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Approximate optimality conditions for a class of nonconvex semi-infinite programs involving sup-
port functions are given. The objective function and the constraint functions are locally Lipschitz
functions on �

n . By using a Karush-Kuhn-Tucker (KKT) condition, we deduce a necessary
optimality condition for local approximate solutions. Then, generalized KKT conditions for the
problems are proposed. Based on properties of ε-semiconvexity and semiconvexity applied to
locally Lipschitz functions and generalized KKT conditions, we establish sufficient optimality
conditions for another kind of local approximate solutions of the problems. Obtained results in
case of nonconvex semi-infinite programs and nonconvex infinite programs are discussed.

1. Introduction

Therewere several papers concerning approximate solutions of convex/nonconvex problems
published over years such as [1–10]. Recently, optimization problems which have a number
of infinite constraints were considered in several papers such as [9–15]. In particular,
approximate optimality conditions of nonconvex problems with infinite constraints were
investigated in [9, 10]. On the other side, finite optimization problems which have objective
functions involving support functions also attract several authors such as [16–23].

In this paper we deal with approximate optimality conditions of a class of nonconvex
optimization problems which have objective functions containing support functions and
have a number of infinite constraints. We consider the following semi-infinite programming
problem:



2 Fixed Point Theory and Applications

Minimize f(x) + s(x | D)

subject to ft(x) ≤ 0, t ∈ T,

x ∈ C,

(P)

where f, ft : X → �, t ∈ T , are locally Lipschitz functions, X is a normed space, T is an index
set (possibly in infinite), C and D are nonempty closed convex subsets of X, and s(· | D)
is support function corresponding to D. In the case of X = �

n , T is finite, the convex set
C is suppressed, and the functions involved are continuously differentiable, the problem (P )
becomes the one considered in [16, 17]. In caseX is a Banach space and s(· | D) is suppressed,
the problem (P) becomes the one considered recently in [10].

Our results on approximate optimality conditions in this paper are established based
on properties of ε-semiconvexity and of semiconvexity applied to locally Lipschitz functions
proposed by Loridan [1] and Mifflin [24], respectively (the property of ε-semiconvexity is an
extension of the one of semiconvexity), and based on the calculus rules of subdifferentials of
nonconvex functions introduced in a well-known book of Clarke [25]. We focus on sufficient
optimality conditions for a kind of locally approximate solutions. Concretely, we deal with
almost ε-quasisolutions of (P ). Recently, therewere several papers dealedwith ε-quasisolutions
or almost ε-quasisolutions [3, 7, 9, 10, 26]. While an ε-solution has a global property, an ε-
quasisolution has a local one. Naturally, it is suitable for nonconvex problems. On the other
hand, we can see that the concept of almost ε-quasisolutions introduced by Loridan (see [1])
is relaxed from the one of ε-quasisolutions when we expand a feasible set of an optimization
problem to an ε-feasible set.

We now describe the content of the paper. In the preliminaries, besides basic concepts,
we recall definitions of several kinds of approximate solutions of (P) and an necessary
optimality condition for obtaining exact solutions of nonconvex infinite problems. Applying
this result into the case of a finite setting space, in Section 3, we deduce a necessary optimality
condition of a kind of approximate solutions of (P), ε-quasisolution. Then a concept of
generalized Karush-Kuhn-Tucker pair up to ε is presented. Our main results are stated by
three sufficient optimality conditions for another kind of approximate solutions of (P), almost
ε-quasisolution (see Definition 2.7 in Section 2). Section 4 is devoted to discuss approximate
sufficient optimality conditions for (P) in the case the support function is suppressed. Several
sufficient conditions for almost ε-quasisolutions of nonconvex semi-infinite programs are
given. Concerning the class of nonconvex infinite programs considered in [10], we also state
that some new versions of sufficient optimality conditions for approximate solutions of the
problems can be established.

2. Preliminaries

Let f : X → � be a locally Lipschitz function at x ∈ X, where X is a Banach space. The
generalized directional derivative of f at x in the direction d ∈ X (see [25, page 25]) is defined
by

f◦(x;d) := lim sup
h→ 0
θ↓0

f(x + h + θd) − f(x + h)
θ

, (2.1)
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and the Clarke’s subdifferential of f at x, denoted by ∂cf(x), is

∂cf(x) :=
{
u ∈ X∗ | 〈u, d〉 ≤ f◦(x;d), ∀d ∈ X

}
, (2.2)

where X∗ denotes the dual of X. When f is convex, ∂cf(x) coincides with ∂f(x), the
subdifferential of f at x, in the sense of convex analysis. If the limit

lim
θ↓0

f(x + θd) − f(x)
θ

(2.3)

exists for d ∈ X then it is called the directional derivative of f at x in direction d and it is
denoted by f ′(x;d). The function f is said to be quasidifferentiable or regular (in the sense of
Clarke [25]) at x if f ′(x;d) exists and f ′(x;d) = f◦(x;d) for every d ∈ X.

For a closed subset D of X, the Clarke tangent cone to D is defined by

T(x) =
{
v ∈ X | d◦

D(x;v) = 0
}
, (2.4)

where dD denotes the distance function to D (see [25, page 11]) and d◦
D(x;v) is the

generalized directional derivative of dD at x in direction v. The normal cone to D is defined
by

ND(x) = {x∗ ∈ X∗ | 〈x∗, v〉 ≤ 0, ∀v ∈ TC(x)}. (2.5)

If D is convex, then the normal cone to D coincides with the one in the sense of convex
analysis, that is,

ND(x) =
{
x∗ ∈ X∗ | 〈x∗, y − x

〉 ≤ 0, ∀y ∈ D
}
. (2.6)

Let us denote by �(T) the linear space of generalized finite sequences λ = (λ)t∈T such
that λt ∈ � for all t ∈ T but only finitely many λt /= 0,

�
(T) :=

{
λ = (λt)t∈T | λt = 0, ∀ t ∈ T but only finitely many λt /= 0

}
. (2.7)

For each λ ∈ �(T) , the corresponding supporting set T(λ) := {t ∈ T | λt /= 0} is a finite subset
of T . We denote the nonnegative cone of �(T) by

�
(T)
+ :=

{
λ = (λt)t∈T ∈ �(T) | λt ≥ 0, t ∈ T

}
. (2.8)
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It is easy to see that this cone is convex. For λ ∈ �(T) , {zt}t∈T ⊂ Z, Z being a real linear space
and the sequence (ft)t, t ∈ T , we understand that

∑

t∈T
λtzt =

⎧
⎨

⎩

∑
t∈T(λ)λtzt if T(λ)/= ∅,

0 if T(λ) = ∅,

∑

t∈T
λtft =

⎧
⎨

⎩

∑
t∈T(λ)λtft if T(λ)/= ∅,

0 if T(λ) = ∅.

(2.9)

We now recall necessary optimality condition for a class of nonconvex infinite
problems with a Banach setting space. Let us consider the following problem:

Minimize f(x)

subject to ft(x) ≤ 0, t ∈ T,

x ∈ C,

(Q)

where f, ft : X → �, t ∈ T , are locally Lipschitz on a Banach spaceX and C is a closed convex
subset of X.

We denote by (A) the fact that at least one of the following conditions is satisfied:

(a1) X is separable, or

(a2) T is metrizable and ∂cft(x) is upper semicontinuous (w∗) in t ∈ T for each x ∈ X.

In the following proposition, co(·) denotes a closed convex hull with the closure taken
in the weak∗ topology of the dual space.

Proposition 2.1 ([10, Proposition 2.1]). Let x be a feasible point of (Q), and let I(x) = {t ∈ T |
ft(x) = 0}. Suppose that the condition (A) holds. If the following condition is satisfied:

∃d ∈ TC(x) : f◦
t (x;d) < 0, ∀t ∈ I(x), (2.10)

then

x is a local solution of (Q) =⇒ 0 ∈ ∂ch(x) + �+co
{∪ ∂cft(x) | t ∈ I(x)

}
+NC(x). (2.11)

In order to obtain results in the next sections, we need the following preliminary
concept and results withX = �n . LetC be a nonempty closed convex subset ofX. The support
function s(· | C) : X → � is defined by

s(x | C) := max
{
xTy | y ∈ C

}
. (2.12)

Its subdifferential is given by

∂s(x | C) :=
{
z ∈ C | zTx = s(x | C)

}
. (2.13)
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It is easy to see that s(· | C) is convex and finite everywhere. Since s(· | C) is a Lipschitz
function with Lipschitz rate K, where K = sup{‖v‖, v ∈ C}, we can show that it is a regular
function by using Proposition 2.3.6 of [25]. The normal cone to C at x ∈ C is

NC(x) :=
{
y ∈ �n | yT (z − x) ≤ 0, ∀z ∈ C

}
. (2.14)

In this case we can verify that

y ∈ NC(x) ⇐⇒ s
(
y | C) = xTy

⇐⇒ x ∈ ∂s
(
y | C).

(2.15)

Definition 2.2 (see [24]). LetC be a subset ofX. A function f : X → � is said to be semiconvex
at x ∈ C if it is locally Lipschitz at x, quasidifferentiable at x, and satisfies the following
condition:

(
d ∈ X, x + d ∈ C, f ′(x;d) ≥ 0

)
=⇒ f(x + d) ≥ f(x). (2.16)

The function f is said to be semiconvex on C if f is semiconvex at every point x ∈ C.

It is easy to verify that if a locally Lipschitz function f is semiconvex at x ∈ C and there
exists u ∈ ∂cf(x) such that 〈u, z − x〉 ≥ 0, then f(z) ≥ f(x).

Lemma 2.3 (see [24, Theorem 8]). Suppose that f is semiconvex on a convex set C ⊂ X. Then, for
x ∈ C and x + d ∈ C with d ∈ X,

f(x + d) ≤ f(x) =⇒ f ′(x;d) ≤ 0. (2.17)

The notion of semiconvexity presented in [24] was used in several papers such as
[10, 14, 27]. We also note that Definition 2.2 and/or Lemma 2.3 utilized in the papers above
with X a Banach space or a reflexive Banach space. We now recall an extension of this notion
called ε-semiconvexity.

Definition 2.4 (see [1]). Let C be a subset of X, and let ε ≥ 0. A function f : X → � is said to
be ε-semiconvex at x ∈ C if it is locally Lipschitz at x, regular at x, and satisfies the following
condition:

(
d ∈ X, x + d ∈ C, f ′(x;d) +

√
ε‖d‖ ≥ 0

)
=⇒ f(x + d) +

√
ε‖d‖ ≥ f(x). (2.18)

The function f is said to be ε-semiconvex on C if f is ε-semiconvex at every point x ∈ C.

Remark 2.5. It is worth mentioning that a convex function on X is the ε-semiconvex function
with respect to X for any ε ≥ 0 (see [1, 3, 12]). When ε = 0, this concept coincides with the
semiconvexity defined by Mifflin [24].
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We now concern with concepts of approximate solution. The most common concept
of an approximate solution of a function f from X to � is that of an ε-solution, that is, the
function f satisfies the following inequality:

f(z) ≤ f(x) + ε, ∀x ∈ X, (2.19)

where ε ≥ 0 is a given number. This concept is used usually for approximate minimum of
a convex function. For nonconvex functions, it is suitable for concepts of approximate local
minimums. We deal with ε-quasisolutions. A point z is an ε-quasisolution of f on X if z is a
solution of the function x �→ f(x) +

√
ε‖x − z‖. In this case, if x belongs to a ball B around z

with the radius is less or equal to
√
ε, then we have f(z) ≤ f(x) + ε. So, we can see that an

ε-quasisolution is a local ε-solution. We recall several definitions of approximate solutions of
a function f defined on a subset of X. Consider the problem (R) given by

Minimize f(x)

subject to x ∈ S,
(R)

where f : X → � and S is a subset of X.

Definition 2.6. Let ε ≥ 0. A point z ∈ S is said to be

(i) an ε-solution of (R) if f(z) ≤ f(x) + ε for all x ∈ S,

(ii) an ε-quasisolution of (R) if f(z) ≤ f(x) +
√
ε‖x − z‖ for all x ∈ S,

(iii) a regular ε-solution of (R) if it is an ε-solution and an ε-quasisolution of (R).

Denote by S the feasible set of (P ), S := {x ∈ C | ft(x) ≤ 0, ∀t ∈ T}. Set Sε := {x ∈ C |
ft(x) ≤

√
ε, ∀t ∈ T} with ε ≥ 0. Sε is called an ε-feasible set of (P).

Definition 2.7. Let ε ≥ 0. A point z ∈ Sε is said to be

(i) an almost ε-solution of (R) if f(z) ≤ f(x) + ε for all x ∈ S,

(ii) an almost ε-quasisolution of (R) if f(z) ≤ f(x) +
√
ε‖x − z‖ for all x ∈ S,

(iii) an almost regular ε-solution of (R) if it is an almost ε-solution and an almost ε-
quasisolution of (R).

Throughout the paper, X = �n , T is a compact topological space, f : X → � is locally
Lipschitz function, and ft : X → �, t ∈ T , are locally Lipschitz function with respect to x
uniformly in t, that is,

∀x ∈ X, ∃U(x), ∃K > 0,
∣∣ft(u) − ft(v)

∣∣ ≤ K‖u − v‖, ∀u, v ∈ U(x), ∀t ∈ T. (2.20)

3. Approximate Optimality Conditions

In this section, several approximate optimality conditions will be established based on
concepts of ε-semiconvexity and semiconvexity applied to locally Lipschitz functions. Firstly,
we need to introduce a necessary condition for ε-quasisolution of (P).
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Theorem 3.1. Let ε ≥ 0, and let zε be an ε-quasisolution of (P). If the assumption (2.10) is satisfied

corresponding to zε, then there exist λ ∈ �(T)
+ , v ∈ D such that 〈v, zε〉 = s(zε | D) and

−v ∈ ∂cf(zε) +
∑

t∈T
λt∂

cft(zε) +NC(zε) +
√
εB∗, ft(zε) = 0, ∀t ∈ T(λ). (3.1)

Proof. Let h(x) := f(x) + s(x | D). It is easy to see that h is locally Lipschitz since f is locally
Lipschitz and s(· | D) is Lipschitz with Lipschitz rate K = sup{‖v‖, v ∈ D}. Since X = �n , X
is separable. So, the condition (A) is fulfilled. Let ε ≥ 0. Suppose that zε is an ε-quasisolution
of (P). Set

h1(x) = h(x) +
√
ε‖x − zε‖. (3.2)

It is obvious that zε is an exact solution of the following problem:

Minimize h1(x)

subject to x ∈ S,
(3.3)

where S is the feasible set of (P). Since the assumption (2.10) is satisfied for zε then, by
applying Proposition 2.1, we obtain

0 ∈ ∂ch1(zε) + �+co
{∪ ∂cft(zε) | t ∈ I(zε)

}
+NC(zε), (3.4)

where I(zε) = {t ∈ T | ft(zε) = 0}. Note that

∂c(h1)(zε) = ∂c
(
f +

√
ε‖· − zε‖

)
(zε) ⊂ ∂cf(zε) +

√
εB∗. (3.5)

Since X is a finite dimensional space, the set {∪∂cft(zε) | t ∈ I(zε)} is compact, and,
consequently, its convex hull co{∪∂cft(zε) | t ∈ I(zε)} is closed. Moreover, by the convexity
property of the function s(· | D), we get ∂cs(· | D)(zε) = ∂s(· | D)(zε). Hence, from (3.4), we
obtain

0 ∈ ∂cf(zε) + ∂s(· | D)(zε) +
∑

t∈T
λt∂

cft(zε) +NC(zε) +
√
εB∗,

ft(zε) = 0, ∀t ∈ T(λ).
(3.6)

Furthermore, by (2.13), v ∈ ∂s(· | D)(zε) is equivalent to the fact that v ∈ D and 〈v, zε〉 =
s(zε | D). Consequently,

−v ∈ ∂cf(zε) +
∑

t∈T
λt∂

cft(zε) +NC(zε) +
√
εB∗, ft(zε) = 0, ∀t ∈ T(λ), (3.7)

where 〈v, zε〉 = s(zε | D). We obtain the desired conclusion.
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Condition (3.1) with zε ∈ S may be strict. We expand the set S to the ε-feasible set,
Sε, and give a definition for an approximate generalized Karush-Kuhn-Tucker (KKT) pair as
follows.

Definition 3.2. Let ε ≥ 0. A pair (zε, λ) ∈ Sε ×�(T)
+ is called a generalized Karush-Kuhn-Tucker

(KKT) pair up to ε corresponding to (P) if the following condition is satisfied:

(KKT) : −v ∈ ∂cf(zε) +
∑

t∈T
λt∂

cft(zε) +NC(zε) +
√
εB∗, ft(zε) ≥ 0, ∀t ∈ T(λ), (3.8)

where v ∈ D and 〈v, zε〉 = s(zε | D).

The pair is called strict if ft(zε) > 0 for all t ∈ T(λ), equivalently, λt = 0 if ft(zε) ≤ 0.
To show that the definition above is reasonable, we need to show that there exists

generalized KKT pair for (P). This work is done following the idea of Theorem 4.2 in [10].

Lemma 3.3. Let ε > 0. There exists an almost regular ε-solution zε for (P) and λ ∈ �(T)
+ such that

(zε, λ) is a strict generalized KKT pair up to ε.

Proof. Firstly, we note that the space �n is separable, and, for every x ∈ Sε, the set {∪∂cft(x) |
t ∈ I(x)} is compact. Consequently, the convex hull co{∪∂cft(x) | t ∈ I(x)} is closed. By
applying Theorem 4.2 in [10], there exists an almost regular ε-solution zε for (P) and λ ∈ �(T)

+
such that (zε, λ) satisfy the following condition:

0 ∈ ∂ch(zε) +
∑

t∈T
λt∂

cft(zε) +NC(zε) +
√
εB∗ (3.9)

with ft(zε) > 0 for all t ∈ T(λ), where h = f + s(· | D). Hence, we obtain the desired result by
noting that

∂c(h)(zε) ⊂ ∂cf(zε) + ∂s(· | D)(zε), (3.10)

and v ∈ ∂s(· | D)(zε) is equivalent to v ∈ D and 〈v, zε〉 = s(zε | D).

We now are at position to give some sufficient conditions for almost ε-quasisolutions
of (P).

Theorem 3.4. Let ε ≥ 0, and let (zε, λ) ∈ Sε × �(T)
+ satisfy condition (3.8). Suppose that f, ft, t ∈ T ,

are quasidifferentiable at zε. If f + s(· | D) +
∑

t∈T λtft is ε-semiconvex at zε, then zε is an almost
ε-quasisolution of (P).

Proof. Suppose that (zε, λ) ∈ Sε × �(T)
+ satisfies condition (3.8). Then there exist u ∈ ∂cf(zε),

v ∈ ∂s(zε | D), wt ∈ ∂cft(zε), t ∈ T , r ∈ B∗, andw ∈ NC(zε) such that

u + v +
∑

t∈T
λtwt +

√
εr = −w. (3.11)
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Since −w(x − zε) ≥ 0 for all x ∈ C,

(

u + v +
∑

t∈T
λtwt

)

(x − zε) +
√
ε‖x − zε‖ ≥ 0, ∀x ∈ C. (3.12)

Since f, ft, t ∈ T , are quasidifferentiable and s(· | D) is also quasidifferentiable (discussed
above),

(

u + v +
∑

t∈T
λtwt

)

∈ ∂c
(

f + s(· | D) +
∑

t∈T
λtft

)

(zε). (3.13)

Since f + s(· | D) +
∑

t∈T λtft is ε-semiconvex at zε, from (3.12), we deduce that

(

f + s(· | D) +
∑

t∈T
λtft

)

(x) +
√
ε‖x − zε‖ ≥

(

f + s(· | D) +
∑

t∈T
λtft

)

(zε), ∀x ∈ C. (3.14)

When x ∈ S, we have ft(x) ≤ 0 for all t ∈ T . Furthermore, since (zε, λ) ∈ Sε × �(T)
+ satisfies

condition (3.8), ft(zε) ≥ 0 for all t ∈ T(λ). These, together with the inequality above, imply
that

f(x) + s(x | D) +
√
ε‖x − zε‖ ≥ f(zε) + s(zε | D), ∀x ∈ S. (3.15)

Since zε ∈ Sε, zε is an almost ε-quasisolution of (P).

Theorem 3.5. Let ε ≥ 0, and let (zε, λ) ∈ Sε ×�(T)
+ satisfy condition (3.8). Suppose that f + s(· | D)

is ε-semiconvex at zε and ft, t ∈ T , are semiconvex at zε then zε, is an almost ε-quasisolution of (P).

Proof. Suppose that (zε, λ) ∈ Sε × �(T)
+ satisfy condition (3.8). Then there exist u ∈ ∂cf(zε),

wt ∈ ∂cft(zε), t ∈ T , w ∈ NC(zε), r ∈ B∗, v ∈ D such that 〈v, zε〉 = s(zε | D) (i.e., v ∈ ∂cs(zε |
D)), and

−v = u +
∑

t∈T
λtwt +w +

√
εr, (3.16)

or, equivalently,

u + v +
√
ε r = −w −

∑

t∈T
λtwt. (3.17)

Since C is convex subset of X, w(x − zε) ≤ 0 for all x ∈ C. Since ft, t ∈ T , are semiconvex at
zε and ft(zε) ≥ 0 for all t ∈ T(λ), by Lemma 2.3, it follows that f ′

t(zε, x − zε) ≤ 0 for all x ∈ S.
Under the property of regularity of ft for all t ∈ T , f ′

t(zε, x − zε) = f◦
t (zε, x − zε), we deduce
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that wt(x − zε) ≤ 0 for all x ∈ S, wt ∈ ∂cf(zε) (in fact, we only need wt(x − zε) ≤ 0 for all
t ∈ T(λ)). Combining these with (3.17), we get

(
u + v +

√
ε r
)
(x − zε) ≥ 0, ∀x ∈ S, (3.18)

that is,

(u + v)(x − zε) +
√
ε ‖x − zε‖ ≥ 0, ∀x ∈ S. (3.19)

Since s(· | D) is Lipschitz and convex, by Proposition 2.3.6 of [25], it is quasidifferen-
tiable at zε. Moreover, since f is quasidifferentiable at z, by Corollary 3 of [25],

∂cf(zε) + ∂cs(zε | D) = ∂c
(
f + s(· | D)

)
(zε). (3.20)

It follows that (u + v) ∈ ∂c(f + s(· | D))(z). Combining (3.19) and the assumption that
f + s(· | D) is ε-semiconvex at zε, we deduce that

f(x) + s(· | D)(x) +
√
ε‖x − zε‖ ≥ f(zε) + s(· | D)(zε), ∀x ∈ S. (3.21)

Since zε ∈ Sε, zε is an almost ε-quasisolution of (P).

Corollary 3.6. Let ε ≥ 0, and let (zε, λ) ∈ Sε ×�(T)
+ satisfy condition (3.8). Suppose that f +s(· | D)

is ε-semiconvex at zε and ft, t ∈ T , are convex on C, then zε is an almost ε-quasisolution of (P).

Proof. The desired conclusion follows by using Remark 2.5.

Theorem 3.7. Let ε ≥ 0 and let (zε, λ) ∈ Sε × �
(T)
+ satisfy condition (3.8). Suppose that

ft, t ∈ T , are quasidifferentiable at zε. If f + s(· | D) is ε-semiconvex at zε, the set Sε

is convex, and ft(zε) =
√
ε for all t ∈ T(λ), then zε is an almost ε-quasisolution of

(P ).

Proof. The proof is similar to the one of Theorem 3.5 except for the argument to show that
wt(x − zε) ≤ 0 for all x ∈ S and for all t ∈ T(λ), wherewt ∈ ∂cft(zε). Note that

wt(x − zε) ≤ f◦
t (zε;x − zε) = f ′

t(zε;x − zε). (3.22)

Hence,

wt(x − zε) ≤ lim
θ↓0

ft(zε + θ(x − zε)) − ft(zε)
θ

. (3.23)

Since Sε is convex, zε+θ(x−zε) ∈ Sε when θ > 0 is small enough. Hence, ft(zε+θ(x−zε)) ≤
√
ε
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for all t ∈ T when θ > 0 is small enough. Note that ft(zε) =
√
ε for all t ∈ T(λ). These imply

that

lim
θ↓0

ft(zε + θ(x − zε)) − ft(zε)
θ

≤ 0, t ∈ T(λ). (3.24)

So, wt(x − zε) ≤ 0 for all t ∈ T(λ). The proof is complete.

Remark 3.8. To obtain the conclusions for ε-quasisolution of (P), it needs a minor to change
in the hypothesis without any change in the proofs. Concretely, let (zε, λ) belong to S × �(T)

+

instead of Sε × �(T)
+ .

4. Applications and Discussions

We now discuss the previous results applied to a class of semi-infinite programs. For the
problem (P), in caseD is suppressed, we have the following problem

Minimize f(x)

subject to ft(x) ≤, t ∈ T,

x ∈ C.

(P1)

Similar to Definition 3.2, a pair (zε, λ) ∈ Sε ×�(T)
+ is called a generalized Karush-Kuhn-

Tucker pair up to ε corresponding to (P1) if the following condition is satisfied

(KKT1) : 0 ∈ ∂cf(zε) +
∑

t∈T
λt∂

cft(zε) +NC(zε) +
√
εB∗, ft(zε) ≥ 0, ∀t ∈ T(λ). (4.1)

Next, we can obtain some corollaries on sufficient optimality conditions for almost
ε-quasisolutions of (P1) directly from Theorems 3.4, 3.5, and 3.7 with the proofs omitted.

Corollary 4.1. For the problem (P1), let (zε, λ) ∈ Sε × �(T)
+ satisfy condition (4.1). Suppose that

f, ft, t ∈ T , are quasidifferentiable at zε. If f +
∑

t∈T λtft is ε-semiconvex at zε, then zε is an almost
ε-quasisolution of (P1).

Corollary 4.2. For the problem (P1), let (zε, λ) ∈ Sε ×�(T)
+ satisfy condition (4.1). Suppose that f is

ε-semiconvex at zε and ft, t ∈ T , are semiconvex at zε then zε, is an almost ε-quasisolution of (P1).

Corollary 4.3. For the problem (P1), let (zε, λ) ∈ Sε ×�(T)
+ satisfy condition (4.1). Suppose that f is

ε-semiconvex at zε and ft, t ∈ T , are convex on C, then zε is an almost ε-quasisolution of (P1).

Corollary 4.4. For the problem (P1), let (zε, λ) ∈ Sε × �(T)
+ satisfy condition (4.1). Suppose that

ft, t ∈ T , are quasidifferentiable at zε. If f is ε-semiconvex at zε, ft(zε) =
√
ε for all t ∈ T(λ), and the

set Sε is convex, then zε is an almost ε-quasisolution of (P1).

We note that if X is a Banach space, then the problem (P1) becomes the problem
(Q) (considered recently in [10]). In this case, we can see that Corollary 4.3 is Theorem 4.3
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presented in [10], and similar technique could also be adopted to give the proofs for the
four corollaries above whenX is a Banach space. Hence, for the nonconvex-infinite programs
considered in [10], besides the sufficient optimality condition for a point to be an almost
ε-quasisolution, we can establish some new versions of it.
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