.

Example 3.3. Let E be a nontrivial vector space. Then the topology {∅, E} makes E into a
locally convex t.v.s. that is not Hausdorff and E∗ = {0} (see [10]). So E∗ does not separate
points on E. Consequently, every continuous self-mapping on E which is not the identity, is
not half-continuous.

Example 3.4. For 0 < p < 1, Lp[0, 1] is a Hausdorff t.v.s. with (Lp[0, 1])∗ = {0} (see [6]).

Remark 3.5. There are some half-continuousmappingswhich are not continuous. For example
[4], let f : R → R be defined by

f(x) =

⎧
⎨

⎩

3 if x ∈ [0, 1),

2 otherwise.
(3.2)

It is clear that f is half-continuous but not continuous.
Moreover, half-continuity is not closed under the composition, the addition, and the

scalar multiplication. To see this consider a half-continuous mapping g on R defined by
g(x) = 3 for x ≥ 3 and g(x) = 0 for x < 3. It is easy to see that g ◦ f, g + f and 2g are
not half-continuous. In fact, the composition of g and a homeomorphism x 	→ x + 1 is not
half-continuous yet.
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Proposition 3.6. Let C be a nonempty subset of a t.v.s. E and f : C → E. Then f is half-continuous
if and only if for any β ∈ R, the mapping x 	→ (1 − β)x + βf(x) is half-continuous.

Proof. The sufficiency is clear. To prove the necessity, let β ∈ R and let g : C → E be defined
by g(x) = (1 − β)x + βf(x) for all x ∈ C. Let x ∈ C be such that x /= g(x). Then x /= f(x) and
hence there exist p ∈ E∗ and a neighborhood W of x in C such that 〈p, f(y) − y〉 > 0 for all
y ∈ W with y /= f(y). Then for each y ∈ W with y /= g(y),

〈
p, g

(
y
) − y

〉
=
〈
p,
(
1 − β

)
y + βf

(
y
) − y

〉
= β

〈
p, f

(
y
) − y

〉
. (3.3)

If β > 0, then done. Otherwise, consider −p instead of p.

Next, we give a sufficient condition for mappings on t.v.s. to be half-continuous.

Proposition 3.7. Let C be a nonempty subset of a t.v.s. E and f : C → E. Suppose that for each
x ∈ C with x /= f(x), there exist p ∈ E∗ such that 〈p, f(x) − x〉 > 0[〈p, f(x) − x〉 < 0] and p ◦ f is
lower [upper] semicontinuous at x. Then f is half-continuous.

Proof. Let x ∈ C be such that x /= f(x). Then there exists p ∈ E∗ such that 〈p, f(x) − x〉 > 0 and
p ◦ f is lower semicontinuous at x. Let α ∈ R be such that 〈p, f(x) − x〉 > α > 0. Since p is
continuous at x, there exists a neighborhood V of x in E such that |〈p, x−z〉| < α for all z ∈ V.
This implies that

β := inf
z∈V

〈
p, x − z

〉
+
〈
p, f(x) − x

〉
> inf

z∈V
〈
p, x − z

〉
+ α ≥ 0. (3.4)

By lower semicontinuity of p ◦ f , there exists a neighborhood U of x in C such that

〈
p, f

(
y
)〉

>
〈
p, f(x)

〉 − β (3.5)

for all y ∈ U. Then, for each y ∈ U ∩ V with y /= f(y), we have from (3.4) and (3.5) that

〈
p, f

(
y
) − y

〉
>
〈
p, f(x)

〉 − β +
〈
p,−y〉 ≥ 〈

p, f(x) − x
〉 − β + inf

z∈V
〈
p, x − z

〉
= 0. (3.6)

Therefore, f is half-continuous.
The latter case follows from the fact that f is upper semicontinuous if and only if −f

is lower semicontinuous.

Remark 3.8. If E is a Banach space, then Proposition 3.7 is Proposition 2.4 in [4]. By
considering the mapping f in Remark 3.5, we note that the converse of Proposition 3.7 is
not true (see [4]).

Let X and Y be sets. Let f and g be mappings from X to Y . The set C(f, g) = {x ∈ X :
f(x) = g(x)} is said to be the coincidence set of f and g. The next result is inspired by the idea
of [4, Theorem 3.1].
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Theorem 3.9. Let C be a nonempty compact convex subset of a locally convex Hausdorff t.v.s. E and
f, g : C → C. Suppose that g : C → C is bijective continuous and for each x ∈ C with g(x)/= f(x)
there exist p ∈ E∗ and a neighborhoodW of g−1(x) in C such that 〈p, f(y)−g(y)〉 > 0 for all y ∈ W
with g(y)/= f(y). Then C(f, g) is nonempty.

Proof. Suppose that C(f, g) = ∅. Define Φ : C → 2E
∗
by

Φ(x) =
{
p ∈ E∗ : there exists a neighborhood W of g−1(x) in C such that

〈
p, f

(
y
) − g

(
y
)〉

> 0 ∀y ∈ W with g
(
y
)
/= f

(
y
)} (3.7)

for all x ∈ C. Clearly, Φ(x) is nonempty for all x ∈ C. Let x ∈ C, p, q ∈ Φ(x) and λ ∈ [0, 1].
There are neighborhoods W1 andW2 of g−1(x) in C such that

∀y ∈ W1, g
(
y
)
/= f

(
y
)
=⇒ 〈

p, f
(
y
) − g

(
y
)〉

> 0,

∀y ∈ W2, g
(
y
)
/= f

(
y
)
=⇒ 〈

q, f
(
y
) − g

(
y
)〉

> 0.
(3.8)

Clearly, λp+(1−λ)q ∈ E∗ andW = W1 ∩W2 is a neighborhood of g−1(x) in C. For each y ∈ W
with g(y)/= f(y),

〈
λp + (1 − λ)q, f

(
y
) − g

(
y
)〉

= λ
〈
p, f

(
y
) − g

(
y
)〉

+ (1 − λ)
〈
q, f

(
y
) − g

(
y
)〉

> 0. (3.9)

Hence, λp + (1 − λ)q ∈ Φ(x). This implies that Φ(x) is convex.
Next, let p ∈ E∗ and x ∈ Φ−(p). There exists a neighborhood W of g−1(x) in C such

that 〈p, f(y) − g(y)〉 > 0 for all y ∈ W with g(y)/= f(y). Then x ∈ g(W) ⊆ Φ−(p). Since g
is open, Φ−(p) is open in C. From Theorems 2.1 and 2.2, there exists a continuous selection
ϕ : C → E∗ of Φ and x0 ∈ C such that for every y ∈ C,

〈
ϕ(x0), y − x0

〉 ≤ 0. (3.10)

Since g is surjective, x0 = g(z0) for some z0 ∈ C, and hence 〈ϕ(g(z0)), f(z0) − g(z0)〉 ≤ 0.
Also, since ϕ(g(z0)) ∈ Φ(g(z0)), 〈ϕ(g(z0)), f(z0) − g(z0)〉 > 0, which is a contradiction.

If g in Theorem 3.9 is the identity mapping, then the following result is immediate.

Corollary 3.10. Let C be a nonempty compact convex subset of a locally convex Hausdorff t.v.s. E. If
f : C → C is half-continuous, then f has a fixed point.

Remark 3.11. If E is a Banach space, then the previous corollary is the Theorem 3.1 in [4].

The following result is obtained from Proposition 3.2 and Corollary 3.10.

Corollary 3.12 (Brouwer-Schauder-Tychonoff, see [1]). Let C be a nonempty compact convex
subset of a locally convex Hausdorff t.v.s. E. Then every continuous mapping f : C → C has a fixed
point.
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4. Half-Continuous Multivalued Mappings

Now, we consider half-continuity of multivalued mappings and prove that under a certain
assumption they have fixed point.

Definition 4.1. LetC be a subset of a t.v.s.E.Amapping F : C → 2E is said to be half-continuous
if for each x ∈ C with x /∈F(x) there exists p ∈ E∗ and a neighborhood W of x in C such that

∀y ∈ W, y /∈F
(
y
)
=⇒ ∀z ∈ F

(
y
)
, 〈p, z − y〉 > 0. (4.1)

The following proposition gives a sufficient condition for a multivalued mapping to
be half-continuous.

Proposition 4.2. Let C be a nonempty subset of a locally convex Hausdorff t.v.s. E. If F : C → 2E is
a u.d.c. mapping with nonempty closed convex values, then F is half-continuous.

Proof. Assume that F : C → 2E is u.d.c. with nonempty closed convex values. Let x ∈ C be
such that x /∈F(x). Suppose that F fails to be half-continuous. By Theorem 2.3, there exists
p ∈ E∗ and α ∈ R such that

〈p, x〉 < α < 〈p, y〉 (4.2)

for all y ∈ F(x). This implies that F(x) ⊆ H := p−1(α,∞). Since F is u.d.c., there exists a
neighborhood U of x in C such that F(y) ⊆ H for all y ∈ U. Set V = U \ H. Then V is
a neighborhood of x in C. Since F is not half-continuous, there exists xV ∈ V \ F(xV ) and
zV ∈ F(xV ) such that

〈p, zV − xV 〉 ≤ 0. (4.3)

Since xV ∈ U, F(xV ) ⊆ H, so zV ∈ H. Then, by (4.3), α < 〈p, zV 〉 ≤ 〈p, xV 〉. This means that
xV ∈ H, which is a contradiction. Therefore, F is half-continuous.

Remark 4.3. However, there are some half-continuous mappings which are not u.d.c.. To see
this, consider the mapping F : R → 2R defined by

F(x) =

⎧
⎨

⎩

[−1, 1] if x /= 0,

{0} if x = 0.
(4.4)

Then F is half-continuous but not u.d.c. at 0.

In case that E is a t.v.s. whose E∗ separates points, we need more assumptions on
the mapping as the following result. The proof is analogous to that of Proposition 4.2, by
applying Theorem 2.4.

Proposition 4.4. Let E be a t.v.s. whose E∗ separates points and C a nonempty subset of E. If F :
C → 2E is u.d.c. with nonempty compact convex values, then F is half-continuous.
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Next, we will prove the main result which guarantees the possessing of fixed points if
the multivalued mapping is half-continuous. To do this, we need the following lemma.

Lemma 4.5. Let C be a nonempty subset of a t.v.s. E and F : C → 2E. If F is half-continuous, then
F has a half-continuous selection.

Proof. Assume that F is half-continuous. Let f be any selection of F. Define f̃ : C → E by

f̃(x) =

⎧
⎨

⎩

x if x ∈ F(x),

f(x) if x /∈F(x).
(4.5)

Clearly, f̃ is a selection of F. To show that f̃ is half-continuous, let x ∈ C be such that x /= f̃(x).
Then x /∈F(x) and hence there exists p ∈ E∗ and a neighborhood W of x in C such that

∀y ∈ W, y /∈F
(
y
)
=⇒ ∀z ∈ F

(
y
)
, 〈p, z − y〉 > 0. (4.6)

It follows that 〈p, f̃(y) − y〉 = 〈p, f(y) − y〉 > 0 for every y ∈ W with y /= f̃(y).

Corollary 3.10 and Lemma 4.5 yield the following main result.

Theorem 4.6. Let C be a nonempty compact subset of a locally convex Hausdorff t.v.s. E. If F : C →
2C is half-continuous, then F has a fixed point.

The following result is immediately obtained from Theorem 4.6 and Proposition 4.2.

Corollary 4.7. Let C be a nonempty compact convex subset of a locally convex Hausdorff t.v.s. E. If
F : C → 2C is u.d.c. with nonempty closed convex values, then F has a fixed point.

It is well known that ifC is a subset of a topological spaceX and F : C → 2X has closed
graph, then the set of fixed points of F is closed in C. From Corollary 4.7 and Theorem 2.5,
we have the following corollary.

Corollary 4.8 (Kakutani-Fan-Glicksberg, see [11, 12]). Let C be a nonempty compact convex
subset of a locally convex Hausdorff t.v.s. E. If F : C → 2C is u.s.c. with nonempty closed convex
values, then the set of fixed points of F is nonempty and compact.

5. Inward and Outward Mappings

In case that the half-continuous mapping f is a nonself-mapping on C but f has some nice
property, then f still possesses a fixed point inC. We state the results in the following theorem.

Theorem 5.1. Let C be a nonempty compact convex subset of a locally convex Hausdorff t.v.s. E.
Suppose that f : C → E is half-continuous and for each x ∈ C with x /= f(x) there exists λ < 1 such
that λx + (1 − λ)f(x) ∈ C, then f has a fixed point.
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Proof. Suppose that f has no fixed point. For each x ∈ C, let Λ(x) = {λ ∈ R : λ < 1 and λx +
(1 − λ)f(x) ∈ C}. Define F : C → 2C by

F(x) =
{
λx + (1 − λ)f(x) : λ ∈ Λ(x)

}
(5.1)

for all x ∈ C. Then F(x)/= ∅ for every x ∈ C. It is not difficult to see that F is half-continuous.
By Theorem 4.6, there exists x0 ∈ F(x0) ∩ C and α ∈ Λ(x0) such that x0 = αx0 + (1 − α)f(x0).
It follows that x0 = f(x0), which is a contradiction.

Remark 5.2. From Theorem 5.1, for x ∈ C with x /= f(x), if there is λ < 0 such that z := λx +
(1 − λ)f(x) ∈ C, then f(x), in fact, is the element in C. Indeed, by setting μ = λ/(λ − 1), then
0 < μ < 1 and so, by convexity of C, f(x) = μx + (1 − μ)z ∈ C.

Recall that the line segment joining vectors x and y in E is the set [x, y] = {λx+(1−λ)y :
0 ≤ λ ≤ 1}. As a special case of Theorem 5.1 we obtain the following corollary.

Corollary 5.3 (Fan-Kaczynski, see [1]). Let C be a nonempty compact convex subset of a locally
convex Hausdorff t.v.s. E. Suppose that f : C → E is continuous and for each x ∈ C with x /= f(x)
the line segment [x, f(x)] contains at least two points of C, then f has a fixed point.

Next, we derive a generalization of a fixed point theorem due to F. E. Browder and B.
R. Halpern. To do this, let us recall the definition of inward and outward mappings.

Definition 5.4 (see [1]). Let C be a subset of a vector space E. A mapping f : C → E is
called inward (resp., outward) if for each x ∈ C there exists λ > 0 (resp., λ < 0) satisfying
x + λ(f(x) − x) ∈ C.

Theorem 5.5. Let C be a nonempty compact convex subset of a locally convex Hausdorff t.v.s. E.
Then every half-continuous inward (or outward) mapping f : C → E has a fixed point.

Proof. Suppose that f : C → E is a half-continuous inward mapping. Let x ∈ C be such that
x /= f(x). There exists λ > 0 such that x + λ(f(x) − x) ∈ C. By letting β = 1 − λ and apply
Theorem 5.1, f has a fixed point.

Next, assume that f is outward. Define g : C → E by g(x) = 2x − f(x) for all x ∈ C.
Then g is inward and, by Proposition 3.6, g is half-continuous. Hence, there is x0 ∈ C such
that x0 = g(x0) = 2x0 − f(x0). That is x0 = f(x0).

Remark 5.6. In Theorem 5.5, if f is a continuous inward (or outward) mapping, then
Theorem 5.5 is the theorem proved by F. E. Browder (1967) and B. R. Halpern (1968) (see
[1]).

In the final part, we prove the fixed points theorem for half-continuous inward and
outward multivalued mappings.

Definition 5.7 (see [7]). Let C be a subset of a vector space E. A mapping F : C → 2E is
called inward (resp., outward) if for each x ∈ C there exists y ∈ F(x) and λ > 0 (resp., λ < 0)
satisfying x + λ(y − x) ∈ C.

Theorem 5.8. Let C be a nonempty compact convex subset of a locally convex Hausdorff t.v.s. E.
Then every half-continuous inward (or outward) mapping F : C → 2E has a fixed point.
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Proof. Let F : C → 2E be a half-continuous mapping. Suppose that F is inward but it has no
fixed point. Define G : C → 2C by

G(x) = {u ∈ C : there exists v ∈ F(x) and λ > 0 such that u = x + λ(v − x)} (5.2)

for all x ∈ C. We can see that G(x) is nonempty for all x ∈ C and G is half-continuous. By
Theorem 4.6, there exists x0 ∈ C ∩ G(x0), v ∈ F(x0), and α > 0 such that x0 = x0 + α(v − x0).
That is x0 ∈ F(x0), which is a contradiction.

Next, assume that F is outward. Define H : C → 2E by H(x) = 2x − F(x) for all
x ∈ C. It is easy to see that H is half-continuous. Let x ∈ C be arbitrary. There exists y ∈ F(x)
and λ < 0 satisfying x + λ(y − x) ∈ C. Then x + (−λ)(2x − y − x) = x + λ(y − x) ∈ C. Since
2x − y ∈ H(x), H is inward. Thus x0 = 2x0 − v for some x0 ∈ H(x0) ∩ C and v ∈ F(x0). That
is x0 ∈ F(x0).

Any selection of half-continuous inward multivalued mappings may not be inward as
shown in the following example. Let F : [0, 1] → 2R be defined by

F(x) =

⎧
⎨

⎩

[x + 1,∞) if x ∈ [0, 1),

{0, 1, 2} if x = 1.
(5.3)

Clearly, F is inward half-continuous but a selection f : [0, 1] → R of F defined by f(x) = x+2
if 0 ≤ x < 1 and f(x) = 2 if x = 1 is not inward.

Remark 5.9. If the half-continuity of F is replaced by upper semicontinuity, then Theorem 5.8
is the result of Halpern-Bergman (1968) (see [7]) and Fan (1969) (see [13]).

As an interesting special case of Theorem 5.8, we obtain the following corollary.

Corollary 5.10. Let C be a nonempty compact convex subset of a locally convex Hausdorff t.v.s. E.
Suppose that F : C → 2E is half-continuous and for each x ∈ C, F(x) ∩C is nonempty, then F has a
fixed point.

6. Discussion

It is worth to notice that there exists a multivalued mapping which is not half-continuous but
some of its selection is half-continuous. For example, let F : [0, 1] → 2[0,1] be defined by

F(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
3
4
, 1
]
∪ {0} if x ∈

[
0,

1
2

]
,

{
3
4

}
if x ∈

(
1
2
, 1
]
.

(6.1)
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Then F is not half-continuous since (4.1) fails for x = 1/2. Nevertheless, a mapping f :
[0, 1] → [0, 1] defined by

f(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if x ∈
[
0,

1
2

]
,

3
4

if x ∈
(
1
2
, 1
] (6.2)

is a half-continuous selection of F.
From Theorem 4.6 we see that if a multivalued mapping F has a half-continuous

selection, then F has a fixed point. It is interesting to investigate the condition(s) for a
multivalued mapping to induce a half-continuous selection.
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