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Using δ-strongly accretive and λ-strictly pseudocontractive mapping, we introduce a general
iterative method for finding a common fixed point of a semigroup of non-expansive mappings
in a Hilbert space, with respect to a sequence of left regular means defined on an appropriate
space of bounded real-valued functions of the semigroup. We prove the strong convergence of the
proposed iterative algorithm to the unique solution of a variational inequality.

1. Introduction

Let H be a real Hilbert space. A mapping T of H into itself is called non-expansive if ‖Tx −
Ty‖ ≤ ‖x − y‖, for all x, y ∈ H. By Fix(T), we denote the set of fixed points of T (i.e., Fix(T) =
{x ∈ H : Tx = x}).

Mann [1] introduced an iteration procedure for approximation of fixed points of a
non-expansive mapping T on a Hilbert space as follows. Let x0 ∈ H and

xn+1 = (1 − αn)Txn + αnxn, n ≥ 0, (1.1)

where {αn} is a sequence in (0, 1). See also [2].
On the other hand, Moudafi [3] introduced the viscosity approximation method for

fixed point of non-expansive mappings (see [4] for further developments in both Hilbert and
Banach spaces). Let f be a contraction on a Hilbert space H (i.e., ‖fx − fy‖ ≤ α‖x − y‖,
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for all x, y ∈ H and 0 ≤ α < 1). Starting with an arbitrary initial x0 ∈ H, define a sequence
{xn} recursively by

xn+1 = (1 − αn)Txn + αnf(xn), n ≥ 0, (1.2)

where αn is sequence in (0, 1). It is proved in [3, 4] that, under appropriate condition imposed
on {αn}, the sequence {xn} generated by (1.2) converges strongly to the unique solution x∗ in
Fix(T) of the variational inequality:

〈(
I − f
)
x∗, x − x∗〉 ≥ 0, x ∈ Fix(T). (1.3)

Assume that A is strongly positive, that is, there is a constant γ > 0 with the property

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (1.4)

In [4] (see also [5]), it is proved that the sequence {xn} defined by the iterative method
below, with the initial guess x0 ∈ H chosen arbitrarily,

xn+1 = (I − αnA)Txn + αnu, n ≥ 0, (1.5)

converges strongly to the unique solution of the minimization problem

min
x∈Fix(T)

1
2
〈Ax, x〉 − 〈x, u〉, (1.6)

provided that the sequence {αn} satisfies certain conditions. Marino and Xu [6] combined the
iterative (1.5) with the viscosity approximation method (1.2) and considered the following
general iterative methods:

xn+1 = (I − αnA)Txn + αnγf(xn), n ≥ 0, (1.7)

where 0 < γ < γ/α. They proved that if {αn} is a sequence in (0, 1) satisfying the following
conditions:

(C1) αn → 0,

(C2)
∑∞

n=0 αn = ∞,

(C3) either
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞(αn+1/αn) = 1,

then, the sequence {xn} generated by (1.7) converges strongly, as n → ∞, to the unique
solution of the variational inequality:

〈(
A − γf

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T), (1.8)



Fixed Point Theory and Applications 3

which is the optimality condition for minimization problem

min
x∈Fix(T)

1
2
〈Ax, x〉 − h(x), (1.9)

where h is a potential function for γf (i.e., h′(x) = γf(x), for all x ∈ H).
Let E∗ be the topological dual of a Banach space E. The value of j ∈ E∗ at x ∈ E will be

denoted by 〈x, j〉 or j(x). With each x ∈ E, we associate the set

J(x) =
{
j ∈ E∗ :

〈
x, j
〉
= ‖x‖2 = ∥∥j∥∥2

}
. (1.10)

Using the Hahn-Banach theorem, it is immediately clear that J(x)/=φ for each x ∈ E. The
multivalued mapping J from E into E∗ is said to be the (normalized) duality mapping. A
Banach space E is said to be smooth if the duality mapping J is single valued. As it is well
known, the duality mapping is the identity when E is a Hilbert space; see [7].

Let δ and λ be two positive real numbers such that δ, λ < 1. Recall that a mapping F
with domain D(F) and range R(F) in E is called δ-strongly accretive if, for each x, y ∈ D(F),
there exists j(x − y) ∈ J(x − y) such that

〈Fx − Fy, j
(
x − y
)〉 ≥ δ

∥∥x − y
∥∥2. (1.11)

Recall also that a mapping F is called λ-strictly pseudo-contractive if, for each x, y ∈ D(F),
there exists j(x − y) ∈ J(x − y) such that

〈
Fx − Fy, j

(
x − y
)〉 ≤ ∥∥x − y

∥∥2 − λ
∥∥(x − y) − (Fx − Fy)

∥∥2. (1.12)

It is easy to see that (1.12) can be rewritten as

〈
(I − F)x − (I − F)y, j

(
x − y
)〉 ≥ λ

∥∥(I − F)x − (I − F)y
∥∥2, (1.13)

see [8].
In this paper, motivated and inspired by Atsushiba and Takahashi [9], Lau et al. [10],

Marino and Xu [6] and Xu [4, 11], we introduce the iterative below, with the initial guess
x0 ∈ H chosen arbitrarily,

xn+1 = αnγf(xn) + (I − αnF)Tμn(xn), n ≥ 0, (1.14)

where F is δ-strongly accretive and λ-strictly pseudo-contractive with δ + λ > 1, f is a
contraction on a Hilbert space H with coefficient 0 < α < 1, γ is a positive real number
such that γ < 1 −

√
(1 − δ)/λ/α, and ϕ = {Tt : t ∈ S} is a non-expansive semigroup on H

such that the set Fix(ϕ) of common fixed point of ϕ is nonempty, X is a subspace of B(S)
such that 1 ∈ X and the mapping t → 〈Tt(x), y〉 is an element of X for each x, y ∈ H,
and {μn} is a sequence of means on X. Our purpose in this paper is to introduce this general
iterative algorithm for approximating a common fixed points of semigroups of non-expansive
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mappings which solves some variational inequality. We will prove that if {μn} is left regular
and {αn} is a sequence in (0, 1) satisfying the conditions (C1) and (C2), then {xn} converges
strongly to x∗ ∈ Fix(ϕ), which solves the variational inequality:

〈(
F − γf

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix

(
ϕ
)
. (1.15)

Various applications to the additive semigroup of nonnegative real numbers and commuting
pairs of non-expansive mappings are also presented. It is worth mentioning that we obtain
our result without assuming condition (C3).

2. Preliminaries

Let S be a semigroup and let B(S) be the space of all bounded real-valued functions defined
on S with supremum norm. For s ∈ S and f ∈ B(S), we define elements lsf and rsf in B(S)
by

(
lsf
)
(t) = f(st),

(
rsf
)
(t) = f(ts), ∀t ∈ S. (2.1)

Let X be a subspace of B(S) containing 1, and let X∗ be its dual. An element μ in X∗ is said
to be a mean on X if ‖μ‖ = μ(1) = 1. We often write μt(f(t)) instead of μ(f) for μ ∈ X∗ and
f ∈ X. Let X be left invariant (resp., right invariant), that is, ls(X) ⊂ X (resp., rs(X) ⊂ X) for
each s ∈ S. A mean μ on X is said to be left invariant (right invariant) if μ(lsf) = μ(f) (resp.
μ(rsf) = μ(f)) for each s ∈ S and f ∈ X. X is said to be left (resp., right) amenable if X has
a left (resp., right) invariant mean. X is amenable if X is both left and right amenable. As it
is well known, B(S) is amenable when S is a commutative semigroup; see [12]. A net {μα} of
means on X is said to be left regular if

lim
α

∥∥ls
∗μα − μα

∥∥ = 0, (2.2)

for each s ∈ S, where l∗s is the adjoint operator of ls.
Let C be a nonempty closed and convex subset of a reflexive Banach space E. A family

ϕ = {Tt : t ∈ S} of mapping from C into itself is said to be a non-expansive semigroup on C
if Tt is non-expansive and Tts = TtTs for each t, s ∈ S. We denote by Fix(ϕ) the set of common
fixed points of ϕ, that is,

Fix
(
ϕ
)
=
⋂

t∈S
{x ∈ C : Ttx = x}. (2.3)

The open ball of radius r centered at 0 is denoted by Br . For subsetD of E, by coD, we denote
the closed convex hull of D. Weak convergence is denoted by ⇀, and strong convergence is
denoted by → .
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Lemma 2.1 (see [12, 13]). Let f be a function of semigroup S into a reflexive Banach space E such
that the weak closure of {f(t) : t ∈ S} is weakly compact, and let X be a subspace of B(S) containing
all functions t → 〈f(t), x∗〉 with x∗ ∈ E∗. Then, for any μ ∈ X∗, there exists a unique element fμ in
E such that

〈
fμ, x

∗〉 = μt

〈
f(t), x∗〉, (2.4)

for all x∗ ∈ E∗. Moreover, if μ is a mean on X then

∫
f(t)dμ(t) ∈ co

{
f(t) : t ∈ S

}
. (2.5)

One can write fμ by
∫
f(t)dμ(t).

Lemma 2.2 (see [13]). Let C be a closed convex subset of a Hilbert space H, ϕ = {Tt : t ∈ S} a
semigroup from C into C such that Fix(ϕ)/= ∅, the mapping t → 〈Ttx, y〉 an element of X for each
x ∈ C and y ∈ H, and μ a mean on X. If one writes Tμ(x) instead of

∫
Ttxdμ(t), then the following

holds.

(i) Tμ is non-expansive mapping from C into C.

(ii) Tμ(x) = x for each x ∈ Fix(ϕ).

(iii) Tμ(x) ∈ co{Ttx : t ∈ S} for each x ∈ C.

(iv) If μ is left invariant, then Tμ is a non-expansive retraction from C onto Fix(ϕ).

Let C be a nonempty subset of a normed space E, and let x ∈ E. An element y0 ∈ C is
said to be the best approximation to x if

∥∥x − y0
∥∥ = d(x,C), (2.6)

where d(x,C) = infy∈C‖x − y‖. The number d(x,C) is called the distance from x to C or the
error in approximating x by C. The (possibly empty) set of all best approximation from x to
C is denoted by

PC(x) =
{
y ∈ C :

∥∥x − y
∥∥ = d(x,C)

}
. (2.7)

This defines a mapping PC from X into 2C and is called metric (the nearest point) projection
onto C.

Lemma 2.3 (see [7]). Let C be a nonempty convex subset of a smooth Banach space E and let x ∈ X
and y ∈ C. Then, the following is equivalent.

(i) y is the best approximation to x.

(ii) y is a solution of the variational inequality

〈y − z, J
(
x − y
)〉 ≥ 0, ∀z ∈ C. (2.8)
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Let C be a nonempty subset of a Banach space E and T : C → E a mapping. Then T is
said to be demiclosed at v ∈ E if, for any sequence {xn} in C, the following implication holds:

xn ⇀ u ∈ C, Txn −→ v, imply Tu = v. (2.9)

Lemma 2.4 (see [14]). Let C be a nonempty closed convex subset of a Hilbert space H and suppose
that T : C → H is non-expansive. Then, the mapping I − T is demiclosed at zero.

The following lemma is well known.

Lemma 2.5. LetH be a real Hilbert space. Then, for all x, y ∈ H

(i) ‖x − y‖2 ≤ ‖x‖2 + 2〈y, x + y〉,
(ii) ‖x − y‖2 ≥ ‖x‖2 + 2〈y, x〉.

Lemma 2.6 (see [11]). Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1 − bn)an + bncn, n ≥ 0, (2.10)

where {bn} and {cn} are sequences of real numbers satisfying the following conditions:

(i) {bn} ⊂ (0, 1),
∑∞

n=0 bn = ∞,

(ii) either lim supn→∞cn ≤ 0 or
∑∞

n=0 |bncn| < ∞.

Then, limn→∞an = 0.

The following lemma will be frequently used throughout the paper. For the sake of
completeness, we include its proof.

Lemma 2.7. Let E be a real smooth Banach space and F : E → E a mapping.

(i) If F is δ-strongly accretive and λ-strictly pseudo-contractive with δ + λ > 1, then, I − F is
contractive with constant

√
(1 − δ)/λ.

(ii) If F is δ-strongly accretive and λ-strictly pseudo-contractive with δ + λ > 1, then, for any
fixed number τ ∈ (0, 1), I − τF is contractive with constant 1 − τ(1 −

√
(1 − δ)/λ ).

Proof. (i) From (1.11) and (1.13), we obtain

λ
∥∥(I − F)x − (I − F)y

∥∥2 ≤ ∥∥x − y
∥∥2 − 〈Fx − Fy, J

(
x − y
)〉 ≤ (1 − δ)

∥∥x − y
∥∥2. (2.11)

Because δ + λ > 1 ⇔
√
(1 − δ)/λ ∈ (0, 1), we have

∥∥(I − F)x − (I − F)y
∥∥ ≤
√

1 − δ

λ

∥∥x − y
∥∥, (2.12)

and, therefore, I − F is contractive with constant
√
(1 − δ)/λ.
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(ii) Because I − F is contractive with constant
√
(1 − δ)/λ, for each fixed number τ ∈

(0, 1), we have

∥
∥x − y − τ

(
F(x) − F

(
y
))∥∥ =

∥
∥(1 − τ)

(
x − y
)
+ τ
[
(I − F)x − (I − F)y

]∥∥

≤ (1 − τ)
∥
∥x − y

∥
∥ + τ
∥
∥(I − F)x − (I − F)y

∥
∥

≤ (1 − τ)
∥
∥x − y

∥
∥ + τ

√
1 − δ

λ

∥
∥x − y

∥
∥

=

⎛

⎝1 − τ

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥
∥x − y

∥
∥.

(2.13)

This shows that I − τF is contractive with constant 1 − τ(1 −
√
(1 − δ)/λ).

Throughout this paper, F will denote a δ-strongly accretive and λ-strictly pseudo-
contractive mapping with δ + λ > 1, and f is a contraction with coefficient 0 < α < 1 on
a Hilbert space H. We will also always use γ to mean a number in (0, 1 −

√
(1 − δ)/λ/α).

3. Strong Convergence Theorem

The following is our main result.

Theorem 3.1. Let ϕ = {Tt : t ∈ S} be a non-expansive semigroup on a real Hilbert spaceH such that
Fix(ϕ)/= ∅. LetX be a left invariant subspace of B(S) such that 1 ∈ X, and the function t → 〈Ttx, y〉
is an element of X for each x, y ∈ H. Let {μn} be a left regular sequence of means on X, and let {αn}
be a sequence in (0, 1) such that αn → o and

∑∞
n=0 αn = ∞. Let x0 ∈ H and {xn} be generated by

the iteration algorithm (1.14). Then, {xn} converges strongly, as n → ∞, to x∗ ∈ Fix(ϕ), which is a
unique solution of the variational inequality (1.15). Equivalently, one has

PFix(ϕ)
(
I − F + γf

)
x∗ = x∗. (3.1)

Proof. First, we claim that {xn} is bounded. Let p ∈ Fix(ϕ); by Lemmas 2.2 and 2.7 we have

∥∥xn+1 − p
∥∥ =
∥∥αnγf(xn) + (I − αnF)Tμn(xn) − p

∥∥

=
∥∥αnγf(xn) + (I − αnF)Tμn(xn) − (I − αnF)p − αnF

(
p
)∥∥

≤ αn

∥∥γf(xn) − F
(
p
)∥∥ +
∥∥(I − αnF)Tμn(xn) − (I − αnF)p

∥∥

≤ αn

∥∥γf(xn) − γf
(
p
)∥∥

+ αn

∥∥γf
(
p
) − F
(
p
)∥∥ +

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥∥Tμn(xn) − p

∥∥

≤
⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ
− γα

⎞

⎠

⎞

⎠
∥∥xn − p

∥∥ + αn

∥∥γf
(
p
) − F
(
p
)∥∥
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=

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ
− γα

⎞

⎠

⎞

⎠
∥
∥xn − p

∥
∥

+
αn

(
1 −√(1 − δ)/λ − γα

)

(
1 − γα −√(1 − δ)/λ

)
∥
∥γf
(
p
) − F
(
p
)∥∥

≤ max

⎧
⎪⎨

⎪⎩

⎛

⎝1 −
√

1 − δ

λ
− γα

⎞

⎠

−1
∥
∥γf
(
p
) − F
(
p
)∥∥,
∥
∥xn − p

∥
∥

⎫
⎪⎬

⎪⎭
.

(3.2)

By induction,

∥∥xn − p
∥∥ ≤ max

⎧
⎪⎨

⎪⎩

⎛

⎝1 −
√

1 − δ

λ
− γα

⎞

⎠

−1
∥∥γf
(
p
) − F
(
p
)∥∥,
∥∥x0 − p

∥∥

⎫
⎪⎬

⎪⎭
= M0. (3.3)

Therefore, {xn} is bounded and so is {f(xn)}.
Set D = {y ∈ H : ‖y − p‖ ≤ M0}. We remark that D is ϕ-invariant bounded closed

convex set and {xn} ⊂ D. Now we claim that

lim sup
n→∞

sup
y∈D

∥∥Tμn

(
y
) − Tt
(
Tμn

(
y
))∥∥ = 0, ∀t ∈ S. (3.4)

Let ε > 0. By [15, Theorem 1.2], there exists δ > 0 such that

coFδ(Tt;D) + Bδ ⊂ Fε(Tt;D), ∀t ∈ S. (3.5)

Also by [15, Corollary 1.1], there exists a natural number N such that

∥∥∥∥∥
1

N + 1

N∑

i=0

Ttis
(
y
) − Tt

(
1

N + 1

N∑

i=0

Ttis
(
y
)
)∥∥∥∥∥

≤ δ, (3.6)
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for all t, s ∈ S and y ∈ D. Let t ∈ S. Since {μn} is strongly left regular, there exists n0 ∈ N such
that ‖μn − l∗

ti
μn‖ ≤ δ/(M0 + ‖p‖) for n ≥ n0 and i = 1, 2, . . . ,N. Then we have

sup
y∈D

∥
∥
∥
∥
∥
Tμn

(
y
) −
∫

1
N + 1

N∑

i=0

Ttis
(
y
)
dμn(s)

∥
∥
∥
∥
∥

= sup
y∈D

sup
‖z‖=1

∣
∣
∣
∣
∣
〈
Tμn

(
y
)
, z
〉 −
〈∫

1
N + 1

N∑

i=0

Ttis
(
y
)
dμn(s), z

〉∣∣
∣
∣
∣

= sup
y∈D

sup
‖z‖=1

∣
∣
∣
∣
∣

1
N + 1

N∑

i=0

(
μn

)
s

〈
Ts
(
y
)
, z
〉 − 1

N + 1

N∑

i=0

(
μn

)
s

〈
Ttis
(
y
)
, z
〉
∣
∣
∣
∣
∣

≤ 1
N + 1

N∑

i=0

sup
y∈D

sup
‖z‖=1

∣
∣
∣
(
μn

)
s

〈
Ts
(
y
)
, z
〉 − (l∗tiμn

)
s

〈
Ts
(
y
)
, z
〉∣∣
∣

≤ max
i=0,1,2,...,N

∥∥μn − l∗
ti
μn

∥∥(M0 +
∥∥p
∥∥) ≤ δ, ∀n ≥ n0.

(3.7)

By Lemma 2.2 we have

∫
1

N + 1

N∑

i=0

Ttis
(
y
)
dμn(s) ∈ co

{
1

N + 1

N∑

i=0

Tti
(
Ts
(
y
))

: s ∈ S

}

. (3.8)

It follows from (3.5), (3.6), (3.7), and (3.8) that

Tμn

(
y
) ∈ co

{
1

N + 1

N∑

i=0

Ttis
(
y
)
: s ∈ S

}

+ Bδ ⊂ coFδ(Tt;D) + Bδ ⊂ Fε(Tt;D), (3.9)

for all y ∈ D and n ≥ n0. Therefore,

lim sup
n→∞

sup
y∈D

∥∥Tt
(
Tμn

(
y
)) − Tμn

(
y
)∥∥ ≤ ε. (3.10)

Since ε > 0 is arbitrary, we get (3.4). In this stage, we will show that

lim
n→∞

‖xn − Tt(xn)‖ = 0, ∀t ∈ S. (3.11)

Let t ∈ S and ε > 0. Then, there exists δ > 0, which satisfies (3.5). Take

L0 =

⎡

⎣

⎛

⎝1 + γα +

√
1 − δ

λ

⎞

⎠M0 +
∥∥γf
(
p
) − F
(
p
)∥∥

⎤

⎦. (3.12)
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From limn→∞αn = 0 and (3.4) there exists n0 ∈ N such that αn ≤ δ/L0 and Tμn(xn) ∈ Fδ(Tt),
for all n ≥ n0. By Lemma 2.7, we have

αn

∥
∥γf(xn) − FTμn(xn)

∥
∥

≤ αn

(∥∥γf(xn) − γf
(
p
)∥∥ +
∥
∥γf
(
p
) − F
(
Tμn(xn)

)∥∥)

≤ αn

(
γα
∥
∥xn − p

∥
∥ +
∥
∥γf
(
p
) − F
(
p
)∥∥)

+ αn

(∥∥(I − F)p − (I − F)Tμn(xn)
∥
∥ +
∥
∥p − Tμn(xn)

∥
∥)

≤ αn

⎛

⎝1 +

√
1 − δ

λ
+ γα

⎞

⎠
∥
∥xn − p

∥
∥ + αn

∥
∥γf
(
p
) − F
(
p
)∥∥

≤ αn

⎡

⎣

⎛

⎝1 +

√
1 − δ

λ
+ γα

⎞

⎠M0 +
∥∥γf
(
p
) − F
(
p
)∥∥

⎤

⎦

≤ αnL0 ≤ δ,

(3.13)

for all n ≥ n0. Therefore, we have

xn+1 = Tμn(xn) + αn

[
γf(xn) + F

(
Tμn(xn)

)] ∈ Fδ(T) + Bδ ⊂ Fε(Tt), (3.14)

for all n ≥ n0. This shows that

‖xn − Tt(xn)‖ ≤ ε, ∀n ≥ n0. (3.15)

Since ε > 0 is arbitrary, we get (3.11).
Let Q = PFix(ϕ). Then Q(I − F − γf) is a contraction ofH into itself. In fact, we see that

∥∥Q
(
I − F + γf

)
(x) −Q

(
I − F + γf

)(
y
)∥∥

≤ ∥∥(I − F + γf
)
(x) − (I − F + γf

)(
y
)∥∥

≤ ∥∥(I − F)(x) − (I − F)
(
y
)∥∥ + γ

∥∥f(x) − f
(
y
)∥∥

≤
⎛

⎝

√
1 − δ

λ
+ γα

⎞

⎠
∥∥x − y

∥∥,

(3.16)

and hence Q(I − F − γf) is a contraction due to (
√
(1 − δ)/λ + γα) ∈ (0, 1).

Therefore, by Banach contraction principal, PFix(ϕ)(γf + I − F) has a unique fixed point
x∗. Then using Lemma 2.3, x∗ is the unique solution of the variational inequality

〈(F − γf
)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix

(
ϕ
)
. (3.17)
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We show that

lim sup
n→∞

〈
γf(x∗) − F(x∗), xn − x∗〉 ≤ 0. (3.18)

Indeed, we can choose a subsequence {xnk} of {xn} such that

lim sup
n→∞

〈
γf(x∗) − F(x∗), xn − x∗〉 = lim

k→∞
〈
γf(x∗) − F(x∗), xnk − x∗〉. (3.19)

Because {xn} is bounded, we may assume that xn ⇀ z. In terms of Lemma 2.4 and (3.11), we
conclude that z ∈ Fix(ϕ). Therefore,

lim sup
n→∞

〈
γf(x∗) − F(x∗), xn − x∗〉 =

〈
γf(x∗) − F(x∗), z − x∗〉 ≤ 0. (3.20)

Finally, we prove that xn → x∗ as n → ∞. By Lemmas 2.5 and 2.7 we have

‖xn+1 − x∗‖2

=
∥∥αnγf(xn) + (I − αnF)Tμn(xn) − x∗∥∥2

=
∥∥αnγf(xn) − αnF(x∗) + (I − αnF)Tμn(xn) − (I − αnF)x∗∥∥2

=
∥∥(I − αnF)Tμn(xn) − (I − αnF)x∗∥∥2 + 2αn

〈
γf(xn) − F(x∗), xn+1 − x∗〉

≤
⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠

2

‖xn − x∗‖2 + 2αn

〈
γf(xn) − F(x∗), xn+1 − x∗〉

≤
⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠

2

‖xn − x∗‖2 + 2αn

〈
γf(xn) − γf(x∗), xn+1 − x∗〉

+ 2αn

〈
γf(x∗) − F(x∗), xn+1 − x∗〉.

(3.21)

On the other hand

〈
γf(xn) − γf(x∗), xn+1 − x∗〉

≤ γα‖xn − x∗‖‖xn+1 − x∗‖

≤ γα

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠‖xn − x∗‖2

+ γα‖xn − x∗‖
√
2
∣∣〈γf(xn) − F(x∗), xn+1 − x∗〉∣∣√αn.

(3.22)
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Since {xn} and {f(xn)} are bounded, we can take a constant G0 > 0 such that

γα‖xn − x∗‖
√
2
∣
∣〈γf(xn) − F(x∗), xn+1 − x∗〉∣∣ < G0, ∀n ∈ N. (3.23)

So from the above, we reach the following:

〈
γf(xn) − γf(x∗), xn+1 − x∗〉 ≤ γα

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠‖xn − x∗‖2 +G0
√
αn. (3.24)

Substituting (3.24) in (3.21), we obtain

‖xn+1 − x∗‖2

≤
⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠

2

‖xn − x∗‖2 + 2αnγα

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠‖xn − x∗‖2

+ 2αnG0
√
αn + 2αn

〈
γf(xn) − F(x∗), xn+1 − x∗〉

=

⎛

⎝1 − 2αn

⎡

⎣

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠ − αγ + αnγα

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎤

⎦

⎞

⎠‖xn − x∗‖2

+ αn

⎡

⎢
⎣αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

2

‖xn − x∗‖2 + 2G0
√
αn + 2

〈
γf(x∗) − F(x∗), xn − x∗〉

⎤

⎥
⎦.

(3.25)

It follows that

‖xn+1 − x∗‖2 ≤
⎛

⎝1 − αn

⎡

⎣2

⎛

⎝1 −
√

1 − δ

λ
− αγ

⎞

⎠ + 2αnγα

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎤

⎦

⎞

⎠‖xn − x∗‖2 + αnβn,

(3.26)

where

βn =

⎡

⎢
⎣αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

2

‖xn − x∗‖2 + 2G0
√
αn + 2

〈
γf(x∗) − F(x∗), xn − x∗〉

⎤

⎥
⎦. (3.27)

Since {xn} is bounded and limn→∞αn = 0, by (3.18), we get

lim sup
n→∞

βn ≤ 0. (3.28)

Consequently, applying Lemma 2.6, to (3.26), we conclude that xn → x∗.
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Corollary 3.2. Let X, ϕ, {μn}, and {αn} be as in Theorem 3.1. Suppose that A a strongly positive

bounded linear operator on H with coefficient γ > 1/2 and 0 < ζ < (1 −
√
2 − 2γ)/α. Let {xn} be

defined by the iterative algorithm

xn+1 = αnζf(xn) + (I − αnA)Tμn(xn), n ≥ 0. (3.29)

Then, {xn} converges strongly, as n → ∞, to x∗ ∈ Fix(ϕ), which is a unique solution of the
variational inequality

〈(
A − ζf

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix

(
ϕ
)
. (3.30)

Proof. Because A is strongly positive bounded linear operator on H with coefficient γ , we
have

〈Ax −Ay, x − y〉 ≥ γ
∥∥x − y

∥∥2. (3.31)

Therefore, A is γ-strongly accretive. On the other hand,

∥∥(I −A)x − (I −A)y
∥∥2

=
〈(
x − y
) − (Ax −Ay

)
,
(
x − y
) − (Ax −Ay

)〉

=
〈
x − y, x − y

〉 − 2
〈
Ax −Ay, x − y

〉
+
〈
Ax −Ay,Ax −Ay

〉

≤ ∥∥x − y
∥∥2 − 2

〈
Ax −Ay, x − y

〉
+ ‖A‖∥∥x − y

∥∥2.

(3.32)

SinceA is strongly positive if and only if (1/‖A‖)A is strongly positive, wemay assume, with
no loss of generality, that ‖A‖ = 1, so that

〈
Ax −Ay, x − y

〉 ≤ ∥∥x − y
∥∥2 − 1

2
∥∥(I −A)x − (I −A)y

∥∥2. (3.33)

This shows thatA is 1/2-strictly pseudo-contractive. Now apply Theorem 3.1 to conclude the
result.

Corollary 3.3. Let X, ϕ, {μn} and {αn} be as in Theorem 3.1. Suppose u, x0 ∈ H and define a
sequence {xn} by the iterative algorithm

xn+1 = αnu + (I − αnF)Tμn(xn), n ≥ 0. (3.34)

Then, {xn} converges strongly, as n → ∞, to a x∗ ∈ Fix(ϕ), which is a unique solution of the
variational inequality

〈Fx∗ − u, x − x∗〉 ≥ 0, ∀x ∈ Fix
(
ϕ
)
. (3.35)

Proof. It is sufficient to take f = u andγ = 1 in Theorem 3.1.
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4. Some Application

Corollary 4.1. Let S and T be non-expansive mappings on a Hilbert spaceH with ST = TS such that
Fix(S)∩Fix(T)/= ∅. Let {αn} be a sequence in (0, 1) satisfying conditions αn → 0 and

∑∞
n=0 αn = ∞.

Let x0 ∈ H, γ ∈ (0, 1 −
√
(1 − δ)/λ/α) and define a sequence {xn} by the iterative algorithm:

xn+1 = αnγf(xn) + (I − αnF)
1
n2

n−1∑

i=0

n−1∑

j=0

SiTi(xn), n ≥ 0. (4.1)

Then, {xn} converges strongly, as n → ∞, to x∗ ∈ Fix(S) ∩ Fix(T) which solves the variational
inequality:

〈(
F − γf

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(S) ∩ Fix(T). (4.2)

Proof. Let T(i, j) = SiTj for each i, j ∈ N ∪ {0}. Then {T(i, j) : i, j ∈ N ∪ {0}} is a semigroup
of non-expansive mappings on H. Now, for each n ∈ N and i, j ∈ B((N ∪ {0})2), we define
μn(f) = (1/n2)

∑n−1
i=0
∑n−1

j=0 f(i, j). Then, {μn} is regular sequence of means [16]. Next, for each
x ∈ H and n ∈ N, we have

Tμn(x) =
1
n2

n−1∑

i=0

n−1∑

j=0

SiTj(x). (4.3)

Therefore, applying Theorem 3.1, the result follows.

Corollary 4.2. Let ϕ = {Tt : t ∈ R
+} be a strongly continuous semigroup of non-expansive mappings

on a Hilbert spaceH such that Fix(ϕ)/= ∅. Let αn be a sequence in (0, 1) satisfying conditions αn → 0
and
∑∞

n=0 αn = ∞. Let x0 ∈ H and γ ∈ (0, 1 −
√
(1 − δ)/λ/α). Let {xn} be a sequence defined by the

iterative algorithm:

xn+1 = αnγf(xn) + (I − αnF)
1
tn

∫ tn

0
Ts(xn)ds, n ≥ 0, (4.4)

where {tn} is an increasing sequence in (0,∞) such that limn→∞tn = ∞ and limn→∞(tn/tn+1) = 1.
Then, {xn} converges strongly, as n → ∞, to x∗ ∈ Fix(ϕ), which solves the variational inequality

〈(
F − γf

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix

(
ϕ
)
. (4.5)

Proof. For n ∈ N, we define μn(f) = (1/tn)
∫ tn
0 f(t)dt for each f ∈ C(R+), where C(R+) denotes

the space of all real-valued bounded continuous functions onR+ with supremumnorm. Then,
{μn} is regular sequence of means [16]. Furthermore, for each x ∈ H, we have Tμn(x) =
(1/tn)

∫ tn
0 Ts(x)ds. Now, apply Theorem 3.1 to conclude the result.
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Corollary 4.3. Let ϕ = {Tt : t ∈ R
+} be a strongly continuous semigroup of non-expansive mappings

on a Hilbert spaceH such that Fix(ϕ)/= ∅. Let αn be a sequence in (0, 1) satisfying conditions αn → 0
and
∑∞

n=0 αn = ∞. Let x0 ∈ H and γ ∈ (0, 1 −
√
(1 − δ)/λ/α). Let {xn} be a sequence defined by the

iterative algorithm

xn+1 = αnγf(xn) + (I − αnF)rn

∫∞

0
exp(−rns)Tsxnds, n ≥ 0, (4.6)

where {rn} is an decreasing sequence in (0,∞) such that limn→∞rn = 0. Then {xn} converges
strongly, as n → ∞, to x∗ ∈ Fix(ϕ), which solves the variational inequality

〈(
F − γf

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix

(
ϕ
)
. (4.7)

Proof. For n ∈ N, we define μn(f) = rn
∫∞
0 exp(−rnt)f(t)dt for each f ∈ C(R+). Then

{μn} is regular sequence of means [16]. Furthermore, for each x ∈ H, we have Tμn(x) =
rn
∫∞
0 exp(−rnt)Tt(x)dt. Now, apply Theorem 3.1 to conclude the result.

Corollary 4.4. Let T be a non-expansive mapping on a Hilbert space H such that Fix(T)/= ∅. Let αn

be a sequence in (0, 1) satisfying conditions αn → 0 and
∑∞

n=0 αn = ∞ and let Q = {qn,m} be a
strongly regular matrix. Let x0 ∈ H and γ ∈ (0, 1 −

√
(1 − δ)/λ/α). Let {xn} be a sequence defined

by the iterative algorithm

xn+1 = αnγf(xn) + (I − αnF)
∞∑

m=0

qn,mT
mxn, n ≥ 0. (4.8)

Then, {xn} converges strongly, as n → ∞, to x∗ ∈ Fix(T) which solves the variational inequality

〈(F − γf
)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T). (4.9)

Proof. For each n ∈ N, we define

μn

(
f
)
=

∞∑

m=0

qn,mf(m), (4.10)

for each f ∈ B(N∪{0}). SinceQ is a strongly regular matrix, for eachm, we have qn,m → 0, as
n → ∞; see [17]. Then, it is easy to see that {μn} is regular sequence of means. Furthermore,
for each x ∈ H, we have Tμn(x) =

∑∞
m=0 qn,mT

m(x). Now, apply Theorem 3.1 to conclude the
result.
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