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In cone uniform and uniform spaces, we introduce the three kinds of dissipative set-valued
dynamic systems with generalized pseudodistances and not necessarily lower semicontinuous
entropies, we study the convergence of dynamic processes and generalized sequences of iterations
of these dissipative dynamic systems, and we establish conditions guaranteeing the existence of
periodic points and endpoints of these dissipative dynamic systems and the convergence to these
periodic points and endpoints of dynamic processes and generalized sequences of iterations of
these dissipative dynamic systems. The paper includes examples.

1. Introduction

A set-valued dynamic system is defined as a pair (X, T), where X is a certain space and T is a
set-valued map T : X → 2X ; in particular, a set-valued dynamic system includes the usual
dynamic system where T is a single-valued map. Here 2X denotes the family of all nonempty
subsets of a space X.

Let (X, T) be a dynamic system. By Fix(T), Per(T), and End(T) we denote the sets of
all fixed points, periodic points, and endpoints of T , respectively, that is, Fix(T) = {w ∈ X : w ∈
T(w)}, Per(T) = {w ∈ X : w ∈ T [q](w) for some q ∈ N} and End(T) = {w ∈ X : {w} = T(w)}.
For each x ∈ X, a sequence (wm : m ∈ {0} ∪ N) such that

∀m∈{0}∪N{wm+1 ∈ T(wm)}, w0 = x, (1.1)
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is called a dynamic process or a trajectory starting at w0 = x of the system (X, T) (for details
see Aubin and Siegel [1], Aubin and Ekeland [2], and Aubin and Frankowska [3]). For each
x ∈ X, a sequence (wm : m ∈ {0} ∪ N) such that

∀m∈{0}∪N

{
wm+1 ∈ T [m+1](x)

}
, w0 = x, (1.2)

T [m] = T ◦ T ◦ · · · ◦ T (m-times), m ∈ N, is called a generalized sequence of iterations starting at
w0 = x of the system (X, T) (for details see Yuan [4, page 557], Tarafdar and Vyborny [5] and
Tarafdar and Yuan [6]). Each dynamic process starting from w0 is a generalized sequence of
iterations starting from w0, but the converse may not be true; the set T [m](w0) is, in general,
bigger than T(wm−1). If (X, T) is single valued, then, for each x ∈ X, a sequence (wm : m ∈
{0} ∪ N) such that

∀m∈{0}∪N

{
wm+1 = T [m+1](x)

}
, w0 = x, (1.3)

is called a Picard iteration starting atw0 = x of the system (X, T). If (X, T) is single valued, then
(1.1)–(1.3) are identical.

The notion of Banach’s contraction belongs to the most fundamental mathematical
ideas. Caristi [7], Ekeland [8], Aubin and Siegel [1], Yuan [4], and Kirk [9] extended this
notion to several directions (dissipative single-valued maps with lower semicontinuous
entropies, variational inequlities for lower semicontinuous maps, dissipative set-valued
dynamic systems with not necessarily lower semicontinuous entropies, generalized contrac-
tions and asymptotic contractions, resp.). It is not our purpose to give a complete list of
related papers here.

LetX be ametric space withmetric d and let (X, T) be a single-valued dynamic system.
Racall that if

∃λ∈[0,1)∀x,y∈X
{
d
(
T(x), T

(
y
))

� λd
(
x, y

)}
, (1.4)

then (X, T) is called a Banach’s contraction (Banach [10]). (X, T) is called contractive if
∀x,y∈X{0 < d(x, y) ⇒ d(T(x), T(y)) < d(x, y)}. If ∃ε>0∀x,y∈X{0 < d(x, y) < ε ⇒ d(T(x), T(y)) <
d(x, y)}, then (X, T) is called ε-contractive (Edelstein [11]). Contractive and ε-contractive
maps are some modifications of Banach’s contractions.

If (X, T) is single valued and

∀x∈X{d(x, T(x)) � ω(x) −ω(T(x))} (1.5)

for some ω : X → [0,+∞), then T is called Caristi’s map (Caristi [7]). Caristi’s maps
(1.5) generalize Banach’s contractions (1.4) (for details see Kirk and Saliga [12, page 2766]).
Banach’s contraction principle and Caristi’s fixed point theorem are essentially different:
in complete metric space, Banach’s contraction is continuous, each Picard iteration of this
contraction is convergent to a fixed point and this fixed point is unique (Banach [10]) while
Caristi’s map is not necessarily continuous and if ω in (1.5) is lower semicontinuous, then
each Picard iteration of this map is convergent to a fixed point and this fixed point is not
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necessarily unique (Caristi [7]). Recall that Ekeland’s [8] variational principle concerning
lower semicontinuous maps and Caristi’s fixed point theorem are equivalent.

A map ω : X → [0,+∞) is called a weak entropy or entropy of a set-valued dynamic
system (X, T) if

∀x∈X∃y∈T(x)
{
d
(
x, y

)
� ω(x) −ω

(
y
)}

(1.6)

or

∀x∈X∀y∈T(x)
{
d
(
x, y

)
� ω(x) −ω

(
y
)}

, (1.7)

respectively, and (X, T) is called weak dissipative or dissipative if it has a weak entropy or an
entropy, respectively; here ω is not necessarily lower semicontinuous. These two kinds of
dissipative maps were introduced and studied by Aubin and Siegel [1]. If (X, T) is single
valued, then (1.5)–(1.7) are identical.

Various periodic, fixed point, convergence, and invariant set theorems for contractive
and ε-contractive single-valued and set-valued dynamic systems have been obtained by
Edelstein [11], Ding and Nadler [13], and Nadler [14]. Investigations concerning the
existence of fixed points and endpoints and convergence of dynamic processes or generalized
sequences of iterations to fixed points or endpoints of single-valued and set-valued
generalized contractions (Yuan [4], Tarafdar and Yuan [6, 15], Tarafdar and Chowdhury
[16], Tarafdar and Vyborny [5]) and dissipative dynamic systems when entropy ω is not
necessarily lower semicontinuous (Aubin and Siegel [1]) have been conducted by a number
of authors in different contexts; for example, see Kirk and Saliga [12], Willems [17], Zangwill
[18], Justman [19], Maschler and Peleg [20] and Petruşel, Sı̂ntămărian [21].

In this paper, inspired by these results, we introduce in cone uniform and uniform
spaces the three kinds of dissipative set-valued dynamic systems with generalized
pseudodistances and with not necessarily lower semicontinuous entropies and we present
the methods which are useful for establishing general conditions guaranteeing the existence
of periodic points and endpoints of these set-valued dynamic systems and conditions that
for each starting point the dynamic processes or generalized sequences of iterations converge
and the limit is a periodic point or endpoint (see Sections 3–6). The presented definitions and
results are more general and different from those given in the literature and are new even
for single-valued and set-valued dynamic systems in metric spaces. For details, see Section 7
where examples, remarks, and some comparisons are included. This paper is a continuation
of [22, 23].

2. Dissipative Set-Valued Dynamic Systems with
Generalized Pseudodistances in Cone Uniform Spaces

We define a real normed space to be a pair (L, ‖ · ‖), with the understanding that a vector space
L over R carries the topology generated by the metric (a, b) → ‖a − b‖, a, b ∈ L.

A nonempty closed convex set H ⊂ L is called a cone in L if it satisfies: (H1)
∀s∈(0,∞){sH ⊂ H}; (H2) H ∩ (−H) = {0}; (H3) H /= {0}.
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It is clear that each cone H ⊂ L defines, by virtue of “aHb if and only if b − a ∈ H,”
an order of L under which L is an ordered normed space with cone H. We will write a≺Hb to
indicate that aHb but a/= b.

The following terminologies will be much used.

Definition 2.1 (see [22]). Let X be a nonempty set and let L be an ordered normed space with cone
H.

(i) The family P = {pα : X×X → L, α ∈ A} is said to be a P-family of cone pseudometrics
on X(P-family, for short) if the following three conditions hold:

(P1) ∀α∈A∀x,y∈X{0Hpα(x, y) ∧ x = y ⇒ pα(x, y) = 0};
(P2) ∀α∈A∀x,y∈X{pα(x, y) = pα(y, x)};
(P3) ∀α∈A∀x,y,z∈X{pα(x, z)Hpα(x, y) + pα(y, z)}.

(ii) If P is P-family, then the pair (X,P) is called a cone uniform space.

(iii) A P-family P is said to be separating if

(P4) ∀x,y∈X{x /=y ⇒ ∃α∈A{0≺Hpα(x, y)}}.

(iv) If a P-family P is separating, then the pair (X,P) is called a Hausdorff cone uniform
space.

A cone H is said to be solid if int(H)/= ∅; int(H) denotes the interior of H. We will
write a�Hb to indicate that b − a ∈ int(H).

Definition 2.2. Let L be an ordered normed space with solid cone H and let (X,P) be a cone
uniform space with cone H.

(i) We say that a sequence (wm : m ∈ N) in X is a P-convergent in X, if there exists
w ∈ X such that ∀α∈A∀c∈L,0�Hc∃n0∈N∀m∈N;n0�m{pα(wm,w)�Hc}.

(ii) We say that a sequence (wm : m ∈ N) in X is a P-Cauchy sequence in X, if
∀α∈A∀c∈L,0�Hc∃n0∈N∀m,n∈N;n0�m<n{pα(wm,wn)�Hc}.

(iii) If every P-Cauchy sequence in X is P-convergent in X, then (X,P) is called a P-
sequentially complete cone uniform space.

(iv) The set-valued dynamic system (X, T) is called a cone closed set-valued dynamic
system in X if whenever (wm : m ∈ N) is a sequence in X P-converging to w ∈ X
and (vm : m ∈ N) is a sequence P-converging to v ∈ X such that vm ∈ T(wm) for all
m ∈ N, then v ∈ T(w).

(v) Let (X,P) be aP-sequentially complete cone uniform space. For an arbitrary subset
E of X, the cone closure of E, denoted by cl(E), is defined as the set cl(E) = {w ∈ X :
∃(wm:m∈N)⊂E∀α∈A∀c∈L,0�Hc∃n0∈N∀m∈N;n0�m{pα(wm,w)�Hc}}. The subset E ofX is said
to be a cone closed subset in X if cl(E) = E.

The cone H is normal if a real number M > 0 exists such that for each a, b ∈ H,
0HaHb implies ‖a‖ � M‖b‖. The number M satisfying the above is called the normal
constant of H.

The following holds.
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Theorem 2.3 (see [22]). Let L be an ordered normed space with normal solid coneH and let (X,P)
be a cone uniform space with coneH.

(a) Let (wm : m ∈ N) be a sequence in X and let w ∈ X. Then the sequence (wm : m ∈ N) is
P-convergent to w if and only if

∀α∈A∀ε>0∃n0∈N∀m∈N;n0�m

{∥∥pα(wm,w)
∥∥ < ε

}
. (2.1)

(b) Let (wm : m ∈ N) be a sequence in X. Then the sequence (wm : m ∈ N) is a P-Cauchy
sequence if and only if

∀α∈A∀ε>0∃n0∈N∀m,n∈N;n0�m<n

{∥∥pα(wm,wn)
∥∥ < ε

}
. (2.2)

(c) Each P-convergent sequence is a P-Cauchy sequence.

Definition 2.4. Let L be an ordered normed space with normal solid cone H and let (X,P) be
a cone uniform space with cone H.

(i) The family J = {Jα : X × X → L, α ∈ A} is said to be a J-family of cone
pseudodistances onX (J-family onX, for short) if the following three conditions hold:

(J1) ∀α∈A∀x,y∈X{0HJα(x, y)};
(J2) ∀α∈A∀x,y,z∈X{Jα(x, z)HJα(x, y) + Jα(y, z)};
(J3) for any sequence (wm : m ∈ N) in X such that

∀α∈A∀ε>0∃n0∈N∀m,n∈N;n0�m�n{‖Jα(wm,wn)‖ < ε}, (2.3)

if there exists a sequence (vm : m ∈ N) in X satisfying

∀α∈A∀ε>0∃n0∈N∀m∈N;n0�m{‖Jα(wm, vm)‖ < ε}, (2.4)

then

∀α∈A∀ε>0∃n0∈N∀m∈N;n0�m

{∥∥pα(wm, vm)
∥∥ < ε

}
. (2.5)

(ii) Let the family J = {Jα : X × X → L, α ∈ A} be a J-family on X. We say that a
sequence (wm : m ∈ N) in X is a J-Cauchy sequence in X if (2.3) holds.

For other families of cone pseudodistances in cone uniform spaces and various
applications, see [22, 23]. The following is a consequence of Definition 2.4(i).

Proposition 2.5. Let (X,P) be a Hausdorff cone uniform space with coneH. Let the familyJ = {Jα :
X ×X → L, α ∈ A} be a J-family. If ∀α∈A{Jα(x, y) = 0 ∧ Jα(y, x) = 0}, then x = y.
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Proof. Let x, y ∈ X be such that ∀α∈A{Jα(x, y) = 0 ∧ Jα(y, x) = 0}. By (J2),
∀α∈A{Jα(x, x) HJα(x, y) + Jα(y, x)}. By (J1), this gives ∀α∈A{Jα(x, x) = 0}. Thus, we get
∀α∈A∀ε>0∃n0∈N∀m,n∈N;n0�m�n{‖Jα(wm,wn)‖ < ε} and ∀α∈A∀ε>0∃n0∈N∀m∈N;n0�m{‖Jα(wm, vm)‖ <
ε} where wm = x, vm = y, m ∈ N, and, by (J3), ∀α∈A∀ε>0∃n0∈N∀m∈N;n0�m{‖pα(wm, vm)‖ < ε},
that is, ∀α∈A∀ε>0{‖pα(x, y)‖ < ε}. Hence, ∀α∈A{pα(x, y) = 0}which, according to (P4), implies
that x = y.

Now we introduce the following three kinds of dissipative set-valued dynamic
systems with generalized pseudodistances in cone uniform spaces (conditions (ii)–(iv)
below).

Definition 2.6. Let (X,P) be a Hausdorff cone uniform space and let (X, T) be a set-valued dynamic
system. Let J = {Jα : X × X → L, α ∈ A} be a J-family on X and let Ω = {ωα : X → L, α ∈ A}
be a family of maps such that

∀α∈A∀x∈X{0Hωα(x)}. (2.6)

(i) We say that a sequence (wm : m ∈ {0} ∪ N) in X is (J,Ω)-admissible if

∀α∈A∀m∈{0}∪N{Jα(wm,wm+1)Hωα(wm) −ωα(wm+1)}. (2.7)

(ii) If the following conditions are satisfied:

(C1) ∅/=X0 ⊂ X; and

(C2) x ∈ X0 if and only if there exists a (J,Ω)-admissible dynamic process (wm :
m ∈ {0} ∪ N) starting at w0 = x of the system (X, T),

then we say that T is weak (J,Ω;X0)-dissipative on X

(iii) We say that T is (J,Ω)-dissipative on X if, for each x ∈ X, each dynamic process
(wm : m ∈ {0} ∪ N) starting at w0 = x of the system (X, T) is (J,Ω)-admissible.

(iv) We say that T is strictly (J,Ω)-dissipative on X if, for each x ∈ X, each generalized
sequence of iterations (wm : m ∈ {0} ∪ N) starting at w0 = x of the system (X, T) is
(J,Ω)-admissible.

If one of the conditions (ii)–(iv) holds, then we say that (X, T) is a dissipative set-valued
dynamic system with respect to (J,Ω) (dissipative set-valued dynamic system, for short).

Remark 2.7. It is worth noticing that if a sequence (wm : m ∈ {0}∪N) inX is (J,Ω)-admissible,
then, for each k ∈ N, a sequence (wm+k : m ∈ {0} ∪ N) is (J,Ω)-admissible. Consequently, if
T is weak (J,Ω;X0)-dissipative on X, x ∈ X0, and (wm : m ∈ {0} ∪ N) is a dynamic process
starting at w0 = x of the system (X, T) which is (J,Ω)-admissible, then ∀m∈N{wm ∈ X0}; in
general, T(X0)/=X0 (see Example 7.3).

Now we can give the following conclusion.
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Proposition 2.8. Let (X,P) be a Hausdorff cone uniform space and let (X, T) be a set-valued dynamic
system.

(a) If T is weak (J,Ω;X0)-dissipative on X, then (X0,KJ;T ) is a set-valued dynamic system
where, for each x ∈ X0,

KJ;T (x) =
⋃

{{w0, w1, w2, . . .} : (wm : m ∈ {0} ∪ N) ∈ KJ(T, x)}, (2.8)

KJ(T, x) = {(wm : m ∈ {0} ∪ N),

w0=x : ∀m∈{0}∪N{wm+1 ∈ T(wm)∧∀α∈A{Jα(wm,wm+1)Hωα(wm) −ωα(wm+1)}}
}
.

(2.9)

(b) If T is (J,Ω)-dissipative on X, then (X,WJ;T) is a set-valued dynamic system where, for
each x ∈ X,

WJ;T (x) =
⋃

{{w0, w1, w2, . . .} : (wm : m ∈ {0} ∪ N) ∈ WJ(T, x)}, (2.10)

WJ(T, x) =
{
(wm : m ∈ {0} ∪ N), w0 = x : ∀m∈{0}∪N{wm+1 ∈ T(wm)}

}
. (2.11)

(c) If T is strictly (J,Ω)-dissipative onX, then (X,SJ;T ) is a set-valued dynamic system where,
for each x ∈ X,

SJ;T (x) =
⋃

{{w0, w1, w2, . . .} : (wm : m ∈ {0} ∪ N) ∈ SJ(T, x)}, (2.12)

SJ(T, x) =
{
(wm : m ∈ {0} ∪ N), w0 = x : ∀m∈{0}∪N

{
wm+1 ∈ T [m+1](w0)

}}
. (2.13)

Proof. The fact that

KJ;T : X0 −→ 2X0 , WJ;T : X −→ 2X, SJ;T : X −→ 2X (2.14)

follows from (1.1), (1.2), Definition 2.6, Remark 2.7, and (2.8)–(2.13).

Remark 2.9. By Proposition 2.8 and Definition 2.6, we get:

(i) If T is (J,Ω)-dissipative onX, then T is weak (J,Ω;X0)-dissipative onX forX0 = X
and ∀x∈X0{KJ;T (x) = WJ;T (x)}.

(ii) If T is strictly (J,Ω)-dissipative on X, then T is (J,Ω)-dissipative on X and
∀x∈X{WJ;T (x) ⊂ SJ;T (x)}.

Definition 2.10. Let L be an ordered normed space with solid cone H. The cone H
is called regular if for every incresing (decresing) sequence which is bounded from
above (below), that is, if for each sequence (cm : m ∈ N) in L such that
c1Hc2H · · · HcmH · · · Hb (bH · · · HcmH · · · Hc2Hc1) for some b ∈ L, there exists
c ∈ L such that limm→∞‖cm − c‖ = 0.

Remark 2.11. Every regular cone is normal; see [24].
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3. Periodic Point and Convergence Theorem for Weak
(J,Ω;X0)-Dissipative, (J,Ω)-Dissipative, and
Strictly (J,Ω)-Dissipative Set-Valued Dynamic
Systems in Cone Uniform Spaces

Our main result of this section is the following.

Theorem 3.1. Let L be an ordered Banach space with a regular solid cone H and let (X,P) be a
Hausdorff sequentially complete cone uniform space with coneH. Let J = {Jα : X ×X → L, α ∈ A}
be a J-family on X and let Ω = {ωα : X → L, α ∈ A} be a family of maps such that
∀α∈A∀x∈X{0Hωα(x)}. Let (X, T) be a set-valued dynamic system. The following hold.

(a) If T is weak (J,Ω;X0)-dissipative onX, then, for each x ∈ X0 and for each dynamic process
(wm : m ∈ {0} ∪ N) ∈ KJ(T, x), there exists w ∈ cl(X0) such that (wm : m ∈ {0} ∪ N)
is P-convergent to w. If, in addition, the map T [q] is cone closed in X for some q ∈ N, then
w ∈ T [q](w).

(b) If T is (J,Ω)-dissipative on X, then, for each x ∈ X and for each dynamic process (wm :
m ∈ {0} ∪ N) ∈ WJ(T, x), there exists w ∈ X such that (wm : m ∈ {0} ∪ N) is P-
convergent to w. If, in addition, the map T [q] is cone closed in X for some q ∈ N, then
w ∈ T [q](w).

(c) If T is strictly (J,Ω)-dissipative on X, then, for each x ∈ X and for each generalized
sequence of iterations (wm : m ∈ {0} ∪ N) ∈ SJ(T, x), there exists w ∈ X such that
(wm : m ∈ {0} ∪ N) is P-convergent to w. If, in addition, the map T [q] is cone closed in
X for some q ∈ N, then, for each x ∈ X, there exists a generalized sequence of iterations
(wm : m ∈ {0}∪N) ∈ SJ(T, x) andw ∈ X such that (wm : m ∈ {0}∪N) isP-convergent
to w and w ∈ T [q](w).

Proof. The proof will be broken into three steps.

Step 1. Let (i) x ∈ X0 and (wm : m ∈ {0} ∪ N) ∈ KJ(T, x); or (ii) x ∈ X and (wm : m ∈
{0} ∪N) ∈ WJ(T, x) ∪ SJ(T, x). We show that (wm : m ∈ {0} ∪N) is J-Cauchy and P-Cauchy,
that is,

∀α∈A∀ε>0∃n0∈N∀m,n∈N;n0�m�n{‖Jα(wm,wn)‖ < ε}, (3.1)

∀α∈A∀ε>0∃n0∈N∀m,n∈N;n0�m<n

{∥∥pα(wm,wn)
∥∥ < ε

}
, (3.2)

respectively; see Definitions 2.4(ii) and 2.2(ii) and Theorem 2.3(b).

Indeed, since L is transitive, by (2.9), (2.11), (2.13), Definition 2.6(ii)–(iv) and (J1),
we get that ∀α∈A∀m∈{0}∪N{ωα(wm+1)Hωα(wm)}. According to (2.6), for each α ∈ A, the
sequence (ωα(wm) : m ∈ {0} ∪ N) is contained in H, bounded from below and, by the above,
nonincreasing. Since H is a closed and regular cone, it follows that

∀α∈A∃uα∈H

{
lim
m→∞

‖ωα(wm) − uα‖ = 0
}
. (3.3)
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Let now α0 ∈ A and ε0 > 0 be arbitrary and fixed. By (3.3),

∃n0∈N∀m;n0�m

{
‖ωα0(wm) − uα0‖ <

ε0
2M

}
, (3.4)

where M is a normal constant of H (see Remark 2.11). Furthermore, for n0 < m � n, using
(J1), (J2), and (2.7), 0HJα0(wm,wn)H

∑n−1
k=m Jα0(wk,wk+1Hωα0(wm)−ωα0(wn) and next, by

(3.4) and the fact thatH is normal (see Remark 2.11), ‖Jα0(wm,wn)‖ � M‖ωα0(wm)−ωα0(wn)‖
=M‖ωα0(wm)−uα0−ωα0(wn)+uα0‖ � M‖ωα0(wm)−uα0‖+M‖ωα0(wn)−uα0‖ � ε0/2+ε0/2 = ε0.
Therefore, (3.1) holds.

Also we can show that (3.2) holds. Indeed, by (3.1), ∀α∈A∀ε>0∃n0∈N∀m�n0

∀k∈{0}∪N{‖Jα(wm,wk+m)‖ < ε}. Hence, if i0 ∈ N and j0 ∈ {0} ∪ N where i0 > j0 and

um = wi0+m, vm = wj0+m for m ∈ N, (3.5)

then we obtain

∀α∈A∀ε>0∃n0∈N∀m�n0{‖Jα(wm, um)‖ < ε ∧ ‖Jα(wm, vm)‖ < ε}. (3.6)

We obtain according to (3.1), (3.6), and (J3) that

∀α∈A∀ε>0∃n0∈N∀m�n0

{∥∥pα(wm, um)
∥∥ < ε ∧ ∥∥pα(wm, vm)

∥∥ < ε
}
. (3.7)

By (3.5), from (3.7) it follows that

∀α∈A∀ε>0∃n0∈N∀m�n0

{∥∥pα(wm,wi0+m)
∥∥ <

ε

2M
∧ ∥∥pα

(
wm,wj0+m

)∥∥ <
ε

2M

}
. (3.8)

Next, if n0 � m < n, then n = i0+n0 andm = j0+n0 for some i0 ∈ N and j0 ∈ {0}∪N such
that i0 > j0. Thus, by (P1)–(P3), ∀α∈A{0Hpα(wm,wn) = pα(wi0+n0 , wj0+n0)Hpα(wn0 , wi0+n0) +
pα(wn0 , wj0+n0)}. Using (3.8), this gives ∀α∈A{‖pα(wm,wn)‖ � M‖pα(wn0 , wi0+n0)‖ +
M‖pα(wn0 , wj0+n0)‖ < ε/2 + ε/2 = ε}. The proof of (3.2) is complete.

Step 2. Assertions (a) and (b) hold.

Indeed, let (i) x ∈ X0 and (wm : m ∈ {0} ∪ N) ∈ KJ(T, x); or (ii) x ∈ X and (wm : m ∈
{0} ∪ N) ∈ WJ(T, x).

Since ∀m∈{0}∪N{wm ∈ KJ;T (x)} or ∀m∈{0}∪N{wm ∈ WJ;T(x)}, X is a Hausdorff
and sequentially complete cone space and (2.14) holds, therefore, by virtue of Step 1,
Proposition 2.8 and Theorem 2.3(b) and (c), we claim that (wm : m ∈ {0} ∪ N) is a P-Cauchy
sequence and there exists a unique w ∈ cl(KJ;T(x)) or w ∈ cl(WJ;T (x)), respectively, where
KJ;T (x) ⊂ X0, WJ;T (x) ⊂ X, and cl(X) = X, such that the sequence (wm : m ∈ {0} ∪ N) is
P-convergent to w, that is, ∀α∈A{limm→∞‖pα(wm,w)‖ = 0}.

Now we see that if T [q] is cone closed for some q ∈ N, then the point w satisfies
w ∈ T [q](w). Indeed, by (2.9) or (2.11), we conclude that

∀m∈N

{
wm ∈ T(wm−1) ⊂ T [2](wm−2) ⊂ · · · ⊂ T [m−1](w1) ⊂ T [m](w0)

}
, (3.9)
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which gives

wmq+k ∈ T [q](w(m−1)q+k
)

for k = 1, 2, . . . , q, m ∈ N. (3.10)

Since T [q] is cone closed in X and limm→∞wm = w, therefore, by (3.10) and Definition 2.2(iv),
we get w ∈ T [q](w).

Step 3. Assertion (c) holds.

Indeed, if x ∈ X and (wm : m ∈ {0} ∪ N) ∈ SJ(T, x), then, by virtue of Step 1,
Proposition 2.8 and Theorem 2.3(b) and (c), we claim that ∀m∈{0}∪N{wm ∈ T [m](x) ⊂ SJ;T (x) ⊂
X}, (wm : m ∈ {0} ∪ N) is a P-Cauchy sequence, and there exists a unique w ∈ cl(SJ;T(x))
such that the sequence (wm : m ∈ {0} ∪ N) P-converges to w.

If T [q] is cone closed in X for some q ∈ N, then, for each x ∈ X, by Remark 2.9(b)
and Step 2 (part (b)), there exists a generalized sequence of iterations (wm : m ∈ {0} ∪ N) ∈
SJ(T, x) ∩ WJ(T, x) ⊂ SJ(T, x) satisfying (3.9) and (3.10) and there exists w ∈ cl(WJ;T (x)) ⊂
cl(SJ;T (x)) ⊂ X such that (wm : m ∈ {0} ∪ N) is P-convergent to w and w ∈ T [q](w).

4. Dissipative Set-Valued Dynamic Systems with
Generalized Pseudodistances in Uniform Spaces

Let (X,D) be a Hausdorff uniform space with uniformity defined by a saturated family D =
{dα : α ∈ A} of pseudometrics dα, α ∈ A, uniformly continuous on X2.

Definition 4.1. Let (X,D) be a Hausdorff uniform space. The familyU = {Uα : X×X → [0,∞),
α ∈ A} is said to be a U-family of generalized pseudodistances on X (U-family, for short) if the
following two conditions hold:

(U1) ∀α∈A∀x,y,z∈X{Uα(x, z) � Uα(x, y) +Uα(y, z)};
(U2) for any sequence (wm : m ∈ N) in X such that

∀α∈A
{

lim
m→∞

sup
n>m

Uα(wm,wn) = 0
}
, (4.1)

if there exists a sequence (vm : m ∈ N) in X satisfying

∀α∈A
{

lim
m→∞

Uα(wm, vm) = 0
}
, (4.2)

then

∀α∈A
{

lim
m→∞

dα(wm, vm) = 0
}
. (4.3)

Definition 4.2. Let (X,D) be a Hausdorff uniform space and let (X, T) be a set-valued dynamic
system. Let the family U = {Uα : X ×X → [0,∞), α ∈ A}be a U-family and let Γ = {γα : X →
[0,+∞), α ∈ A} be a family of maps.
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(i) We say that a sequence (wm : m ∈ {0} ∪ N) in X is (U,Γ)-admissible if

∀α∈A∀m∈{0}∪N

{
Uα(wm,wm+1) � γα(wm) − γα(wm+1)

}
. (4.4)

(ii) If the following conditions are satisfied:

(C1) ∅/=X0 ⊂ X;
(C2) x ∈ X0 if and only if there exists a (U,Γ)-admissible dynamic process (wm :

m ∈ {0} ∪ N) starting at w0 = x of the system (X, T),

then we say that T is weak (U,Γ;X0)-dissipative on X.

(iii) We say that T is (U,Γ)-dissipative on X if, for each x ∈ X, each dynamic process
(wm : m ∈ {0} ∪ N) starting at w0 = x of the system (X, T) is (U,Γ)-admissible.

(iv) We say that T is strictly (U,Γ)-dissipative on X if, for each x ∈ X, each generalized
sequence of iterations (wm : m ∈ {0} ∪ N) starting at w0 = x of the system (X, T) is
(U,Γ)-admissible.

If one of the conditions (ii)–(iv) holds, then we say that (X, T) is a dissipative set-valued
dynamic system with respect to (U,Γ)(dissipative set-valued dynamic system, for short).

Proposition 4.3. Let (X,D) be a Hausdorff uniform space and let (X, T) be a set-valued dynamic
system.

(a) If T is weak (U,Γ;X0)-dissipative on X, then (X0,KU;T ) is a set-valued dynamic system
where, for each x ∈ X0, KU;T (x) =

⋃{{w0, w1, w2, . . .} : (wm : m ∈ {0} ∪ N) ∈
KU(T, x)} and KU(T, x) = {(wm : m ∈ {0} ∪ N), w0 = x : ∀m∈{0}∪N{wm+1 ∈
T(wm) ∧ ∀α∈A{Uα(wm,wm+1) � γα(wm) − γα(wm+1)}}}.

(b) If T is (U,Γ)-dissipative on X, then (X,WU;T ) is a set-valued dynamic system where, for
each x ∈ X, WU;T (x) =

⋃{{w0, w1, w2, . . .} : (wm : m ∈ {0} ∪ N) ∈ WU(T, x)}, and
WU(T, x) = {(wm : m ∈ {0} ∪ N), w0 = x : ∀m∈{0}∪N{wm+1 ∈ T(wm)}}.

(c) If T is strictly (U,Γ)-dissipative onX, then (X,SU;T ) is a set-valued dynamic system where,
for each x ∈ X, SU;T (x) =

⋃{{w0, w1, w2, . . .} : (wm : m ∈ {0} ∪ N) ∈ SU(T, x)} and
SU(T, x) = {(wm : m ∈ {0} ∪ N), w0 = x : ∀m∈{0}∪N{wm+1 ∈ T [m+1](w0)}}.

5. Periodic Point and Convergence Theorem for Weak
(U,Γ;X0)-Dissipative, (U,Γ)-Dissipative, and Strictly
(U,Γ)-Dissipative Set-Valued Dynamic Systems in Uniform Spaces

Let (Λ,≥Λ) denote a directed set whose elements will be indicated by the letters λ, η, μ. Let
T : X → 2Y where X and Y are topological spaces.

The following are equivalent: (a) the map T is closed, that is, the graph of T is closed
in X × X; (b) whenever (wλ : λ ∈ Λ) is a net converging to w and (vλ : λ ∈ Λ) is a net
converging to v such that vλ ∈ T(wλ) for all λ ∈ Λ, then v ∈ T(w). Recall that the graph of T is
{(x, y) : x ∈ X, y ∈ T(x)}.

The map T is called upper semicontinuous at w ∈ X if for each open set G containing
T(w) there exists a neighbourhood N(w) of w such that T(v) ⊂ G for each v ∈ N(w) and
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upper semicontinuous in X if it is upper semicontinuous at each point w of X and T(w) is
compact for each w ∈ X; see Berge [25, page 111].

Remark 5.1. It is known that

(i) if the map T is closed, then, for each x ∈ X, the set T(x) is closed [25, page 111] but,
generally, the converse is not possible [26, Example 7.19, page 75].

(ii) every upper semicontinuous map is closed [25, Theorem 6, page 112] and, if X is a
compact space, then the map is closed if and only if it is upper semicontinuous [25,
Corollary, page 112].

Definition 5.2. Let (X,D) be a Hausdorff uniform space.

(i) We say that a sequence (wm : m ∈ N) in X is a Cauchy sequence in X if
∀α∈A{limm→∞ supn>m dα(wm,wn) = 0}.

(ii) We say that a sequence (wm : m ∈ N) in X converges in X, if there exists w ∈ X
such that ∀α∈A{limm→∞ dα(wm,w) = 0}.

(iii) If every Cauchy sequence inX is convergent inX, then (X,D) is called a sequentially
complete uniform space.

(iv) Let the family U = {Uα : X × X → [0,∞), α ∈ A} be a U-family on X.
We say that a sequence (wm : m ∈ N) in X is a U-Cauchy sequence in X if
∀α∈A{limm→∞ supn>m Uα(wm,wn) = 0}.

Consequence of Theorem 3.1 is the following.

Theorem 5.3. Let (X,D) be a Hausdorff sequentially complete uniform space and let (X, T) be a set-
valued dynamic system. Let the family U = {Uα : X × X → [0,∞), α ∈ A} be a U-family and let
Γ = {γα : X → 0,+∞], α ∈ A} be a family of proper maps. The following hold.

(a) If T is weak (U,Γ;X0)-dissipative on X, then, for each x ∈ X0 and for each dynamic process
(wm : m ∈ {0} ∪ N) ∈ KU(T, x), there exists w ∈ cl(X0) such that (wm : m ∈ {0} ∪ N)
is convergent tow. If, in addition, the map T [q] is closed (or T [q] is upper semicontinuous )
in X for some q ∈ N, then w ∈ T [q](w).

(b) If T is (U,Γ)-dissipative on X, then, for each x ∈ X and for each dynamic process (wm :
m ∈ {0}∪N) ∈ WU(T, x), there existsw ∈ X such that (wm : m ∈ {0}∪N) is convergent
tow. If, in addition, the map T [q] is closed (or T [q] is upper semicontinuous ) in X for some
q ∈ N, then w ∈ T [q](w).

(c) If T is strictly (U,Γ)-dissipative on X, then, for each x ∈ X and for each generalized
sequence of iterations (wm : m ∈ {0} ∪ N) ∈ SU(T, x), there exists w ∈ X such that
(wm : m ∈ {0} ∪ N) is convergent to w. If, in addition, the map T [q] is closed (or T [q]

is upper semicontinuous ) in X for some q ∈ N, then, for each x ∈ X, there exists a
generalized sequence of iterations (wm : m ∈ {0} ∪ N) ∈ SU(T, x) and w ∈ X such that
(wm : m ∈ {0} ∪ N) is convergent to w and w ∈ T [q](w).
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6. Endpoint and Convergence Theorem for
(U,Γ)-Dissipative and Strictly (U,Γ)-Dissipative Set-Valued
Dynamic Systems in Uniform Spaces

We recall the following.

Definition 6.1. Let (X, τ) be a topological space and let (X, T) be a set-valued dynamic system.
The map T is called lower semicontinuous atw ∈ X (written: lsc atw ∈ X) if and only if for any
v ∈ T(w) and for any net (wλ : λ ∈ Λ) of elements wλ ∈ X, λ ∈ Λ, τ-converging to w, there
exists a net (vλ : λ ∈ Λ) of elements vλ ∈ T(wλ), λ ∈ Λ, τ-converging to v. The map T is called
lsc on X if it is lsc at every point of w ∈ X.

The main result of this section is what follows.

Theorem 6.2. Let (X,D) be a Hausdorff sequentially complete uniform space and let (X, T) be a set-
valued dynamic system. Let the family U = {Uα : X × X → [0,∞), α ∈ A} be a U-family and let
Γ = {γα : X → 0,∞), α ∈ A} be a family of maps.

Assume that T is (U,Γ)-dissipative on X. Then the following hold.

(a1) The map WU;T is (U,Γ)-dissipative on X and, for each x ∈ X, there exist (wm : m ∈
{0} ∪ N) ∈ WU(WU;T , x) and w ∈ X such that (wm : m ∈ {0} ∪ N) converges to w and⋂

m�0 cl(WU;T (wm)) = {w}.
(a2) If, for each x ∈ X, WU;T (x) is a closed set, then End(T)/= ∅ and, for each x ∈ X, there exist

(wm : m ∈ {0} ∪ N) ∈ WU(WU;T , x) and w ∈ End(T) such that (wm : m ∈ {0} ∪ N)
converges to w and

⋂
m�0 WU;T (wm) = {w}.

(a3) If T is lsc on X, then End(T)/= ∅ and, for each x ∈ X, there exist (wm : m ∈ {0} ∪ N) ∈
WU(WU;T , x) and w ∈ End(T) such that (wm : m ∈ {0} ∪ N) converges to w and⋂

m�0 cl(WU;T (wm)) = {w}.

Assume that T is strictly (U,Γ)-dissipative on X. Then the following hold.

(b1) The map SU;T is strictly (U,Γ)-dissipative on X and, for each x ∈ X, there exist (wm : m ∈
{0} ∪ N) ∈ SU(SU;T , x) and w ∈ X such that (wm : m ∈ {0} ∪ N) converges to w and⋂

m�0 cl(SU;T (wm)) = {w}.
(b2) If, for each x ∈ X, SU;T (x) is a closed set, then End(T)/= ∅ and, for each x ∈ X, there exist

(wm : m ∈ {0} ∪ N) ∈ SU(SU;T , x) and w ∈ End(T) such that (wm : m ∈ {0} ∪ N)
converges to w and

⋂
m�0 SU;T (wm) = {w}.

(b3) If T is lsc on X, then End(T)/= ∅ and, for each x ∈ X, there exist (wm : m ∈ {0} ∪
N) ∈ SU(SU;T , x) and w ∈ End(T) such that (wm : m ∈ {0} ∪ N) converges to w and⋂

m�0 cl(SU;T (wm)) = {w}.

Proof. (a1) The proof of (a1)will be broken into six steps.

Step 1. We show that ∀α∈A∀x∈X∀y∈WU;T (x){Uα(x, y) � γα(x) − γα(y)}.

Indeed, let x ∈ X and y ∈ WU;T (x) be arbitrary and fixed. By definition of WU;T (x),
there exist a dynamic process (wm : m ∈ {0} ∪ N) ∈ WU(T, x) starting at w0 = x of
the system (X, T) and m0 ∈ {0} ∪ N such that y = wm0 ; recall that then (1.1) and (4.4)
hold (i.e., ∀m∈{0}∪N{wm+1 ∈ T(wm)} and ∀α∈A∀m∈{0}∪N{Uα(wm,wm+1) � γα(wm) − γα(wm+1)}
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hold). By virtue of (U1), this gives ∀α∈A{Uα(x, y) � ∑m0−1
m=0 Uα(wm,wm+1) � ∑m0−1

m=0 [γα(wm) −
γα(wm+1)] = γα(x) − γα(y)}.

Step 2. We show that WU;T is (U,Γ)-dissipative on X.

If x ∈ X and (wm : m ∈ {0} ∪ N) is a dynamic process starting at w0

= x of the system (X,WU;T ), that is, ∀m∈{0}∪N{wm+1 ∈ WU;T (wm)}, then, by Step 1,
∀α∈A∀m∈{0}∪N{Uα(wm,wm+1) � γα(wm) − γα(wm+1)}, that is, (wm : m ∈ {0} ∪ N) is (U,Γ)-
admissible. This gives that WU;T is (U,Γ)-dissipative on X.

Step 3. We show that ∀x∈X{WU(T, x) ⊂ WU(WU;T , x)}.

Indeed, by Proposition 4.3(b), for x ∈ X, WU(T, x) = {(wm : m ∈ {0} ∪ N) :
∀m∈{0}∪N{wm+1 ∈ T(wm)}, w0 = x}. Next, by Step 2, WU;T is (U,Γ)-dissipative on X.
Consequently,

∀x∈X
{WU(WU;T , x) =

{
(cm : m ∈ {0} ∪ N) : ∀m∈{0}∪N{cm+1 ∈ WU;T (cm)}, c0 = x

}}
, (6.1)

where

∀m∈{0}∪N{WU;T (cm) =
⋃{{s0, s1, s2, . . .} :

(
sj : j ∈ {0} ∪ N

) ∈ WU(T, cm)
}

=
⋃{{s0, s1, s2, . . .} : s0 = cm, sj ∈ T

(
sj−1

)
, j ∈ N

}}
.

(6.2)

Let now (wm : m ∈ {0} ∪ N) ∈ WU(T, x). Then ∀m∈{0}∪N{wm+1 ∈ T(wm)}.
Hence ∀m∈{0}∪N∀k�m{wk+1 ∈ T(wk)}. Thus ∀m∈{0}∪N{(wm,wm+1, wm+2, . . .) ∈ WU(T,wm)}.
Hence, by (6.2), ∀m∈{0}∪N{{wm,wm+1, wm+2, . . .} ⊂ WU;T (wm)}. In particular, ∀m∈{0}∪N{wm+1 ∈
WU;T (wm)}. By (6.1), (wm : m ∈ {0} ∪ N) ∈ WU(WU;T , x).

Step 4. If x ∈ X and (wm : m ∈ {0} ∪ N) ∈ WU(WU;T , x), then

∀α∈A∀m∈{0}∪N

{
γα(wm+1) � γα(wm)

}
. (6.3)

Indeed, by (6.1), ∀m∈{0}∪N{wm+1 ∈ WU;T (wm)}, w0 = x. Hence, by virtue of the
Step 2 and Definition 4.2(iii), the sequence (wm : m ∈ {0} ∪ N) is (U,Γ)-admissible, that is,
∀α∈A∀m∈{0}∪N{Uα(wm,wm+1) � γα(wm)− γα(wm+1)}. By definitions ofU and Γ, this gives (6.3).

Step 5. Let

∀α∈A∀x∈X
{
Δα(WU;T (x)) = sup{Uα(x, t) : t ∈ WU;T (x)}

}
(6.4)

and let

∀α∈A∀x∈X
{

α;WU;T (x) = inf

{
γα(t) : t ∈ WU;T (x)

}}
. (6.5)
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Then

∀α∈A∀x∈X
{
Δα(WU;T (x)) � γα(x) − 
α;WU;T (x)

}
. (6.6)

Indeed, if α ∈ A and x ∈ X, then, by Step 1, we get Δα(WU;T (x)) = sup{Uα(x, t) : t ∈
WU;T (x)} � sup{γα(x) − γα(t) : t ∈ WU;T (x)} � γα(x) − ρα;WU;T (x).

Step 6. Let δα(E) = sup{dα(y1, y2) : y1, y2 ∈ E}, E ∈ 2X , α ∈ A. Then, for each x ∈ X, there
exist a dynamic process (wm : m ∈ {0} ∪ N) ∈ WU(WU;T , x) and a unique w ∈ X such that

∀α∈A
{

lim
m→∞

sup
n>m

Uα(wm,wn) = 0
}
, (6.7)

∀α∈A
{

lim
m→∞

sup
n>m

dα(wm,wn) = 0
}
, (6.8)

∀α∈A
{

lim
m→∞

dα(wm,w) = 0
}
, (6.9)

∀α∈A
{

lim
m→∞

δα(WU;T (wm)) = lim
m→∞

δα(cl(WU;T (wm))) = 0
}
, (6.10)

⋂
m�0

cl(WU;T (wm)) = {w}. (6.11)

Indeed, first, let us observe that since T is (U,Γ)-dissipative on X and ∀x∈X{x ∈
WU;T (x)} (i.e., ∀x∈X{WU;T (x)/= ∅}), thus there exists

∀α∈A∀x∈X
{

α;WU;T (x) = inf

{
γα(t) : t ∈ WU;T (x)

}}
. (6.12)

Now let x ∈ X and α0 ∈ A be arbitrary and fixed. Definingw0 = x, since T is (U,Γ)-dissipative
on X and w0 ∈ WU;T (w0), by (6.2), we have that

WU;T (w0) =
⋃{{s0, s1, s2, . . .} : s0 = w0, sj ∈ T

(
sj−1

)
, j ∈ N

}
/= ∅. (6.13)

Therefore, by (6.12) and (6.13), there existsw1 ∈ WU;T (w0) such that γα0(w1) � 
α0;WU;T (w0)+1.
Similarly, there exists w2 ∈ WU;T (w1) such that γα0(w2) � 
α0;WU;T (w1) + 2−1. By induction, we
may construct a dynamic process (wm : m ∈ {0} ∪ N) ∈ WU(WU;T , x) satisfying (see (6.1),
(6.2), and (6.3) and Step 1)

∀m∈N{wm ∈ WU;T (wm−1)}, (6.14)

∀m∈{0}∪N

{
γα0(wm+1) � 
α0;WU;T (wm) + 2−m

}
, (6.15)

where ∀m∈N{
α0;WU;T (wm) = inf{γα0(t) : t ∈ WU;T (wm)}}. Next, by (6.2),

∀m∈N{WU;T (wm) ⊂ WU;T (wm−1)} (6.16)
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which gives

∀m∈{0}∪N

{

α0;WU;T (wm) � 
α0;WU;T (wm+1)

}
. (6.17)

By (6.6), (6.15), and (6.17), Δα0(WU;T (wm+1)) � γα0(wm+1) − 
α0;WU;T (wm+1) � 
α0;WU;T (wm) +
2−m − 
α0;WU;T (wm)] � 2−m which implies

lim
m→∞

Δα0(WU;T (wm+1)) = 0. (6.18)

Moreover, by (6.14) and (6.16), for arbitrary and fixedm ∈ N, we have that

∀n>m{{wm,wn} ⊂ WU;T (wm)}. (6.19)

Next, by (6.19), we have

∀n>m{Uα0(wm,wn) � sup{Uα0(wm, t) : t ∈ WU;T (wm)} = Δα0 (WU;T (wm)}. (6.20)

Therefore, (6.20) and (6.18) imply (6.7).
Using (6.7) and analogous argument as in Step 1 of the proof of Theorem 3.1, we

obtain (6.8). Indeed, from (6.7), ∀α∈A∀ε>0∃n1∈N∀m>n1{sup{Uα(wm,wn) : n > m} < ε} and,
in particular, ∀α∈A∀ε>0∃n1∈N∀m>n1∀k∈N{Uα(wm,wk+m) < ε}. If i0, j0 ∈ N, i0 > j0, are arbitrary
and fixed and um = wi0+m and vm = wj0+m, m ∈ N, this gives ∀α∈A{limm→∞ Uα(wm, um) =
limm→∞ Uα(wm, vm) = 0}. By (6.7) and (U2), ∀α∈A{limm→∞ dα(wm, um) = limm→∞ dα(wm, vm)
= 0}. Hence

∀α∈A∀ε>0∃n2∈N∀m>n2

{
dα(wm,wi0+m) <

ε

2

}
,

∀α∈A∀ε>0∃n3∈N∀m>n3

{
dα

(
wm,wj0+m

)
<

ε

2

}
.

(6.21)

Therefore, if α0 ∈ A and ε0 > 0 are arbitrary and fixed, n0 = max{n2, n3} + 1 and k,
l ∈ N be arbitrary and fixed and such that k > l > n0, then k = i0 + n0 and l = j0 + n0 for some
i0, j0 ∈ N such that i0 > j0 and we get dα0(wk,wl) = dα0(wi0+n0 , wj0+n0) � dα0(wn0 , wi0+n0) +
dα0(wn0 , wj0+n0) < ε0/2 + ε0/2 = ε0.

Consequently, ∀α∈A∀ε>0∃n∈N∀k,l∈N, k>l>n{dα(wk,wl) < ε}. The proof of (6.8) is complete.
By (6.8), there exists a unique w ∈ X such that (6.9) holds.
Now we prove (6.10). With the aim of this, let xm, ym ∈ WU;T (wm),m ∈ N, be arbitrary

and fixed. Then, by (6.18) and definition of Δα(WU;T (wm)), we have ∀α∈A{limm→∞ Uα(wm,
xm) = limm→∞ Uα(wm, ym) = 0}. Hence, by (6.7) and (U2), ∀α∈A{limm→∞ dα(wm, xm) =
limm→∞ dα(wm, ym) = 0} which gives ∀α∈A{limm→∞ dα(xm, ym) = 0}, that is, formula (6.10)
holds.

Finally, let us observe that X is sequentially complete and Hausdorff, inclusions (6.16)
imply that the sequence of sets {WU;T (wm)} has the property of finite intersections and that
the properties (6.9), (6.10), and (6.14) hold. Consequently, (6.11) holds.
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(a2) From Proposition 4.3(b), Step 2 of the proof of (a1), we conclude that

∀x∈X{T(WU;T (x)) ⊂ WU;T (x)} (6.22)

and if the sequence (wm : m ∈ {0} ∪ N) is such as in Step 6 of the proof of (a1), then, since,
for each x ∈ X, the set WU;T (x) is closed, using (6.11) and (6.22), we conclude that T(w)
= T(

⋂
m�0 cl(WU;T (wm))) = T(

⋂
m�0 WU;T (wm)) ⊂ ⋂

m�0 T(WU;T (wm)) ⊂ ⋂
m�0 WU;T (wm) =⋂

m�0 cl(WU;T (wm)) = {w}, that is, that w is an endpoint of T .
(a3) Let x ∈ X be arbitrary and fixed and let the sequence (wm : m ∈ {0} ∪ N) ∈

WU(WU;T , x) be such as in Step 6 of the proof of (a1). Then

∀m∈N{T(cl(WU;T (wm))) ⊂ cl(WU;T (wm))}. (6.23)

Indeed, letm0 ∈ N be arbitrary and fixed. We prove that, if u ∈ cl(WU;T (wm0)) and if y ∈ T(u)
is arbitrary and fixed, then y ∈ cl(WU;T (wm0)). With the aim of this, we consider two cases.

Case 1. Assume that u ∈ WU;T (wm0). Then, by (6.22), we have that y ∈ T(u) ⊂ WU;T (wm0) ⊂
cl(WU;T (wm0)).

Case 2. Assume that u ∈ cl(WU;T (wm0)) \ WU;T (wm0) and let (uλ : λ ∈ Λ) be a net of elements
uλ ∈ WU;T (wm0), λ ∈ Λ, which is convergent to u. Since T is lsc at u and y ∈ T(u), by
Definition 6.1 and the fact that u ∈ cl(WU;T (wm0)) ⊂ X (cf. Proposition 4.3(b)), then there
exists a net (yλ : λ ∈ Λ) of elements yλ ∈ T(uλ), λ ∈ Λ, which is convergent to y. However,
since uλ ∈ WU;T (wm0), λ ∈ Λ, thus, by (6.22), we have T(uλ) ⊂ WU;T (wm0), λ ∈ Λ, and,
consequently, yλ ∈ T(uλ) ⊂ WU;T (wm0), λ ∈ Λ. Since (yλ : λ ∈ Λ) is convergent to y, this gives
that y ∈ cl(WU;T (wm0)).

Now, using (a1) and (6.23), we get T(w) = T(
⋂

m�0 cl(WU;T (wm))) ⊂ ⋂
m�0

T(cl(WU;T (wm))) ⊂
⋂

m�0 cl(WU;T (wm)) = {w}, that is, w is an endpoint of T .
(b1) The proof of (b1)will be broken into sixt steps.

Step 7. The map SU;T is strictly (U,Γ)-dissipative on X.

Indeed, since

∀x∈X

⎧
⎨
⎩SU;T (x) =

⋃
m∈{0}∪N

T [m](x)

⎫
⎬
⎭, (6.24)

therefore

∀m∈N∀x∈X
{
(SU;T )[m](x) = SU;T (x)

}
. (6.25)

On the other hand, by assumption that T is strictly (U,Γ)-dissipative on X, we have that if
x ∈ X is arbitrary and fixed and a generalized sequence of iterations (wm : m ∈ {0} ∪ N)
is such that w0 = x and ∀m∈{0}∪N{wm+1 ∈ T [m+1](x)}, then ∀α∈A∀m∈{0}∪N{Uα(wm,wm+1) �
γα(wm) − γα(wm+1)}. However, then, by Proposition 4.3(c), (wm : m ∈ {0} ∪N) ∈ SU(T, x) and
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∀m∈{0}∪N{wm ∈ SU;T (x)}. Using (6.25), this gives ∀m∈{0}∪N{wm ∈ (SU;T )
[m](x)}; remember that

the sequence (wm : m ∈ {0} ∪ N) satisfies ∀α∈A∀m∈{0}∪N{Uα(wm,wm+1) � γα(wm) − γα(wm+1)}.
By virtue of Proposition 4.3(c), and Definition 4.2(iv), this implies that SU;T is strictly (U,Γ)-
dissipative on X.

Step 8. We show that ∀x∈X{SU(T, x) ⊂ SU(SU;T , x)}.

Indeed, if (wm : m ∈ {0} ∪ N) ∈ SU(T, x), then ∀m∈{0}∪N{wm+1 ∈ T [m+1](x)} which,
by (6.24), implies that ∀m∈{0}∪N{wm+1∈k∈{0}∪NT

[k](x) = SU;T (x)}, w0 = x. Next, by Step 7,
Definition 4.2(iv), Proposition 4.3(c) and (6.25), ∀x∈X{SU(SU;T , x) = {(wm : m ∈ {0} ∪ N) :
∀m∈{0}∪N{wm ∈ (SU;T )

[m](x)} = {(wm : m ∈ {0} ∪ N) : ∀m∈{0}∪N{wm ∈ SU;T (x)}}} where w0 = x

and (SU;T )
[0] = IX . Consequently, (wm : m ∈ {0} ∪ N) ∈ SU(SU;T , x).

Step 9. Let x ∈ X. If (wm : m ∈ {0}∪N) ∈ SU(SU;T , x), then ∀α∈A∀m∈{0}∪N{γα(wm+1) � γα(wm)}.

By (6.25) and Proposition 4.3(c), ∀m∈{0}∪N{wm+1 ∈ S
[m+1]
U;T (x) = SU;T (x)}, w0 = x, and

then, by Step 7 and Definition 4.2(iv), ∀α∈A∀m∈{0}∪N{Uα(wm,wm+1) � γα(wm) − γα(wm+1)}.

Step 10. We have ∀α∈A∀x∈X∀y∈SU;T (x){Uα(x, y) � γα(x) − γα(y)}.

Indeed, if x ∈ X and y ∈ SU;T (x), then there exist m0 ∈ {0} ∪ N, y ∈ T [m0+1](x) and
(wm : m ∈ {0} ∪ N) ∈ SU(T, x) such that y = wm0+1 and w0 = x. However, ∀m∈{0}∪N{wm+1 ∈
T [m+1](x)} and ∀α∈A∀m∈{0}∪N{Uα(wm,wm+1) � γα(wm) − γα(wm+1)}. Hence, ∀α∈A{Uα(x, y) �∑m0

m=0 Uα(wm,wm+1) � ∑m0
m=0[γα(wm) − γα(wm+1)] = γα(x) − γα(y)}.

Step 11. We have ∀α∈A∀x∈X{Δα(SU;T (x)) � γα(x) − 
α;SU;T (x)} where ∀α∈A∀x∈X{Δα(SU;T (x)) =
sup{Uα(x, t) : t ∈ SU;T (x)} and ∀α∈A∀x∈X{
α;SU;T (x) = inf{γα(t) : t ∈ SU;T (x)}}.

This is a consequence of the Step 10, (U1), and (U2).

Step 12. For each x ∈ X, there exist a generalized sequence of iterations (wm : m ∈ {0} ∪ N) ∈
SU(SU;T , x) and a unique w ∈ X such that

∀α∈A
{

lim
m→∞

sup
n>m

Uα(wn,wm) = 0
}
,

∀α∈A
{

lim
m→∞

sup
n>m

dα(wn,wm) = 0
}
,

∃w∈X

{
lim
m→∞

wm = w

}
, (6.26)

∀α∈A
{

lim
m→∞

δα(SU;T (wm)) = lim
m→∞

δα(cl(SU;T (wm))) = 0
}
,

⋂
m�0

cl(SU;T (wm)) = {w}.

This can be obtained by an analogous argument as in Step 6, using Steps 7–11.
(b2) We show that wis an endpoint of T .
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Indeed, ∀x∈X{T(SU;T (x)) ⊂ SU;T (x)} and assuming that (wm : m ∈ {0} ∪ N) and w is
such as in Step 12, then we conclude that the following holds T(w) = T(

⋂
m�0 cl(SU;T (wm))) =

T(
⋂

m�0 SU;T (wm)) ⊂ ⋂
m�0 T(SU;T(wm)) ⊂ ⋂

m�0 SU;T (wm) =
⋂

m�0 cl(SU;T (wm)) = {w}, that
is, w is an endpoint of T .

(b3) We show that wis an endpoint of T .
Indeed, let (wm : m ∈ {0} ∪ N) ∈ SU(SU;T , x), x ∈ X, and w be such as in Step 12.

Analogously as in the proof of (a3), we get ∀m∈N{T(cl(SU;T (wm))) ⊂ cl(SU;T (wm))}. Thus
T(w) = T(

⋂
m�0 cl(SU;T (wm))) ⊂

⋂
m�0 T(cl(SU;T (wm))) ⊂

⋂
m�0 cl(SU;T (wm)) = {w}, that is,w

is an endpoint of T .

7. Examples, Remarks, and Comparisons of
Our Results with the Well-Known Ones

In this section we present some examples illustrating the concepts introduced so far.
In Examples 7.1 and 7.2 we construct J-families and U-families, respectively.

Example 7.1. Let L be an ordered normed space with cone H ⊂ L, let the family P = {pα :
X × X → L, α ∈ A} be a P-family, and let (X,P) be a Hausdorff cone uniform space with
cone H.

(A) The family P is a J-family.

(B) Let both X and H contain at least two different points and let H be normal with a
normal constantM. Let S1 = {v,w}, v /=w, be a subset of X and, for each α ∈ A, let
cα, eα ∈ H be such that cα�Heα�H0 and

∀α∈A∀x,y∈S1

{
pα
(
x, y

)
+ eα≺Hcα

}
. (7.1)

Let J = {Jα : X × X → L : α ∈ A} be a family where, for each α ∈ A, Jα is defined by the
formula

Jα
(
x, y

)
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x = y = w,

pα
(
x, y

)
+ eα, if

{
x, y

} ∩ S1 =
{
x, y

} ∧ ∃u∈{x,y}{u/=w},
cα, if

{
x, y

} ∩ S1 /=
{
x, y

}
,

(7.2)

x, y ∈ X. We show that the family J is a J-family on X.

Of course, condition (J1) holds.
Now, we show that condition (J2) holds. Indeed, let x, y, z ∈ X be arbitrary and fixed.

We consider three cases: (i) if Jα(x, z) = 0, then it is clear that Jα(x, z)HJα(x, y) + Jα(y, z);
(ii) if Jα(x, z) = pα(x, z) + eα, then {x, z} ∩ S1 = {x, z} ∧ ∃u∈{x,z}{u/=w} which implies that
Jα(x, y)/= 0 or Jα(y, z)/= 0 and, by (7.1), we get Jα(x, z)HJα(x, y)+Jα(y, z); (iii) if Jα(x, z) = cα,
then {x, z} ∩ X \ S1 /= ∅ and, consequently, Jα(x, y) = cα or Jα(y, z) = cα which implies that
Jα(x, z)HJα(x, y) + Jα(y, z). Therefore, (J2) holds.
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Now, let us observe that ∀α∈A∀x,y∈X{pα(x, y) + eα − eα = pα(x, y) ∈ H}which gives that
∀α∈A∀x,y∈X{eαHpα(x, y) + eα}. Hence

∀α∈A∀x,y∈X
{‖eα‖ � M

∥∥pα
(
x, y

)
+ eα

∥∥}. (7.3)

Next assume that the sequences {wm} and {vm} in X satisfy (2.3) and (2.4). Then, in
particular, from (2.4) we conclude that

∀α∈A∀0<ε<||eα||/M∃m0=m0(α,ε)∈N∀m�m0

{
‖Jα(wm, vm)‖ < ε <

‖eα‖
M

}
. (7.4)

Hence, by (7.3),

∀α∈A∀m�m0

{‖Jα(wm, vm)‖ <
∥∥pα(wm, vm) + eα

∥∥}. (7.5)

Since ∀α∈A{‖eα‖/M � ‖cα‖}, condition (7.4) gives

∀α∈A∀m�m0{‖Jα(wm, vm)‖ < ‖cα‖}. (7.6)

By definition of a family J, from (7.5) and (7.6), denoting m′ = min{m0(α, ε) : α ∈ A},
we conclude that ∀m�m′ {wm = vm = w}, which implies ∀α∈A∀m�m′ {||pα(wm, vm)|| = 0}.
In consequence, we obtain ∀α∈A∀0<ε<||eα||/M∃m′∈N∀m�m′ {‖pα(wm, vm)‖ = 0 < ε}. Thus, the
sequences {wm} and {vm} satisfy (2.5). Therefore, the condition (J3) holds.

Example 7.2. Let (X,D) be a Hausdorff uniform space with uniformity defined by a saturated
family D = {dα : α ∈ A} of pseudometrics dα : X ×X → [0,∞), α ∈ A, uniformly continuous
on X2.

(A) The family D is a U-family.

(B) Let X contain at least two different points. Let S2 ⊂ X, containing at least two
different points, be arbitrary and fixed and let {cα}α∈A satisfy ∀α∈A{δα(S2) < cα}.
Let U = {Uα : X × X → [0,∞), α ∈ A} be a family where, for each α ∈ A, Uα is
defined by the formula

Uα

(
x, y

)
=

⎧
⎨
⎩
dα

(
x, y

)
, if S2 ∩

{
x, y

}
=
{
x, y

}
,

cα, if S2 ∩
{
x, y

}
/=
{
x, y

}
,

x, y ∈ X. (7.7)

We show that the family U is a U-family on X.
Indeed, we see that condition (U1) does not hold only if there exist some α ∈ A and

x, y, z ∈ X such that Uα(x, z) = cα, Uα(x, y) = dα(x, y), Uα(y, z) = dα(y, z), and dα(x, y) +
dα(y, z) < cα. However, then we conclude that there exists v ∈ {x, z} such that v /∈S2 and
x, y, z ∈ S2, which is impossible. Therefore, ∀α∈A∀x,y,z∈X{Uα(x, z) � Uα(x, y)+Uα(y, z)}, that
is, condition (U1) holds.
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To prove that (U2) holds we assume that the sequences {wm} and {vm} in X satisfy
(4.1) and (4.2). Then, in particular, (4.2) yields

∀α∈A∀0<ε<cα∃m0=m0(α,ε)∈N∀m�m0{Uα(wm, vm) < ε}. (7.8)

By (7.8) and definition of U, denoting m′ = min{m0(α, ε) : α ∈ A}, we conclude that

∀m�m′ {S2 ∩ {wm, vm} = {wm, vm}}. (7.9)

From (7.9), the definition of U and (7.8), we get

∀α∈A∀0<ε<cα∃m′∈N∀m�m′ {dα(wm, vm) = 0 < ε}. (7.10)

The result is that the sequences {wm} and {vm} satisfy (4.3). Therefore, condition (U2) holds.
The following example illustrates Theorem 3.1(a) in cone metric space.

Example 7.3. Let (L, ‖ · ‖), L = R
2, be a real normed space, let H be a regular solid cone of

the form H = {(x, y) ∈ L : x, y � 0} and let (X,P) be a cone metric space (see [27]) with
a cone H where X = [0, 1] ⊂ R, P = {p}, and p : X × X → L is a cone metric of the form
p(x, y) = (|x − y|, 2|x − y|), x, y ∈ X. Let T : X → 2X be defined by

T(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
1
2
, 1
]
, if x = 0,

{1}, if x ∈
(
0,

1
2

)
∪
(
1
2
, 1
]
,

{0, 1}, if x =
1
2
.

(7.11)

We note that for q = 1, the map T [q] is closed in X.

Let S1 = {1/2, 1} and let J : X ×X → L be of the form

J
(
x, y

)
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(0, 0), if x = y = 1,

p
(
x, y

)
+
(
1
4
,
1
2

)
, if

{
x, y

} ∩ S1 =
{
x, y

} ∧ ∃u∈{x,y}{u/= 1},
(2, 2), if

{
x, y

} ∩ S1 /=
{
x, y

}
(7.12)

for x, y ∈ X. By Example 7.1(B), the family J = {J} is a J-family. Now we define Ω = {ω},
ω : X → L, as follows:

ω(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1,

3
2

)
, for x ∈ [0, 1) \

{
1
2

}
,

(2, 2), for x =
1
2
,

(0, 0), for x = 1.

(7.13)

Of course, ∀x∈X{0Hω(x)} and ω is not lsc on X.
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(a) The map T is weak (J,Ω;X0)-dissipative on X where Ω = {ω} and X0 = {1/2, 1}.
Indeed, if x = 1, then, by definition T , a sequence (wm : m ∈ {0} ∪ N) satisfying (1.1)

is of the formwm = 1 wherem ∈ {0} ∪ N and satisfies ∀m∈{0}∪N{J(wm,wm+1) = (0, 0)Hω(1) −
ω(1) = ω(wm) −ω(wm+1) = (0, 0)}, that is, (2.7) holds.

If x = 1/2, then there exists a sequence (wm : m ∈ {0} ∪ N) satisfying (1.1) of the form
w0 = 1/2, wm = 1 where m ∈ N and satisfies J(w0, w1) = J(1/2, 1) = (3/4, 3/2)H(2, 2) −
(0, 0) = ω(w0) − ω(w1) and ∀m∈N{J(wm,wm+1) = (0, 0)Hω(1) − ω(1) = ω(wm) − ω(wm+1) =
(0, 0)}, that is, (2.7) holds.

Consequently, {1/2, 1} ⊂ X0.
We see that X0 = {1/2, 1}. Otherwise, X0 \ {1/2, 1}/= ∅ and the following two cases

hold:

Case 1. If x = 0, then, by definition of T , for each sequence (wm : m ∈ {0} ∪ N) satisfying (1.1)
we have that w0 = 0, w1 ∈ [1/2, 1] and then, by definition of J ,

J(w0, w1) = J(0, w1) = (2, 2)�Hω(0) −ω(w1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0) if w1 ∈
(
1
2
, 1
)

(
1,

3
2

)
if w1 = 1

−
(
1,

1
2

)
if w1 =

1
2
,

(7.14)

which means that (2.7) does not hold.

Case 2. If x /∈ {0, 1/2, 1}, then, by definition of T , each sequence (wm : m ∈ {0} ∪ N) satisfying
(1.1) is of the form w0 = x and, for each m ∈ N, wm = 1. Next, by definition of J , since x /∈S1,
we obtain

J(w0, w1) = J(x, 1) = (2, 2)�Hω(w0) −ω(w1) =
(
1,

3
2

)
, (7.15)

which means that (2.7) does not hold.

Consequently, X0 = {1/2, 1}.
(b) All assumptions of Theorem 3.1(a) hold, and 1 ∈ X0 is the periodic point of T , that

is, 1 ∈ Fix(T).

Remark 7.4. Let L, H, (X,P), T and J-family be such as in Example 7.3.

(i) We see that for this J-family the map T is not (J,Ω)-dissipative on X for any Ω
(consequently, by Remark 2.9(ii), for any Ω, T is not strictly (J,Ω)-dissipative
on X). Indeed, suppose that there exists Ω = {ω} such that ω : X → L is a
map satisfying ∀x∈X{0Hω(x)} and such that T is (J,Ω)-dissipative on X. Then,
in particular, for a dynamic processw0 = 1/2,w1 = 0,w2 = 1/2,w3 = 0, andwm = 1
form � 4, by (2.7), we must have (0, 0)≺H(2, 2) = J(w0, w1) = J(1/2, 0)Hω(1/2) −
ω(0) so ω(0)≺Hω(1/2) and (0, 0)≺H(2, 2) = J(w1, w2) = J(0, 1/2)Hω(0) − ω(1/2)
so ω(1/2)≺Hω(0), which are contradictions.
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(ii) We see that X0 = {1/2, 1} and T(X0) = {0, 1}/=X0.

In Examples 7.5 and 7.7 we illustrate Theorem 5.3(a) for dissipative set-valued and
single-valued dynamic systems, respectively.

Example 7.5. Let (X, d) be a metric space, whereX = [0, 1/2]∪{3/4, 1} and d : X×X → [0,∞)
is a metric of the form d(x, y) = |x − y|, x, y ∈ X. Let T : X → 2X be of the form

T(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1}, for x = 0,

[
0,

1
2
x

]
, for x ∈

(
0,

1
2

]
,

{0}, for x =
3
4
,

{
3
4

}
, for x = 1.

(7.16)

Let S2 = [0, 1/2]. By Example 7.2(B), the family U = {U : X ×X → [0,∞)}, where

U
(
x, y

)
=

⎧
⎨
⎩
d
(
x, y

)
, if S2 ∩

{
x, y

}
=
{
x, y

}
,

2, if S2 ∩
{
x, y

}
/=
{
x, y

}
,

x, y ∈ X, (7.17)

is a U-family on X. We observe that

T [2](x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
3
4

}
, for x = 0,

[
0,

1
4
x

]
∪ {1}, for x ∈

(
0,

1
2

]
,

{1}, for x =
3
4
,

{0}, for x = 1,

T [3](x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0}, for x = 0,

[
0,

1
8
x

]
∪
{
3
4
, 1
}
, for x ∈

(
0,

1
2

]
,

{
3
4

}
, for x =

3
4
,

{1}, for x = 1,
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T [4](x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1}, for x = 0,
[
0,

1
16

x

]
∪
{
3
4
, 1
}
, for x ∈

(
0,

1
2

]
,

{0}, for x =
3
4
,

{
3
4

}
, for x = 1,

(7.18)

so, the map T [3] is closed in X. However, the map T [4] is not closed in X.

Let Γ = {γ}, γ : X → [0,∞), be of the form γ(x) = x, x ∈ X.

(a) T is weak (U,Γ;X0)-dissipative on X, where X0 = (0, 1/2]. Indeed, let x ∈ (0, 1/2]
be arbitrary and fixed, then there exists a dynamic process (wm : m ∈ {0}∪N) given
by the formulaw0 = x,wm = (1/2m)x,m ∈ N, such thatU(w0, w1) = d(x, (1/2)x) =
x/2 � x − x/2 = γ(w0) − γ(w1); ∀m∈N{U(wm,wm+1) = d(wm,wm+1) � (1/2m)x −
(1/2m+1)x = γ(wm) − γ(wm+1)}. This implies that the dynamic process (wm : m ∈
{0} ∪ N) satisfies (1.1) and (4.4). Consequently, (0, 1/2] ⊂ X0. The fact that X0 \
(0, 1/2] = ∅ follows from considerations in the remark below.

(b) The 0 ∈ clX0 is the periodic point of T (q = 3).

Remark 7.6. LetX,D, T , andU-family be such as in Example 7.5. We see that for thisU-family
the map T is not (U,Γ)-dissipative on X for any Γ (consequently, by Remark 2.9(ii), for any
Γ, T is not strictly (U,Γ)-dissipative onX). Indeed, suppose that there exists Γ = {γ} such that
γ : X → [0,∞] and that T is (U, Γ)-dissipative onX. Then, we have a unique dynamic process
(wm : m ∈ {0} ∪ N) starting at w0 = 3/4 which is defined by w1 = 0 ∈ T(w0), w2 = 1 ∈ T(w1),
w3m+1 = 0 ∈ T(w3m), w3m+2 = 1 ∈ T(w3m+1), and w3m = 3/4 ∈ T(w3m−1) for m ∈ N and for this
process we have 0 < U(w0, w1) = 2 � γ(w0) − γ(w1), 0 < U(w1, w2) = 2 � γ(w1) − γ(w2), and
0 < U(w2, w3) = 2 � γ(w2) − γ(w3) = γ(w2) − γ(w0). Hence γ(w0) < γ(w2) < γ(w1) < γ(w0),
which is impossible.

Example 7.7. Let (X, d) be a metric space, where X = [0, 1] and d : X ×X → [0,∞) is a metric
of the form d(x, y) = |x − y|, x, y ∈ X. Let T : X → X be of the form

T(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, for x ∈
[
0,

1
8

]
,

−2x +
5
4
, for x ∈

(
1
8
,
3
8

)
,

1
2
, for x ∈

[
3
8
,
5
8

]
,

−2x +
7
4
, for x ∈

(
5
8
,
7
8

)
,

0, for x ∈
[
7
8
, 1
]
.

(7.19)
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By Example 7.2(A), the family U = {U : X ×X → [0,∞)}, where U(x, y) = d(x, y), x, y ∈ X,
is U-family on X.

Let Γ = {γ}, γ : X → [0,∞), be of the form

γ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, for x ∈
[
0,

5
16

)
∪
(
11
16

, 1
]
,

3, for x ∈
[
5
16

,
3
8

)
∪
(
5
8
,
11
16

]
,

2, for x ∈
[
3
8
,
1
2

)
∪
(
1
2
,
5
8

]
,

0, for x =
1
2
,

x ∈ X. (7.20)

(a) We show that T is weak (U,Γ;X0)-dissipative on X, where X0 = [5/16, 11/16].
Indeed, let x ∈ X0 be arbitrary and fixed. We consider the following four cases.

Case 1. If x = 1/2, then a dynamic process (wm : m ∈ {0} ∪ N) of (X, T) starting at x is of
the form wm = 1/2, m ∈ {0} ∪ N. Consequently, ∀m∈{0}∪N{U(wm,wm+1) = d(wm,wm+1) = 0 �
0 − 0 = γ(wm) − γ(wm+1)}, that is, (4.4) holds.

Case 2. If x ∈ [5/16, 3/8), then a dynamic process (wm : m ∈ {0} ∪ N) of (X, T) starting at x is
of the formw0 = x,w1 = −2x+5/4 ∈ (1/2, 5/8], andwm = 1/2,m � 2. Therefore,U(w0, w1) =
d(w0, w1) � 1 = 3 − 2 = γ(w0) − γ(w1), U(w1, w2) = d(w1, w2) � 2 − 0 = γ(w1) − γ(w2), and
∀m�2{U(wm,wm+1) = d(wm,wm+1) = 0 � 0 − 0 = γ(wm) − γ(wm+1)}, that is, (4.4) holds.

Case 3. If x ∈ [3/8, 1/2) ∪ (1/2, 5/8], then a dynamic process (wm : m ∈ {0} ∪ N) of (X, T)
starting at x is of the form w0 = x and wm = 1/2 for m ∈ N. Moreover, (4.4) holds since
U(w0, w1) = d(w0, w1) � 2 − 0 = γ(w0) − γ(w1) and ∀m∈N{U(wm,wm+1) = d(wm,wm+1) = 0 �
0 − 0 = γ(wm) − γ(wm+1)}.

Case 4. If x ∈ (5/8, 11/16], then a dynamic process (wm : m ∈ {0} ∪ N) of (X, T) starting at
x is of the form w0 = x, w1 = −2x + 7/4 ∈ [3/8, 1/2), and wm = 1/2, m � 2. We also get
that U(w0, w1) = d(w0, w1) � 1 = 3 − 2 = γ(w0) − γ(w1), U(w1, w2) = d(w1, w2) � 2 − 0 =
γ(w1) − γ(w2), and ∀m�2{U(wm,wm+1) = d(wm,wm+1) = 0 � 0 − 0 = γ(wm) − γ(wm+1)}.

(b) Now, we show that if x ∈ [0, 5/16)∪(11/16, 1], then x /∈X0. Indeed, let x ∈ [0, 5/16)
and let (wm : m ∈ {0}∪N) be a dynamic process of (X, T) starting at x. Thenw0 = x,
w1 ∈ (5/8, 1], and

U(w0, w1) = d(w0, w1) >

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−2 = 1 − 3 = γ(w0) −ω(w1), if w1 ∈
(
5
8
,
11
16

]
,

0 = 1 − 1 = γ(w0) −ω(w1), if w1 ∈
(
11
16

, 1
]
.

(7.21)
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Now, let x ∈ (11/16, 1] and let (wm : m ∈ {0} ∪ N) be a dynamic process of (X, T) starting at
x. Then w0 = x, w1 ∈ [0, 3/8), and

U(w0, w1) = d(w0, w1) >

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 = 1 − 1 = γ(w0) −ω(w1), if w1 ∈
[
0,

5
16

)
,

−2 = 1 − 3 = γ(w0) −ω(w1), if w1 ∈
[
5
16

,
3
8

)
.

(7.22)

Consequently, T is weak (U,Γ;X0)-dissipative on X, where X0 = [5/16, 11/16].

(c) The map T is closed on X, 1/2 ∈ Fix(T), and 1/2 ∈ X0.

Remark 7.8. Let X, D, T andU-family be such as in Example 7.7. We see that for thisU-family
the map T is not (U,Γ)-dissipative on X for any Γ; see (b).

The following example shows that in Theorem 5.3 for the existence of periodic points
the assumption that the map T [q] is closed in X for some q ∈ N is essential.

Example 7.9. Let (X, d) be a metric space, where X = [0, 1] and d : X ×X → [0,∞) is a metric
of the form d(x, y) = |x − y|, x, y ∈ X. Let T : X → 2X be of the form

T(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
2
, 1
]
, if x = 0,

(
1

2m+1
,
1
2m

]
, if x ∈

(
1
2m

,
1

2m−1

]
, m ∈ N,

(7.23)

let U = {d} and let Γ = {γ}, γ : X → [0,∞), be of the form

γ(x) =

⎧
⎨
⎩
4, if x ∈ 0,

x, if x ∈ (0, 1].
(7.24)

We observe the following.

(a) T is (U,Γ)-dissipative and strictly (U,Γ)-dissipative on X.

(b) For each x ∈ X, WU(T, x) = SU(T, x), and {{0} = {w : limmd(wm,w) = 0 ∧ (wm :
m ∈ {0} ∪ N) ∈ SU(T, x)}.

(c) For each q ∈ N, the map T [q] is not closed in X.

(d) The map T does not have periodic points in X.

The following example illustrates Theorem 6.2(a1).

Example 7.10. Let (X, d) be a metric space, whereX = [0, 1] and d : X×X → [0,∞) is a metric
of the form d(x, y) = |x − y|, x, y ∈ X.
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Let S2 = [0, 1/2] and let U : X ×X → [0,∞) be of the form

U
(
x, y

)
=

⎧
⎨
⎩
d
(
x, y

)
, if S2 ∩

{
x, y

}
=
{
x, y

}
,

2, if S2 ∩
{
x, y

}
/=
{
x, y

}
,

x, y ∈ X. (7.25)

By Example 7.2(B), the family U = {U} is a U-family. Define Γ = {γ}, γ : X → [0,∞], as
follows:

γ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, if x ∈
[
0,

1
2

]
,

6, if x ∈
(
1
2
,
3
4

]
,

4, if x ∈
(
3
4
, 1
)
,

8, if x = 1,

x ∈ X. (7.26)

Let T : X → 2X be of the form

T(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0}, if x = 0,
{

1
n + 1

}
, if x =

1
n
∧ n � 2,

{
1

n + 1

}
, if x ∈

(
1

n + 1
,
1
n

)
∧ n � 2,

{
7
8

}
, if x ∈

(
1
2
,
3
4

)
,

[
7
8
, 1
)
, if x =

3
4
,

{
1
2

}
, if x ∈

(
3
4
, 1
)
,

(
1
2
,
3
4

)
, if x = 1.

(7.27)

We observe that

(a) T is (U,Γ)-dissipative on X. Indeed, let x ∈ X be arbitrary and fixed. We consider
seven cases

Case 1. If x = 0, then each dynamic process starting at w0 = 0 is of the form ∀m∈N{wm = 0 ∈
T(wm−1)} and ∀m∈{0}∪N{U(wm,wm+1) = 0 � γ(wm) − γ(wm+1)}.
Case 2. If x ∈ (0, 1/2) \ {1/n : n � 3}, then there exists l0 � 2 such that x ∈ (1/(l0 + 1), 1/l0)
and each dynamic process starting atw0 = x is of the form ∀m�1{wm = 1/(l0 +m)}. Therefore
U(w0, w1) = d(x, 1/(l0 + 1)) = x − 1/(l0 + 1) � γ(x) − γ(wl0+1) = γ(w0) − γ(w1)} and
∀m∈N{U(wm,wm+1) = 1/(l0 +m) − 1/(l0 +m + 1) � γ(wm) − γ(wm+1)}.
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Case 3. If x ∈ {1/n : n � 2}, then there exists l0 � 2 such that x = 1/l0 and each
dynamic process starting at w0 = x is of the form ∀m�1{wm = 1/(l0 + m)}. Therefore
∀m∈{0}∪N{U(wm,wm+1) = 1/(l0 +m) − 1/(l0 +m + 1) � γ(wm) − γ(wm+1)}.
Case 4. If x ∈ (1/2, 3/4), then each dynamic process starting atw0 = x is of the formw1 = 7/8
and ∀m�2{wm = 1/m}. Therefore U(w0, w1) = 2 � 6 − 4 = γ(w0) − γ(w1), U(w1, w2) = 2 �
4 − 1/2 = γ(w0) − γ(w1) and ∀m�2{U(wm,wm+1) = 1/m − 1/(m + 1) � γ(wm) − γ(wm+1)}.
Case 5. If x = 3/4, then each dynamic process starting at w0 = x is of the form w1 ∈ [7/8, 1)
and ∀m�2{wm = 1/m}. Therefore U(w0, w1) = 2 � 6 − 4 = γ(w0) − γ(w1), U(w1, w2) = 2 �
4 − 1/2 = γ(w0) − γ(w1), and ∀m�2{U(wm,wm+1) = 1/m − 1/(m + 1) � γ(wm) − γ(wm+1)}.
Case 6. If x ∈ (3/4, 1), then each dynamic process starting atw0 = x is of the form ∀m�1{wm =
1/(m + 1)}. Therefore, U(w0, w1) = 2 � 4 − 1/2 = γ(w0) − γ(w1) and ∀m�2{U(wm−1, wm) =
1/m − 1/(m + 1) � γ(wm−1) − γ(wm)}.
Case 7. If x = 1, then each dynamic process starting at w0 = x is of the form w1 ∈ (1/2, 3/4),
w2 = 7/8, w3 = 1/2, and ∀m�4{wm = 1/(m − 1)}. Therefore U(w0, w1) = 2 � 8 − 6 = γ(w0) −
γ(w1), U(w1, w2) = 2 � 6 − 4 = γ(w0) − γ(w1) and by analogous argumentation as in Case 4
we obtain that (1.1) and (4.4) hold in this case.

Consequently, T is (U,Γ)-dissipative on X.

(b) WU;T is of the form

WU;T (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0}, if x = 0,
{

1
m

: m � n

}
, if x =

1
n
∧ n � 2,

{
1
m

: m > n

}
∪ {x}, if x ∈

(
1

n + 1
,
1
n

)
∧ n � 2,

{
1
n
: n � 2

}
∪
{
x,

7
8

}
, if x ∈

(
1
2
,
3
4

)
,

{
1
n
: n � 2

}
∪
{
3
4

}
∪
[
7
8
, 1
)
, if x =

3
4
,

{
1
n
: n � 2

}
∪ {x}, if x ∈

(
3
4
, 1
)
,

{
1
n
: n � 2

}
∪
(
1
2
,
3
4

)
∪
{
7
8
, 1
}
, if x = 1.
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(c) WU;T is (U,Γ)-dissipative on X.

(d) For each x ∈ X, there exist (wm : m ∈ {0} ∪ N) ∈ WU(WU;T , x) and w = 0 ∈ X such
that (wm : m ∈ {0} ∪ N) converges to w and

⋂
m�2 WU;T (wm) = {w} = {0}. We see

that w = 0 is an endpoint of T in X.

The assertions (a1) of the Theorem 6.2 hold.
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Remark 7.11. It is worth noticing that in Example 7.10, there exists x ∈ X such that WU;T (x)
is not closed. Indeed, WU;T (1/2) = {1/m : m � 2} is not closed. Moreover, T is not lsc on X.
Consequently, the assumptions of Theorems 6.2(a2) and 6.2(a3) do not hold.

The following example illustrates Theorems 6.2(a2) and 6.2(a3).

Example 7.12. Let (X, d) be a metric space, where X = [0, 1/2], d(x, y) = |x − y|, x, y ∈ X, and
U = {d}. Let T : X → 2X be of the form T(x) = [0, (1/2)x], x ∈ X, and let Γ = {γ : X →
[0,∞)} be defined as follows γ(x) = x, x ∈ X.

(a) The map T is (U,Γ)-dissipative. Indeed, if x ∈ X is arbitrary and fixed, then each
dynamic process (wm : m ∈ {0}∪N) starting atw0 = x is of the formwm ∈ T(wm−1) =
[0, (1/2)wm−1] for m ∈ N. Therefore, we have ∀m∈{0}∪N{0 < U(wm,wm+1) = wm −
wm+1 = γ(wm) − γ(wm+1)}. Thus conditions (1.1) and (4.4) hold.

(b) We observe that

WU;T (x) =

⎧
⎪⎨
⎪⎩

{0}, if x ∈ 0,
[
0,

1
2
x

]
, if x ∈ (0, 1],

(7.29)

and WU;T is (U,Γ)-dissipative on X.

(c) For each x ∈ X, the set WU;T (x) is closed.

(d) The assertions of Theorem 6.2(a2) hold.

(e) The map WU;T is closed.

(f) We have that w = 0 ∈ End(T) and
⋂

m�0 cl(WU;T (wm)) = {w}.

(g) The map T is lsc on X.

(h) The assertions (a3) hold.

(i) The map T is not strictly (U,Γ)-dissipative. Indeed, if x = 1/2 ∈ X, then we have
that T [m](x) = [0, (1/2m)x] for m ∈ N and a generalized sequence of iterations
(wm : m ∈ {0} ∪ N) starting at w0 = x, of the form w1 = 0, w2 = 1/8 and wm = 0 for
m � 3, not satisfies (4.4) since U(w1, w2) = 1/8 > −1/8 = w1 −w2 = γ(w1) − γ(w2).

The following example illustrates Theorem 6.2(a2).

Example 7.13. Let (X, d), X = [0, 1], and let U = {d}. Let T : X → 2X be of the form

T(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{1}, if x = 0,
[
0,

1
2
x

]
, if x ∈ (0, 1),

{1}, if x = 1,

(7.30)
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and let Γ = {γ : X → [0,∞)}where γ is of the form

γ(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, if x = 0,

x, if x ∈ (0, 1)

0, if x = 1.

, x ∈ X, (7.31)

(a) The map T is (U,Γ)-dissipative on X. Indeed, let x ∈ X be arbitrary and fixed. We
consider three cases.

Case 1. If x = 0, then a dynamic process starting at w0 = 0 is of the form ∀m∈N{wm = 1 ∈
T(wm−1)} and U(w0, w1) = 1 � 1 − 0 = γ(0) − γ(1) and ∀m∈N{U(wm,wm+1) = 0 � γ(wm) −
γ(wm+1)}.

Case 2. If x ∈ (0, 1), then each dynamic process (wm : m ∈ {0} ∪ N) starting at w0 = x is
of the form wm ∈ T(wm−1) = [0, (1/2)wm−1] for m ∈ N. Therefore, we have ∀m∈{0}∪N{0 <
U(wm,wm+1) = wm −wm+1 = γ(wm) − γ(wm+1)}.

Case 3. If x = 1, then a dynamic process starting at w0 = 1 is of the form ∀m∈N{wm = 1 ∈
T(wm−1)} and ∀m∈{0}∪N{U(wm,wm+1) = 0 � γ(wm) − γ(wm+1)}.

Thus conditions (1.1) and (4.4) hold.

(b) We observe that

WU;T (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{0, 1}, if x = 0,
[
0,

1
2
x

]
∪ {1}, if x ∈ (0, 1),

{1}, if x = 1,

(7.32)

and WU;T is (U,Γ)-dissipative on X.

(c) For each x ∈ X, the set WU;T (x) is closed.

(d) The assertions of Theorem 6.2(a2) hold.

(e) The map WU;T is not closed.

(f) We have that w = 1 ∈ End(T) and
⋂

m�0 cl(WU;T (wm)) = {w}.
(g) The map T is not lsc on X.

(h) The assumptions of Theorem 6.2(a3) do not hold.

Now, we present comparisons between our results and the well-known ones. The
results of Kirk and Saliga [12] and Aubin and Siegel [1], concerning the existence of
fixed points and endpoints of dissipative single-valued and set-valued dynamic systems,
respectively, we may read as follows.

Theorem 7.14 (Kirk and Saliga [12, Theorem 1.1]). Let (X, d) be a complete metric space and let
(X, T) be a single-valued closed dynamic system satisfying

∀x∈X
{
d(x, T(x)) � ϕ(x) − ϕ(T(x))

}
, (7.33)



Fixed Point Theory and Applications 31

where ϕ : X → R is a map bounded from below. Then, for each x ∈ X, {T [m](x)} converges to a fixed
point of T .

Here, we may assume, without loss of generality, that ϕ : X → [0,∞); in another case,
we replace ϕ by ϕ0 = ϕ − infx∈Xϕ(x).

Theorem 7.15 (Aubin and Siegel [1, Theorem 2.4]). Let (X, d) be a complete metric space and let
(X, T) be a set-valued closed dynamic system satisfying

∀x∈X∃y∈T(x)
{
d
(
x, y

)
� ϕ(x) − ϕ

(
y
)}

, (7.34)

where ϕ : X → [0,∞). Then, for each x ∈ X, there exists a dynamic process (wm : m ∈ {0} ∪ N)
starting at w0 = x of the system (X, T) which converges to a fixed point of T .

Theorem 7.16 (Aubin-Siegel [1, Theorem 4.10]). Let (X, d) be a complete metric space and let
(X, T) be a set-valued dynamic system satisfying

∀x∈X∀y∈T(x)
{
d
(
x, y

)
� ϕ(x) − ϕ

(
y
)}

, (7.35)

where ϕ : X → [0,∞). Assume that (a) T is lsc; or (b) Wd;T is closed. Then End(T)/= ∅.

Remark 7.17. It is worth noticing that

(i) by Example 7.2(A), Theorem 5.3(b)when q = 1 includes Theorems 7.14 and 7.15,

(ii) by Example 7.2(A) and Remark 5.1(i), Theorems 6.2(a2) and 6.2(a3) include
Theorem 7.16.

(iii) the map T defined in Example 7.7 satisfies the assumptions of Theorem 5.3(a) but
does not satisfy the assumptions of Theorems 7.14, 7.15, and 7.16(a). Indeed, first
let us observe that T is closed (and lsc as continuous). Next, suppose that the map
T satisfies the assumptions of Theorems 7.14, 7.15, and 7.16(a). Then there exists a
map ϕ : X → [0,∞) such that the condition ∀x∈X{d(x, T(x)) � ϕ(x) − ϕ(T(x))}
holds. Then, in particular, for x = 0, we have that 0 < d(x, T(x)) = d(0, 1) = 1 �
ϕ(0) − ϕ(1), which means that ϕ(1) < ϕ(0). On the other hand, for x = 1, we get
0 < d(x, T(x)) = d(1, 0) = 1 � ϕ(1) − ϕ(0), which means that ϕ(0) < ϕ(1). This is
absurd.

(iv) The map T defined in Example 7.13 satisfies the assumptions of Theorem 6.2(a2)
but does not satisfy the assumptions of Theorems 7.16(a) and 7.16(b). This follows
from (e) and (g).
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