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The main aim of this paper is to study and establish some new coupled fixed point theorems
for nonlinear contractive maps that satisfied Mizoguchi-Takahashi’s condition in the setting of
quasiordered metric spaces or usual metric spaces.

1. Introduction

Let (X, d) be a metric space. For each x ∈ X and A ⊆ X, let d(x,A) = infy∈A d(x, y). Denote
byN(X) the class of all nonempty subsets of X and CB(X) the family of all nonempty closed
and bounded subsets of X. A function H : CB(X) × CB(X) → [0,∞) defined by

H(A,B) = max

{
sup
x∈B

d(x,A), sup
x∈A

d(x, B)

}
(1.1)

is said to be the Hausdorffmetric on CB(X) induced by the metric d on X. A point x in X is a
fixed point of a map T if Tx = x (when T : X → X is a single-valued map) or x ∈ Tx (when
T : X → N(X) is a multivalued map). Throughout this paper we denote by N and R the set
of positive integers and real numbers, respectively.

The existence of fixed point in partially ordered sets has been investigated recently in
[1–11] and references therein. In [6, 8], Nieto and Rodrı́guez-López used Tarski’s theorem
to show the existence of solutions for fuzzy equations and fuzzy differential equations,
respectively. The existence of solutions for matrix equations or ordinary differential equations



2 Fixed Point Theory and Applications

by applying fixed point theorems is presented in [2, 4, 7, 9, 10]. The authors in [3, 11] proved
some fixed point theorems for a mixed monotone mapping in a metric space endowed with
partial order and applied their results to problems of existence and uniqueness of solutions
for some boundary value problems.

The various contractive conditions are important to find the existence of fixed point.
There is a trend to weaken the requirement on the contraction. In 1989, Mizoguchi and
Takahashi [12] proved the following interesting fixed point theorem for a weak contraction
which is a partial answer of Problem 9 in Reich [13] (see also [14–16] and references therein).

Theorem MT (Mizoguchi and Takahashi [12]). Let (X, d) be a complete metric space and T a
map from X into CB(X). Assume that

H(
Tx, Ty

) ≤ ϕ
(
d
(
x, y

))
d
(
x, y

)
(1.2)

for all x, y ∈ X, where ϕ is a function from [0,∞) into [0, 1) satisfying

lim sup
s→ t+0

ϕ(s) < 1 ∀t ∈ [0,∞). (1.3)

Then there exists v ∈ X such that v ∈ Tv.

In fact, Mizoguchi-Takahashi’s fixed point theorem is a generalization of Nadler’s
fixed point theorem [17, 18]which extended the Banach contraction principle (see, e.g., [18])
to multivalued maps, but its primitive proof is different. Recently, Suzuki [19] gave a very
simple proof of Theorem MT.

The purpose of this paper is to present some new coupled fixed point theo-
rems for weakly contractive maps that satisfied Mizoguchi-Takahashi’s condition (i.e.,
lim sups→ t+0 ϕ(s) < 1 for all t ∈ [0,∞)) in the setting of quasiordered metric spaces or usual
metric spaces. Our results generalize and improve some results in [2, 7, 9] and references
therein.

2. Generalized Bhaskar-Lakshmikantham’s Coupled Fixed Point
Theorems and Others

Let X be a nonempty set and “�” a quasiorder (preorder or pseudo-order, i.e., a reflexive
and transitive relation) on X. Then (X,�) is called a quasiordered set. A sequence {xn}n∈N

is
called �-nondecreasing (resp., �-nonincreasing) if xn � xn+1 (resp., xn+1 � xn) for each n ∈ N.
Let (X, d) be a metric space with a quasi-order � ((X, d,�) for short). We endow the product
space X ×X with the metric ρ defined by

ρ
((
x, y

)
, (u, v)

)
= d(x, u) + d

(
y, v

)
for any

(
x, y

)
, (u, v) ∈ X ×X. (2.1)

A map F : X × X → X is said to be continuous at (x̂, ŷ) ∈ X × X if any sequence {(xn, yn)} ⊂
X × X with (xn, yn)

ρ−→ (x̂, ŷ) implies F(xn, yn)
d−→ F(x̂, ŷ). F is said to be continuous on X × X

if F is continuous at every point of X ×X.



Fixed Point Theory and Applications 3

In this paper, we also endow the product space X × X with the following quasi-order
�:

(u, v) �
(
x, y

) ⇐⇒ u � x and y � v for any
(
x, y

)
, (u, v) ∈ X ×X. (2.2)

Definition 2.1 (see [2]). Let (X,�) be a quasiordered set and F : X × X → X a map. We say
that F has the mixed monotone property on X if F(x, y) is monotone nondecreasing in x ∈ X
and is monotone nonincreasing in x ∈ X, that is, for any x, y ∈ X,

x1, x2 ∈ X with x1 � x2 =⇒ F
(
x1, y

) � F
(
x2, y

)
,

y1, y2 ∈ X with y1 � y2 =⇒ F
(
x, y2

) � F
(
x, y1

)
.

(2.3)

It is quite obvious that if F : X ×X → X has the mixed monotone property on X, then
for any (x, y), (u, v) ∈ X ×X with (u, v) � (x, y) (i.e., u � x and y � v), F(u, v) � F(x, y).

Definition 2.2 (see [2]). LetX be a nonempty set and F : X×X → X amap.We call an element
(x, y) ∈ X ×X a coupled fixed point of F if

F
(
x, y

)
= x, F

(
y, x

)
= y. (2.4)

Definition 2.3. Let (X, d) be a metric space with a quasi-order � . A nonempty subset M of X
is said to be

(i) sequentially �↑-complete if every �-nondecreasing Cauchy sequence inM converges;

(ii) sequentially �↓-complete if every �-nonincreasing Cauchy sequence inM converges;

(iii) sequentially �↑
↓-complete if it is both �↑-complete and �↓-complete.

Definition 2.4 (see [20]). A function ϕ : [0,∞) → [0, 1) is said to be aMT -function if it satisfies
Mizoguchi-Takahashi’s condition (i.e., lim sups→ t+0 ϕ(s) < 1 for all t ∈ [0,∞)).

Remark 2.5.

(i) Obviously, if ϕ : [0,∞) → [0, 1) is defined by ϕ(t) = c, where c ∈ [0, 1), then ϕ is a
MT -function.

(ii) If ϕ : [0,∞) → [0, 1) is a nondecreasing function, then ϕ is aMT -function.

(iii) Notice that ϕ : [0,∞) → [0, 1) is a MT -function if and only if for each t ∈ [0,∞)
there exist rt ∈ [0, 1) and εt > 0 such that ϕ(s) ≤ rt for all s ∈ [t, t + εt). Indeed, if ϕ
is aMT -function, then lim sups→ t+0 ϕ(s) < 1 for all t ∈ [0,∞). So for each t ∈ [0,∞)
there exists εt > 0 such that sups∈[t,t+εt) ϕ(s) < 1. Therefore we can find rt ∈ [0, 1)
such that sups∈[t,t+εt) ϕ(s) ≤ rt < 1, and hence ϕ(s) ≤ rt for all s ∈ [t, t + εt). The
converse part is obvious.

The following lemmas are crucial to our proofs.

Lemma 2.6 (see [20]). Let ϕ : [0,∞) → [0, 1) be a MT -function. Then κ : [0,∞) → [0, 1)
defined by κ(t) = (ϕ(t) + 1)/2 is also aMT -function.
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Proof. Clearly, κ(t) > ϕ(t) and 0 < κ(t) < 1 for all t ∈ [0,∞). Let t ∈ [0,∞) be fixed. Since
ϕ : [0,∞) → [0, 1) is a MT -function, there exist rt ∈ [0, 1) and εt > 0 such that ϕ(s) ≤ rt for
all s ∈ [t, t + εt). Let λt := (rt + 1)/2 ∈ [0, 1). Then κ(s) ≤ λt for all s ∈ [t, t + εt) and hence κ is a
MT -function.

Lemma 2.7. Let (X,�) be a quasiordered set and F : X ×X → X a map having the mixed monotone
property on X. Let x0, y0 ∈ X. Define two sequences {xn} and {yn} by

xn = F
(
xn−1, yn−1

)
,

yn = F
(
yn−1, xn−1

) (2.5)

for each n ∈ N. If x0 � x1 and y1 � y0, then {xn} is �-nondecreasing and {yn} is �-nonincreasing.

Proof. Since x0 � x1 and y1 � y0, by (2.5), and the mixed monotone property of F, we have

x1 = F
(
x0, y0

) � F
(
x0, y1

) � F
(
x1, y1

)
= x2,

y2 = F
(
y1, x1

) � F
(
y0, x1

) � F
(
y0, x0

)
= y1.

(2.6)

Let k ∈ N and assume that xk−1 � xk and yk � yk−1 is already known. Then

xk = F
(
xk−1, yk−1

) � F
(
xk−1, yk

) � F
(
xk, yk

)
= xk+1,

yk+1 = F
(
yk, xk

) � F
(
yk−1, xk

) � F
(
yk−1, xk−1

)
= yk.

(2.7)

Hence, by induction, we prove that {xn} is �-nondecreasing and {yn} is �-nonincreasing.

Theorem 2.8. Let (X, d,�) be a sequentially �↑
↓-complete metric space and F : X × X → X a

continuous map having the mixed monotone property on X. Assume that there exists a MT -function
ϕ : [0,∞) → [0, 1) such that for any (x, y), (u, v) ∈ X ×X with (u, v) � (x, y),

d
(
F
(
x, y

)
, F(u, v)

) ≤ 1
2
ϕ
(
ρ
((
x, y

)
, (u, v)

))
ρ
((
x, y

)
, (u, v)

)
. (2.8)

If there exist x0, y0 ∈ X such that x0 � F(x0, y0) and F(y0, x0) � y0, then there exist x̂, ŷ ∈ X, such
that x̂ = F(x̂, ŷ) and ŷ = F(ŷ, x̂).

Proof. By Lemma 2.6, we can define aMT -function κ : [0,∞) → [0, 1) by κ(t) = (ϕ(t) + 1)/2.
Then ϕ(t) < κ(t) and 0 < κ(t) < 1 for all t ∈ [0,∞). For any n ∈ N, let xn = F(xn−1, yn−1) and
yn = F(yn−1, xn−1) be defined as in Lemma 2.7. Then, by Lemma 2.7, {xn} is �-nondecreasing
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and {yn} is �-nonincreasing. So (xn, yn) � (xn+1, yn+1) and (yn+1, xn+1) � (yn, xn) for each
n ∈ N. By (2.8), we obtain

d(x2, x1) = d
(
F
(
x1, y1

)
, F

(
x0, y0

))
<

1
2
κ
(
ρ
((
x1, y1

)
,
(
x0, y0

)))
ρ
((
x1, y1

)
,
(
x0, y0

))

=
1
2
κ
(
d(x1, x0) + d

(
y1, y0

))[
d(x1, x0) + d

(
y1, y0

)]
,

d
(
y2, y1

)
= d

(
y1, y2

)
= d

(
F
(
y0, x0

)
, F

(
y1, x1

))
<

1
2
κ
(
d
(
y0, y1

)
+ d(x0, x1)

)[
d
(
y0, y1

)
+ d(x0, x1)

]

=
1
2
κ
(
d(x1, x0) + d

(
y1, y0

))[
d(x1, x0) + d

(
y1, y0

)]
.

(2.9)

It follows that

d(x2, x1) + d
(
y2, y1

)
< κ

(
d(x1, x0) + d

(
y1, y0

))[
d(x1, x0) + d

(
y1, y0

)]
. (2.10)

For each n ∈ N, let ξn = d(xn, xn−1) + d(yn, yn−1). Then ξ2 < κ(ξ1)ξ1. By induction, we can
obtain the following: for each n ∈ N,

d(xn+1, xn) <
1
2
κ(ξn)ξn; (2.11)

d
(
yn+1, yn

)
<

1
2
κ(ξn)ξn; (2.12)

ξn+1 < κ(ξn)ξn. (2.13)

Since 0 < κ(t) < 1 for all t ∈ [0,∞), the sequence {ξn} is strictly decreasing in [0,∞)
from (2.13). Let δ := limn→∞ ξn = infn∈N ξn ≥ 0. Since κ is aMT -function, there exists γ ∈ (0, 1)
and ε > 0 such that κ(s) ≤ γ for all s ∈ [δ, δ + ε). Also, there exists 
 ∈ N such that

δ ≤ ξn < δ + ε (2.14)
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for all n ∈ N with n ≥ 
. So κ(ξn+
−1) ≤ γ for each n ∈ N. Let an = xn+
−1 and bn = yn+
−1, n ∈ N.
We claim that {an} is a �-nondecreasing Cauchy sequence in X and {bn} is a �-nonincreasing
Cauchy sequence in X. Indeed, from our hypothesis, for each n ∈ N, we have

d(an+2, an+1) = d(xn+
+1, xn+
)

<
1
2
κ(ξn+
)ξn+


(
by(2.11)

)

≤ 1
2
γ
[
d(xn+
, xn+
−1) + d

(
yn+
, yn+
−1

)]

=
1
2
γ[d(an+1, an) + d(bn+1, bn)].

(2.15)

Similarly,

d(bn+2, bn+1) <
1
2
γ[d(an+1, an) + d(bn+1, bn)]. (2.16)

Hence we get

d(an+2, an+1) + d(bn+2, bn+1) < γ[d(an+1, an) + d(bn+1, bn)] for each n ∈ N. (2.17)

So it follows from (2.17) that

d(an+2, an+1) <
1
2
γ[d(an+1, an) + d(bn+1, bn)]

<
1
2
γ2[d(an, an−1) + d(bn, bn−1)]

< · · ·

<
1
2
γn[d(a2, a1) + d(b2, b1)],

d(bn+2, bn+1) <
1
2
γn[d(a2, a1) + d(b2, b1)] for n ∈ N.

(2.18)

Let λn = (γn−1/2(1 − γ))[d(a2, a1) + d(b2, b1)], n ∈ N. For m, n ∈ N withm > n, we have

d(am, an) ≤
m−1∑
j=n

d
(
aj+1, aj

)
< λn,

d(bm, bn) ≤
m−1∑
j=n

d
(
bj+1, bj

)
< λn.

(2.19)
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Since 0 < γ < 1, limn→∞ λn = 0 and hence

lim
n→∞

sup{d(am, an) : m > n} = lim
n→∞

sup{d(bm, bn) : m > n} = 0. (2.20)

So {an} is a �-nondecreasing Cauchy sequence in X and {bn} is a �-nonincreasing Cauchy
sequence in X. By the sequentially �↑

↓-completeness of X, there exist x̂, ŷ ∈ X such that an →
x̂ and bn → ŷ as n → ∞. Hence xn → x̂ and yn → ŷ as n → ∞.

Let ε > 0 be given. Since F is continuous at (x̂, ŷ), there exists δ > 0 such that

d
(
F
(
x̂, ŷ

)
, F(u, v)

)
<

ε

2
(2.21)

whenever (u, v) ∈ X ×X with ρ((x̂, ŷ), (u, v)) < δ. Since xn → x̂ and yn → ŷ as n → ∞, for
ζ = min{ε/2, δ/2} > 0, there exist n0 ∈ N such that

d(xn, x̂) < ζ, d
(
yn, ŷ

)
< ζ ∀n ∈ N with n ≥ n0. (2.22)

So, for each n ∈ N with n ≥ n0, by (2.22),

ρ
((
x̂, ŷ

)
,
(
xn, yn

))
= d(xn, x̂) + d

(
yn, ŷ

)
< δ, (2.23)

and hence we have from (2.21) that

d
(
F
(
x̂, ŷ

)
, F

(
xn, yn

))
<

ε

2
. (2.24)

Therefore

d
(
F
(
x̂, ŷ

)
, x̂

) ≤ d
(
F
(
x̂, ŷ

)
, xn0+1

)
+ d(xn0+1, x̂)

= d
(
F
(
x̂, ŷ

)
, F

(
xn0 , yn0

))
+ d(xn0+1, x̂)

<
ε

2
+ ζ

(
by (2.22) and (2.24)

)
≤ ε.

(2.25)

Since ε is arbitrary, d(F(x̂, ŷ), x̂) = 0 or F(x̂, ŷ) = x̂. Similarly, we can also prove that F(ŷ, x̂) =
ŷ. The proof is completed.

Remark 2.9. Theorem 2.8 generalizes and improves Bhaskar-Lakshmikantham’s coupled
fixed points theorem [2, Theorem 2.1] and some results in [7, 9].

Following a similar argument as in the proof of [2, Theorem 2.2] and applying
Theorem 2.8, one can verify the following result where F is not necessarily continuous.
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Theorem 2.10. Let (X, d,�) be a sequentially �↑
↓-complete metric space and F : X ×X → X a map

having the mixed monotone property on X. Assume that

(i) any �-nondecreasing sequence {xn} with xn → x̂ implies xn � x̂ for each n ∈ N;

(ii) any �-nonincreasing sequence {yn} with yn → ŷ implies ŷ � yn for each n ∈ N;

(iii) there exists a MT -function ϕ : [0,∞) → [0, 1) such that for any (x, y), (u, v) ∈ X × X
with (u, v) � (x, y),

d
(
F
(
x, y

)
, F(u, v)

) ≤ 1
2
ϕ
(
ρ
((
x, y

)
, (u, v)

))
ρ
((
x, y

)
, (u, v)

)
. (2.26)

If there exist x0, y0 ∈ X such that x0 � F(x0, y0) and F(y0, x0) � y0, then there exist x̂,
ŷ ∈ X, such that x̂ = F(x̂, ŷ) and ŷ = F(ŷ, x̂).

Remark 2.11.

(a) [2, Theorem 2.2] is a special case of Theorem 2.10.

(b) Similarly, we can obtain the generalizations of Theorems 2.4–2.6 in [2] for MT -
functions.

Finally, we discuss the following coupled fixed point theorem in (usual) complete metric
spaces.

Theorem 2.12. Let (X, d) be a complete metric space and F : X ×X → X a map. Assume that there
exists aMT -function ϕ : [0,∞) → [0, 1) such that for any (x, y), (u, v) ∈ X ×X,

d
(
F
(
x, y

)
, F(u, v)

) ≤ 1
2
ϕ
(
ρ
((
x, y

)
, (u, v)

))
ρ
((
x, y

)
, (u, v)

)
. (2.27)

Then F has a unique coupled fixed point in X × X; that is, there exists unique (x̂, ŷ) ∈ X × X, such
that x̂ = F(x̂, ŷ) and ŷ = F(ŷ, x̂).

Proof. Let x0, y0 ∈ X be given. For any n ∈ N, define xn = F(xn−1, yn−1) and yn = F(yn−1, xn−1).
By our hypothesis, we know that F is continuous. Following the same argument as in the
proof of Theorem 2.8, there exists (x̂, ŷ) ∈ X × X, such that x̂ = F(x̂, ŷ) and ŷ = F(ŷ, x̂). We
prove the uniqueness of the coupled fixed point of F. On the contrary, suppose that there
exists (û, v̂) ∈ X ×X, such that û = F(û, v̂) and v̂ = F(v̂, û). Then we obtain

d(x̂, û) = d
(
F
(
x̂, ŷ

)
, F(û, v̂)

)
<

1
2
[
d(x̂, û) + d

(
ŷ, v̂

)]
,

d
(
ŷ, v̂

)
= d

(
F
(
ŷ, x̂

)
, F(v̂, û)

)
<

1
2
[
d(x̂, û) + d

(
ŷ, v̂

)]
.

(2.28)

It follows from (2.28) that

d(x̂, û) + d
(
ŷ, v̂

)
< d(x̂, û) + d

(
ŷ, v̂

)
, (2.29)

a contradiction. The proof is completed.
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equations,” Revista Matemática Complutense, vol. 19, no. 2, pp. 361–383, 2006.
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