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The purpose of this paper is to introduce hybrid projection algorithms for finding a common
element of the set of common fixed points of a countable family of relatively nonexpansive
mappings and the set of solutions of an equilibrium problem in the framework of Banach spaces.
Moreover, we apply our result to the problem of finding a common element of an equilibrium
problem and the problem of finding a zero of a maximal monotone operator. Our result improve
and extend the corresponding results announced by Takahashi and Zembayashi (2008 and 2009),
and many others.

1. Introduction

Let E be a real Banach space and E∗ the dual space of E. Let C be a nonempty closed convex
subset of E and f a bifunction from C ×C to R, where R denotes the set of real numbers. The
equilibrium problem is to find p ∈ C such that

f
(
p, y

) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP(f). Given a mapping T : C → E∗, let f(x, y) =
〈Tx, y − x〉 for all x, y ∈ C. Then, p ∈ EP(f) if and only if 〈Tp, y − p〉 ≥ 0 for all y ∈ C, that is,
p is a solution of the variational inequality. Numerous problems in physics, optimization, and
economics reduced to find a solution of (1.1). Some methods have been proposed to solve the
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equilibrium problem; see, for instance, Blum and Oettli [1], Combettes and Hirstoaga [2],
and Moudafi [3].

Recall that a mapping S : C → C is said to be nonexpansive if

∥
∥Sx − Sy

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.2)

We denote by F(S) the set of fixed points of S. If a Banach space E is uniformly convex,
C ⊂ E is bounded, closed and convex, and S is a nonexpansive mapping of C into itself, then
F(S) is nonempty; see [4] for more details. Recently, many authors studied the problem of
finding a common element of the set of fixed points of a nonexpansive mapping and the set
of solutions of an equilibrium problem in the framework of Hilbert spaces and Banach spaces,
respectively; see, for instance, [5–13] and the references therein.

A popular method is the hybrid projection method developed by Nakajo and
Takahashi [14], Kamimura and Takahashi [15], and Martinez-Yanes and Xu [16]; see also
[5, 17–20] and references therein. Recently Takahashi et al. [21] introduced an alterative
projection method, which is called the shrinking projection method, and they showed several
strong convergence theorems for a family of nonexpansive mappings. In 2008, Takahashi
and Zembayashi [12] introduced two iterative sequences for finding a common element of
the set of fixed points of a relatively nonexpansive mapping and the set of solution of an
equilibrium problem in a Banach space. Then they prove strong and weak convergence of
the sequences. Very recently, Takahashi and Zembayashi [13] proved a strong convergence
theorem for finding a common element of the set of solutions of an equilibrium problem and
the set of fixed points of a relatively nonexpansive mapping in a Banach space by using a new
hybrid method.

On the other hand, motivated by Nakajo and Takahashi [14], Matsushita and
Takahashi [17] reformulated the definition of the notion and obtained weak and strong
convergence theorems to approximate a fixed point of a single relatively nonexpansive
mapping. Very recently, Aoyama et al. [22] introduce a Halpern type iterative sequence
for finding a common fixed point of a countable family of nonexpansive mappings. Let
x1 = x ∈ C and

xn+1 = αnx + (1 − αn)Tnxn (1.3)

for all n ∈ N, where C is a nonempty closed convex subset of a Banach space; {αn} is a
sequence in [0, 1], and {Tn} is a sequence of nonexpansive mappings with some condition.
They proved that {xn} defined by (1.3) converges strongly to a common fixed point of
{Tn}.

Motivated and inspired by the research going on in this direction, we prove a strong
convergence theorem for finding a common element of the set of solutions of an equilibrium
problem and the set of common fixed points of a countable family of relatively nonexpansive
mappings in a Banach space by using the shrinking projection method. Further, we apply
our result to the problem of finding a common element of an equilibrium problem and the
problem of finding a zero of a maximal monotone operator. The result obtained in this paper
improves and extends the corresponding result of [13] and many others.
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2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual of E. For all x ∈ E and
x∗ ∈ E∗, we denote the value of x∗ at x by 〈x, x∗〉. The normalized duality mapping J from E
to E∗ is defined by

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, (2.1)

for x ∈ E. By Hahn-Banach theorem, J(x) is nonempty; see [4] for more details. We denote
the strong convergence and the weak convergence of a sequence {xn} to x in E by xn → x
and xn ⇀ x, respectively. We also denote the weak∗ convergence of a sequence {x∗

n} to x∗ in
E∗ by x∗

n⇀
∗x∗. A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E

with ‖x‖ = ‖y‖ = 1 and x /=y. It is also said to be uniformly convex if for each ε ∈ (0, 2], there
exists δ > 0 such that ‖x + y‖/2 ≤ 1 − δ for x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε. A
uniformly convex Banach space has the Kadec-Klee property, that is, xn ⇀ x and ‖xn‖ → ‖x‖
imply xn → x. Let S(E) = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E
is said to be smooth provided that

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)

exists for each x, y ∈ S(E). It is also said to be uniformly smooth if the limit is attained
uniformly for x, y ∈ S(E). It is well know that if E is smooth, strictly convex and reflexive,
then the duality mapping J is single valued, one-to-one and onto.

Let E be a smooth, strictly convex and reflexive Banach space, and letC be a nonempty
closed convex subset of E. Throughout this paper, we denote by φ the function defined by

φ
(
y, x

)
=
∥∥y

∥∥2 − 2
〈
y, Jx

〉
+ ‖x‖2 ∀x, y ∈ C. (2.3)

It is obvious from the definition of the function φ that (‖x‖ − ‖y‖)2 � φ(y, x) � (‖y‖2 + ‖x‖2),
for all x, y ∈ E. Following Alber [23], the generalized projectionΠC from E onto C is defined
by

ΠC(x) = argmin
y∈C

φ
(
y, x

)
, ∀x ∈ E. (2.4)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 and ΠC is the metric projection of H onto C.
We know the following lemmas for generalized projections.

Lemma 2.1 (Alber [23], Kamimura and Takahashi [15]). Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Banach space E. Then

φ
(
x,ΠCy

)
+ φ

(
ΠCy, y

) ≤ φ
(
x, y

)
, ∀x ∈ C, y ∈ E. (2.5)
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Lemma 2.2 (Alber [23], Kamimura and Takahashi [15]). Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Banach space E; let x ∈ E, and let z ∈ C. Then

z = ΠCx ⇐⇒ 〈
y − z, Jx − Jz

〉 ≤ 0, ∀y ∈ C. (2.6)

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive
Banach space E; let T be a mapping fromC into itself. We denote by F(T) the set of fixed point
of T . A point p ∈ C is said to be an asymptotic fixed point of T if there exists {xn} in C which
converges weakly to p and limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed points of T
will be denoted by F̂(T). Following Matsushita and Takahashi [17], a mapping T from C into
itself is said to be relatively nonexpansive if F(T) is nonempty, φ(u, Tx) ≤ φ(u, x), for all u ∈
F(T), x ∈ C, and F̂(T) = F(T).

The following lemma is according to Matsushita and Takahashi [17].

Lemma 2.3 (Matsushita and Takahashi [17]). Let C be a nonempty closed convex subset of a
smooth, strictly convex and reflexive Banach space E, and let T be a relatively nonexpansive mapping
from C into itself. Then F(T) is closed and convex.

We also know the following three lemmas.

Lemma 2.4 (Kamimura and Takahashi [15]). Let E be a uniformly convex and smooth Banach
space, and let {xn}, {yn} be sequences in E such that either {xn} or {yn} is bounded. If
limn→∞φ(xn, yn) = 0, then limn→∞‖xn − yn‖ = 0.

Lemma 2.5 (Xu [24], Zălinescu [25, 26]). Let E be a uniformly convex Banach space, and let r > 0.
Then there exists a strictly increasing, continuous, and convex function g : [0, 2r] → R such that
g(0) = 0 and

∥∥tx + (1 − t)y
∥∥2 ≤ t‖x‖2 + (1 − t)

∥∥y
∥∥2 − t(1 − t)g

(∥∥x − y
∥∥), (2.7)

for all x, y ∈ Br and t ∈ [0, 1], where Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.6 (Kamimura and Takahashi [15]). Let E be a smooth and uniformly convex Banach
space and let r > 0. Then there exists a strictly increasing, continuous, and convex function g :
[0, 2r] → R such that g(0) = 0 and

g
(∥∥x − y

∥∥) ≤ φ
(
x, y

)
(2.8)

for all x, y ∈ Br.

For solving the equilibrium problem, let us assume that a bifunction f satisfies the
following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
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(A3) for each x, y, z ∈ C,

lim
t→ 0+

f
(
tz + (1 − t)x, y

) ≤ f
(
x, y

)
; (2.9)

(A4) for each x ∈ C, y �→ f(x, y) is convex and lower semicontinuous.

The following result is in Blum and Oettlli [1].

Lemma 2.7 (Blum and Oettlli [1]). Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E, and let f be a bifunction from C×C → R satisfying (A1)–(A4),
and let r > 0 and x ∈ E. Then, there exists z ∈ C such that

f
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.10)

We also know the following lemmas.

Lemma 2.8 (Takahashi and Zembayashi [12]). Let C be a nonempty closed convex subset of a
uniformly smooth, strictly convex and reflexive Banach spaceE, and let f be a bifunction fromC×C →
R satisfying (A1)–(A4). For r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Tr(x) =
{
z ∈ C : f

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
(2.11)

for all x ∈ E, Then, the following holds:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, that is, for all x, y ∈ E,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉; (2.12)

(3) F(Tr) = F̂(Tr) = EP(f);

(4) EP(f) is closed and convex.

Lemma 2.9 (Takahashi and Zembayashi [12]). Let C be a nonempty closed convex subset of a
smooth, strictly convex and reflexive Banach space E, and let f be a bifunction from C × C → R

satisfying (A1)–(A4). Then for r > 0, x ∈ E, and q ∈ F(Tr),

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x

)
. (2.13)
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3. Main Results

Let C be a nonempty closed convex subset of a Banach space E; let {Tn} be a family of
mappings of C into itself with F :=

⋂∞
n=1 F(Tn)/= ∅ and ωw(zn) denotes the set of all weak

subsequential limits of a bounded sequence {zn} in C. {Tn} is said to satisfy the NST∗-
condition [27] if for every bounded sequence {zn} in C,

lim
n→∞

‖zn+1 − zn‖ = lim
n→∞

‖zn − Tnzn‖ = 0 implies ωw(zn) ⊂ F. (3.1)

In this section, by using the NST∗-condition, we prove two strong convergence
theorems for finding a common element of the set of solutions of an equilibrium problem
and the set of fixed points of a countable family of relatively nonexpansive mappings in a
Banach space.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let f be a bifunction fromC×C toR satisfying (A1)–(A4), and let
{Sn} be a family of relatively nonexpansive mappings fromC into itself such thatΩ := (

⋂∞
n=1 F(Sn))∩

EP(f)/= ∅. Let {xn} be a sequence generated by x0 = x ∈ C, C0 = C, and

yn = J−1(αnJxn + (1 − αn)JSnxn),

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) � φ(z, xn)

}
,

xn+1 = ΠCn+1x,

(3.2)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1] satisfies lim infn→∞αn(1 −
αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Suppose that {Sn} satisfy the NST∗-condition. Then {xn}
converges strongly to ΠΩx, where ΠΩ is the generalized projection of E onto Ω := (

⋂∞
n=1 F(Sn)) ∩

EP(f).

Proof. Putting un = Trnyn for all n ∈ N, we have from Lemma 2.9 that Trn are relatively
nonexpansive.

We first show that Cn is closed and convex. It is obvious that Cn is closed. Since

φ(z, un) ≤ φ(z, xn) ⇐⇒ ‖un‖2 − ‖xn‖2 − 2〈z, Jun − Jxn〉 ≥ 0, (3.3)

Cn is convex. So, Cn is a closed convex subset of E for all n ∈ N ∪ {0}.
Next, we show by induction that Ω := (

⋂∞
n=1 F(Sn) ∩ EP(f) ⊂ Cn for all n ∈ N ∪ {0}.

From C0 = C, we have Ω ⊂ C0. Suppose that Ω ⊂ Ck for some k ∈ N ∪ {0}. Let u ∈ Ω ⊂ Ck.
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Since Trk and Sk are relatively nonexpansive, it follows that

φ(u, uk) = φ
(
u, Trkyk

) ≤ φ
(
u, yk

)

= φ
(
u, J−1(αkJxk + (1 − αk)JSkxk)

)

= ‖u‖2 − 2〈u, αkJxk + (1 − αk)JSkxk〉 + ‖αkJxk + (1 − αk)JSkxk‖2

≤ ‖u‖2 − 2αk〈u, Jxk〉 − 2(1 − αk)〈u, JSkxk〉 + αk‖xk‖2 + (1 − αk)‖Skxk‖2

= αkφ(u, xk) + (1 − αk)φ(u, Skxk) ≤ φ(u, xk).

(3.4)

Hence u ∈ Ck+1. This implies that Ω ⊂ Cn for all n ∈ N ∪ {0}. So, {xn} is well defined.
Next, we show that {xn} is bounded. From the definition of xn, we have

φ(xn, x) = φ(ΠCnx, x) ≤ φ(u, x) − φ(u,ΠCnx) ≤ φ(u, x), (3.5)

for all u ∈ Ω ⊂ Cn. Thus {φ(xn, x)} is bounded and therefore {xn} and {Snxn} are also
bounded.

From xn+1 ∈ Cn+1 ⊂ Cn and xn = ΠCnx, we have

φ(xn, x) ≤ φ(xn+1, x), ∀n ∈ N ∪ {0}. (3.6)

This implies that {φ(xn, x)} is nondecreasing and so limn→∞φ(xn, x) exists. Since

φ(xn+1, xn) = φ(xn+1,ΠCnx) ≤ φ(xn+1, x) − φ(ΠCnx, x) ≤ φ(xn+1, x) − φ(xn, x), (3.7)

for all n ∈ N ∪ {0}, it follows that limn→∞φ(xn+1, xn) = 0. From xn+1 = ΠCn+1x ∈ Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ∈ N ∪ {0}. (3.8)

Therefore, we also have

lim
n→∞

φ(xn+1, un) = 0. (3.9)

Since limn→∞φ(xn+1, xn) = limn→∞φ(xn+1, un) = 0 and E is uniformly convex and smooth, it
follows from Lemma 2.4 that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+1 − un‖ = 0. (3.10)

Thus, we have

lim
n→∞

‖xn − un‖ = 0. (3.11)
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Since J is uniformly norm-to-norm continuous on bounded sets, it follows by (3.11) that

lim
n→∞

‖Jxn − Jun‖ = 0. (3.12)

Let r = supn∈N
{‖xn‖, ‖Snxn‖}. Since E is a uniformly smooth Banach space, we note that E∗ is

a uniformly convex Banach space. Therefore, by Lemma 2.5, there exists a continuous, strictly
increasing, and convex function g with g(0) = 0 such that

∥
∥αx∗ + (1 − α)y∗∥∥2 ≤ α‖x∗‖2 + (1 − α)

∥
∥y∗∥∥2 − α(1 − α)g

(∥∥x∗ − y∗∥∥) (3.13)

for x∗, y∗ ∈ B∗
r = {z ∈ E∗ : ‖z‖ ≤ r} and α ∈ [0, 1]. So, we have

φ(u, un) = φ
(
u, Trnyn

) ≤ φ
(
u, yn

)
= φ

(
u, J−1(αnJxn + (1 − αn)JSnxn)

)

= ‖u‖2 − 2〈u, αnJxn + (1 − αn)JSnxn〉 + ‖αnJxn + (1 − αn)JSnxn‖2

≤ ‖u‖2 − 2αn〈u, Jxn〉 − 2(1 − αn)〈u, JSnxn〉 + αn‖xn‖2 + (1 − αn)‖Snxn‖2

− αn(1 − αn)g(‖Jxn − JSnxn‖)
= αnφ(u, xn) + (1 − αn)φ(u, Snxn) − αn(1 − αn)g(‖Jxn − JSnxn‖)
≤ φ(u, xn) − αn(1 − αn)g(‖Jxn − JSnxn‖)

(3.14)

for all u ∈ Ω. Therefore, we have

αn(1 − αn)g(‖Jxn − JSnxn‖) ≤ φ(u, xn) − φ(u, un), ∀n ∈ N ∪ {0}. (3.15)

Since

φ(u, xn) − φ(u, un) = ‖xn‖2 − ‖un‖2 − 2〈u, Jxn − Jun〉

≤
∣∣∣‖xn‖2 − ‖un‖2

∣∣∣ + 2|〈u, Jxn − Jun〉|

≤ |(‖xn‖ − ‖un‖)(‖xn‖ + ‖un‖)| + 2‖u‖‖Jxn − Jun‖
≤ |‖xn − un‖(‖xn‖ + ‖un‖)| + 2‖u‖‖Jxn − Jun‖,

(3.16)

it follows that

lim
n→∞

(
φ(u, xn) − φ(u, un)

)
= 0. (3.17)

From lim infn→∞αn(1 − αn) > 0, we have

lim
n→∞

g(‖Jxn − JSnxn‖) = 0. (3.18)
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Therefore, we note from the property of g that

lim
n→∞

‖Jxn − JSnxn‖ = 0. (3.19)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, it follows that

lim
n→∞

‖xn − Snxn‖ = lim
n→∞

∥
∥
∥J−1Jxn − J−1JSnxn

∥
∥
∥ = 0. (3.20)

Since {Sn} satisfy the NST∗-condition, we haveωw(xn) ⊂ F :=
⋂∞

n=1 F(Sn). So, we assume that
a subsequence {xnk} of {xn} converges weakly to x̂ ∈ F. We shall show that x̂ ∈ EP(f). From
un = Trnyn and Lemma 2.9, we have

φ
(
un, yn

)
= φ

(
Trnyn, yn

) ≤ φ
(
u, yn

) − φ
(
u, Trnyn

)

≤ φ(u, xn) − φ
(
u, Trnyn

)
= φ(u, xn) − φ(u, un).

(3.21)

So, we note from (3.17) that

lim
n→∞

φ
(
un, yn

)
= 0. (3.22)

Since E is uniformly convex and smooth and {un} is bounded, it follows from Lemma 2.4 that

lim
n→∞

∥∥un − yn

∥∥ = 0. (3.23)

From xnk ⇀ x̂, ‖un − yn‖ → 0 and ‖xn − un‖ → 0, we have ynk ⇀ x̂. Since J is uniformly
norm-to-norm continuous on bounded sets and (3.23), it follows that

lim
n→∞

∥∥Jun − Jyn

∥∥ = 0. (3.24)

From rn ≥ a,we have

lim
n→∞

∥∥Jun − Jyn

∥∥

rn
= 0. (3.25)

By the definition of un = Trnyn, we have

f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C. (3.26)

Replacing n by nk, we have from (A2) that

1
rnk

〈
y − unk , Junk − Jynk

〉 ≥ f
(
y, unk

)
, ∀y ∈ C. (3.27)
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Since f(x, ·) is convex and lower semicontinuous, it is also weakly lower semicontinuous.
Letting k → ∞, we note from (3.25) and (A4) that

f
(
y, x̂

) ≤ lim inf
k→∞

f
(
y, unk

) ≤ lim inf
k→∞

〈
y − unk ,

Junk − Jynk

rnk

〉
= 0, ∀y ∈ C. (3.28)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)x̂. Since y ∈ C and x̂ ∈ C, we have yt ∈ C
and hence f(yt, x̂) ≤ 0. So, from (A1), we have

0 = f
(
yt, yt

) ≤ tf
(
yt, y

)
+ (1 − t)f

(
yt, x̂

) ≤ tf
(
yt, y

)
. (3.29)

This implies that

f
(
yt, y

) ≥ 0, ∀y ∈ C. (3.30)

Letting t → 0+ from (A3), we have

f
(
x̂, y

) ≥ 0, ∀y ∈ C. (3.31)

Therefore, we obtain x̂ ∈ EP(f). Finally, we will show that xn → ΠΩx. Let w = ΠΩx. From
xn = ΠCnx and w ∈ Ω ⊂ Cn, we note that

φ(xn, x) ≤ φ(w,x). (3.32)

Since the norm is weakly lower semicontinuous, it follows that

φ(x̂, x) = ‖x̂‖2 − 2〈x̂, Jx〉 + ‖x‖2

≤ lim inf
k→∞

(
‖xnk‖2 − 2〈xnk , Jx〉 + ‖x‖2

)

= lim inf
k→∞

φ(xnk , x)

≤ lim sup
k→∞

φ(xnk , x) ≤ φ(w,x).

(3.33)

From the definition of ΠΩ, we have x̂ = w. Hence limk→∞φ(xnk , x) = φ(w,x). Therefore, we
obtain

0 = lim
k→∞

(
φ(xnk , x) − φ(w,x)

)

= lim
k→∞

(
‖xnk‖2 − ‖w‖2 − 2〈xnk −w, Jx〉

)

= lim
k→∞

(
‖xnk‖2 − ‖w‖2

)
.

(3.34)
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SinceE has the Kadec-Klee property, it follows that xnk → w = ΠΩ. Therefore, {xn} converges
strongly to ΠΩx.

As direct consequences of Theorem 3.1, we can obtain the following corollaries.

Corollary 3.2 (Takahashi and Zembayashi [13]). Let E be a uniformly convex and uniformly
smooth Banach space, and let C be a nonempty closed convex subset of E. Let f be a bifunction from
C × C to R satisfying (A1)–(A4), and let S be a relatively nonexpansive mapping from C into itself
such that Ω := F(S) ∩ EP(f)/= ∅. Let {xn} be a sequence generated by x0 = x ∈ C, C0 = C, and

yn = J−1(αnJxn + (1 − αn)JSxn),

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) � φ(z, xn)

}
,

xn+1 = ΠCn+1x,

(3.35)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1] satisfies lim infn→∞αn(1 −
αn) > 0, and {rn} ⊂ [a,∞) for some a > 0. Then {xn} converges strongly to ΠΩ, where ΠΩ is the
generalized projection of E onto Ω := F(S) ∩ EP(f).

Proof. Put Sn ≡ S. Let {zn} be a bounded sequence inCwith limn→∞‖zn+1−zn‖ = limn→∞‖zn−
Szn‖ = 0, and let z ∈ ωw(zn). Then there exists subsequence {znk} of {zn} such that znk ⇀ z.
It follows directly from the definition of S that z ∈ F̂(S) = F(S). Hence S satisfies NST∗-
condition, by Theorem 3.1; {xn} converges strongly to ΠΩ.

Corollary 3.3 (Takahashi and Zembayashi [12]). Let E be a uniformly convex and uniformly
smooth Banach space; let C be a nonempty closed convex subset of E. Let f be a bifunction from C ×C
to R satisfying (A1)–(A4). Let {xn} be a sequence generated by x0 = x ∈ C, C0 = C, and

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jxn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) � φ(z, xn)

}
,

xn+1 = ΠCn+1x,

(3.36)

for every n ∈ N ∪ {0}, where J is the duality mapping on E and {rn} ⊂ [a,∞) for some a > 0. Then,
{xn} converges strongly toΠEP(f)x.

Proof. Putting Sn ≡ I in Theorem 3.1, we obtain Corollary 3.3.

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let {Sn} be a family of relatively nonexpansive mappings from
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C into itself such that F :=
⋂∞

n=1 F(Sn)/= ∅. Let {xn} be a sequence generated by x0 = x ∈ C, C0 = C,
and

yn = ΠCJ
−1(αnJxn + (1 − αn)JSnxn),

Cn+1 =
{
z ∈ Cn : φ

(
z, yn

)
� φ(z, xn)

}
,

xn+1 = ΠCn+1x,

(3.37)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1] satisfies lim infn→∞αn(1 −
αn) > 0. Suppose that {Sn} satisfy the NST∗-condition. Then {xn} converges strongly to ΠF , where
ΠF is the generalized projection of E onto F :=

⋂∞
n=1 F(Sn).

Proof. Putting f(x, y) = 0 for all x, y ∈ C and rn = 1 in Theorem 3.1, we obtain Corollary 3.4.

Similarly as in the proof of Theorem 3.1, we can prove the following theorem.

Theorem 3.5. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let f be a bifunction fromC×C to R satisfying (A1)–(A4) and let
{Sn} be a family of relatively nonexpansive mappings fromC into itself such thatΩ := (

⋂∞
n=1 F(Sn))∩

EP(f)/= ∅. Let {xn} be a sequence generated by x0 = x ∈ C and

yn = J−1(αnJxn + (1 − αn)JSnxn),

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Hn =
{
z ∈ C : φ(z, un) � φ(z, xn)

}
,

Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx,

(3.38)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1] satisfies lim infn→∞αn(1 −
αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Suppose that {Sn} satisfy the NST∗-condition. Then {xn}
converges strongly to ΠΩx, where ΠΩ is the generalized projection of E onto Ω := (

⋂∞
n=1 F(Sn)) ∩

EP(f).

Proof. We first show thatHn∩Wn is closed and convex. It is obvious thatHn is closed andWn

is closed and convex. Since φ(z, un) ≤ φ(z, xn) ⇔ ‖un‖2−‖xn‖2−2〈z, Jun−Jxn〉 ≥ 0, it follows
that Hn is convex. Hence Hn ∩ Wn is a closed and convex subset of E for all n ∈ N ∪ {0}.
Similarly as in proof of Theorem 3.1, we note that Ω ⊂ Hn for all n ∈ N ∪ {0}. Next, we show
by induction that Ω ⊂ Hn ∩Wn for all n ∈ N ∪ {0}. From W0 = C, we note that Ω ⊂ H0 ∩W0.
Suppose that Ω ⊂ Hk ∩Wk for some k ∈ N ∪ {0}. Then there exists xk+1 ∈ Hk ∩Wk such that
xk+1 = ΠHk∩Wkx. From the definition of xk+1, we have

〈xk+1 − z, Jx − Jxk+1〉 ≥ 0 (3.39)
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for all z ∈ Hk ∩Wk. Since Ω ⊂ Hk ∩Wk, we have

〈xk+1 − z, Jx − Jxk+1〉 ≥ 0, ∀z ∈ Ω (3.40)

and hence z ∈ Wk+1. So, we have Ω ⊂ Wk+1 and therefore, Ω ⊂ Hk+1 ∩ Wk+1. Hence Ω ⊂
Hn ∩Wn for all n ∈ N ∪ {0}. This implies that {xn} is well defined. By the same argument as
in proof of Theorem 3.1, we can prove that the sequence {xn} converges strongly toΠΩx.

Setting Sn ≡ S in Theorem 3.5, we have the following result.

Corollary 3.6 (Takahashi and Zembayashi [12, Theorem 3.1]). Let E be a uniformly convex and
uniformly smooth Banach space; let C be a nonempty closed convex subset of E. Let f be a bifunction
from C × C to R satisfying (A1)–(A4), and let S be a relatively nonexpansive mapping from C into
itself such that F(S) ∩ EP(f)/= ∅. Let {xn} be a sequence generated by

x0 = x ∈ C,

yn = J−1(αnJxn + (1 − αn)JSxn),

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Hn =
{
z ∈ C : φ(z, un) � φ(z, xn)

}
,

Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx,

(3.41)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ∈ [0, 1] satisfies lim infn→∞αn(1 −
αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges strongly to ΠF(S)∩EP(f)x, where
ΠF(S)∩EP(f) is the generalized projection of E onto F(S) ∩ EP(f).

4. Applications

In this section, we apply our result to the problem of finding a common element of an
equilibrium problem and the problem of finding a zero of a maximal monotone operator
in a Banach space by using the shrinking projection method.

Let E be a real Banach space. An operator T ⊂ E×E∗ is said to bemonotone if 〈x−y, x∗ −
y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ T . We denote the set {x ∈ E : 0 ∈ Tx} by T−10.Amonotone
T is said to be maximal if its graph G(T) = {(x, y) : y ∈ Tx} is not properly contained in the
graph of any other monotone operator. If T is maximal monotone, then the solution set T−10
is closed and convex.

Let E be a smooth, strictly convex and reflexive Banach space, and let T ⊂ E × E∗ be
a maximal monotone operator. Then for each λ > 0 and x ∈ E, there corresponds a unique
element xλ ∈ D(T) satisfying

J(x) ∈ J(xλ) + λT(xλ); (4.1)
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see Barbu [28] or Takahashi [4]. We define the resolvent of T by Jλx = xλ. In other words,
Jλ = (J +λT)−1J for all λ > 0. We know that Jλ is relatively nonexpansive and T−10 = F(Jλ) for
all λ > 0 (see [4, 17]), where F(Jλ) denotes the set of all fixed points of Jλ. We can also define,
for each λ > 0, the Yosida approximation of T byAλ = λ−1(J −JJλ).We know that (Jλx,Aλx) ∈ T
for all λ > 0.

We now consider the strong convergence theorem for finding a common element of
the solution set of an equilibrium problem and the problem of finding a zero of a maximal
monotone operator.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space. Let T ⊂ E × E∗

be a maximal monotone operator, and let Jλ = (J + λT)−1J for all λ > 0. Let C be a nonempty
closed convex subset of E such that D(T) ⊂ C ⊂ J−1(

⋂
λ>0 R(J + λT)). Let f be a bifunction from

C × C to R satisfying (A1)–(A4) with Ω := EP(f) ∩ T−10/= ∅. Let {xn} be a sequence generated by
x0 = x ∈ C, C0 = C, and

yn = J−1(αnJxn + (1 − αn)JJλnxn),

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) � φ(z, xn)

}
,

xn+1 = ΠCn+1x,

(4.2)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1], {λn} ∈ (0,∞) satisfy
lim infn→∞αn(1 − αn) > 0, lim infn→∞λn > 0, and {rn} ⊂ [a,∞) for some a > 0. Then {xn}
converges strongly toΠΩx, whereΠΩ is the generalized projection of E onto Ω := EP(f) ∩ T−10.

Proof. Let {zn} be a bounded sequence in C such that limn→∞‖zn+1 − zn‖ = limn→∞‖zn −
Jλnzn‖ = 0, and let z ∈ ωw(zn). Then, there exists a subsequence {znk} of {zn} such that
znk ⇀ z. By the uniform smoothness of E, we have

lim
n→∞

‖Jzn − JJλnzn‖ = 0. (4.3)

Since lim infn→∞λn > 0, we have

lim
n→∞

‖Aλnzn‖ = lim
n→∞

1
λn

‖Jzn − JJλnzn‖ = 0. (4.4)

Let (u, u∗) ∈ T . Then it holds from the monotonicity of T that

〈
u − Jλnk znk , u

∗ −Aλnk
znk

〉
≥ 0, (4.5)

for all k ∈ N. Letting k → ∞, we get 〈u − z, u∗〉 ≥ 0. Then, the maximality of T implies
z ∈ T−10 :=

⋂∞
n=1 F(Jλn). Hence by Theorem 3.1, {xn} converges strongly to ΠΩx.

In case C = E. Putting f(x, y) = 0 for all x, y ∈ E and rn = 1 in Theorem 4.1, we obtain
the following corollary.
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Corollary 4.2. Let E be a uniformly convex and uniformly smooth Banach space. Let T ⊂ E × E∗ be
a maximal monotone operator, and let Jλ = (J + λT)−1J for all λ > 0, with T−10/= ∅. Let {xn} be a
sequence generated by x0 = x ∈ E, C0 = E, and

yn = J−1(αnJxn + (1 − αn)JJλnxn),

Cn+1 =
{
z ∈ Cn : φ

(
z, yn

)
� φ(z, xn)

}
,

xn+1 = ΠCn+1x,

(4.6)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1], {λn} ∈ (0,∞) satisfy
lim infn→∞αn(1 − αn) > 0, lim infn→∞λn > 0. Then {xn} converges strongly to ΠΩx, where ΠΩ is
the generalized projection of E onto Ω := T−10.

Similarly as in the proof of Theorem 4.1, we can prove the following theorem.

Theorem 4.3. Let E be a uniformly convex and uniformly smooth Banach space. Let T ⊂ E × E∗ be
a maximal monotone operator and let Jλ = (J + λT)−1J for all λ > 0. Let C be a nonempty closed
convex subset of E such that D(T) ⊂ C ⊂ J−1(

⋂
λ>0 R(J + λT)). Let f be a bifunction from C × C to

R satisfying (A1)–(A4) with Ω := EP(f) ∩ T−10/= ∅. Let {xn} be a sequence generated by x0 = x ∈ C
and

yn = J−1(αnJxn + (1 − αn)JJλnxn),

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Hn =
{
z ∈ C : φ(z, un) � φ(z, xn)

}
,

Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx,

(4.7)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1], {λn} ∈ (0,∞) satisfy
lim infn→∞αn(1 − αn) > 0, lim infn→∞λn > 0, and {rn} ⊂ [a,∞) for some a > 0. Then {xn}
converges strongly toΠΩx, whereΠΩ is the generalized projection of E onto Ω := EP(f) ∩ T−10.

Corollary 4.4. Let E be a uniformly convex and uniformly smooth Banach space. Let T ⊂ E × E∗ be
a maximal monotone operator and let Jλ = (J + λT)−1J for all λ > 0, with T−10/= ∅. Let {xn} be a
sequence generated by x0 = x ∈ E and

yn = J−1(αnJxn + (1 − αn)JJλnxn),

Hn =
{
z ∈ C : φ

(
z, yn

)
� φ(z, xn)

}
,

Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx,

(4.8)
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for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1], {λn} ∈ (0,∞) satisfy
lim infn→∞αn(1 − αn) > 0, lim infn→∞λn > 0. Then {xn} converges strongly to ΠΩx, where ΠΩ is
the generalized projection of E onto Ω := T−10.
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