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In my recent published paper [1] to prove Lemmas 3.1 and 5.1, an inequality involving the
single-valued normalized duality mapping J from X into 2X

∗
has been used that generally

turns out there is no certainty about its accuracy. In this erratum we fix this problem by
imposing additional assumptions in a way that the proofs of the main theorems do not
change.

We recall that a uniformly smooth Banach space X is q-uniformly smooth for q > 1 if
and only if there exists a constant βq > 0 such that, for all x, y ∈ X,

∥
∥x + y

∥
∥
q ≤ ‖x‖q + q‖x‖q−2〈y, J(x)〉 + 2βq

∥
∥y

∥
∥
q
, (1)

for more details see [2]. Therefore, if q = 2, then there exists a constant β > 0 such that

∥
∥x + y

∥
∥
2 ≤ ‖x‖2 + 2

〈

y, J(x)
〉

+ 2β
∥
∥y

∥
∥
2
. (2)

It is well known that Hilbert spaces, lp and Lp for p ≥ 2, are 2-uniformly smooth.
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Throughout the paper we suggest to impose one of the following conditions:

(a) the Banach space X is 2-uniformly smooth;

(b) there exists a constant β ∈ R
+ for which J satisfies the following inequality:

〈

y, J
(

x + y
)〉 ≤ 〈

y, J(x)
〉

+ β
∥
∥y

∥
∥
2
, (3)

for all x, y ∈ X.

Remark 1.1. If J is β-Lipschitzian, then J satisfies (3) and is norm-to-norm uniformly con-
tinues that suffices to guarantee that X is 2-uniformly smooth. For more results concerning
β-Lipschitzian normalized duality mapping see [3].

Note that since every uniformly smooth Banach space X has a Gateaux differentiable
norm and each nonempty, bounded, closed, and convex subset of X has common fixed point
property for nonexpansive mappings, we haveD(xn)∩C/= ∅ in [1]. So, whenX is 2-uniformly
smooth, we can remove these two conditions from Theorems 3.2, 4.2, and 5.2 in [1].

Considering the above discussion to complete our paper, we reprove Lemmas 3.1 and
5.1 of [1] here with some little changes.

Lemma 3.1 (see [1]). Either let X be a real Banach space, and let J be the single-valued normalized
duality mapping from X into 2X

∗
satisfing (3) or let X be a 2-uniformly smooth real Banach space.

Assume that F : X → X is η-strongly monotone and κ-Lipschitzian on X. Then

ψ(x) = I(x) − μF(x) (4)

is a contraction on X for every μ ∈ (0, η/βκ2).

Proof. If J satisfies (3), considering the inequality

∥
∥x + y

∥
∥
2 ≤ ‖x‖2 + 2

〈

y, J
(

x + y
)〉

, (5)

for all x, y ∈ X, we have

∥
∥ψx − ψy∥∥2 ≤ ∥

∥
(

I − μF)x − (

I − μF)y∥∥2 =
∥
∥
(

x − y) + μ(Fy − Fx)∥∥2

≤ ∥
∥x − y∥∥2 + 2

〈

μ
(

Fy − Fx), J((x − y) + μ(Fy − Fx))〉

≤ ∥
∥x − y∥∥2 + 2μ

〈

Fy − Fx, J(x − y)〉 + 2βμ2〈Fy − Fx, J(Fy − Fx)〉

≤ ∥
∥x − y∥∥2 − 2μ

〈

Fx − Fy, J(x − y)〉 + 2βμ2∥∥Fy − Fx∥∥∥∥J(Fy − Fx)∥∥

≤ ∥
∥x − y∥∥2 − 2μη

∥
∥x − y∥∥2 + 2βμ2∥∥Fy − Fx∥∥2

≤ ∥
∥x − y∥∥2 − 2μη

∥
∥x − y∥∥2 + 2μ2βκ2

∥
∥x − y∥∥2

≤
(

1 − 2μη + 2μ2βκ2
)∥
∥x − y∥∥2

.

(6)
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Clearly, the same inequality holds if X is a 2-uniformly smooth real Banach space.
Thus, we obtain

∥
∥ψx − ψy∥∥ ≤

√

1 − 2μ
(

η − μβκ2)∥∥x − y∥∥. (7)

With no loss of generality we can take β ≥ 1/2; therefore, if μ ∈ (0, η/βκ2), then we

have
√

1 − 2μ(η − μβκ2) ∈ (0, 1); that is, ψ is a contraction, and the proof is complete.

Also Lemma 5.1, which is easily proved in the same way as Lemma 3.1, will be as
follows.

Lemma 5.1 (see [1]). Either let X be a real Banach space, and let J be the single-valued normalized
duality mapping from X into 2X

∗
satisfing (3), or let X be a 2-uniformly smooth real Banach space.

Assume that F : X → X is η-strongly monotone and κ-Lipschitzian on X. If μ ∈ (0, η/σ2), where
σ =

√

β(κ + 2), then

ψ(x) = I(x) − μ(F + I − T)(x) (8)

is a contraction on X.

With the new imposed conditions and considering the above lemmas, the following
corrections should be done in [1]:

(1) in Theorem 3.2 and Theorem 4.2, μ ∈ (0, η/βk2);

(2) in Theorem 5.2, μ ∈ (0, η/(σ2 + 1)), where σ =
√

β(κ + 2);

(3) in Remark 5.3, μ ∈ (0, 2(η − 1)/(2σ2 − 1)), where σ =
√

β(κ + 2).

Also in [1, Corollary 4.3] the real Banach space X does not necessarily need to have
a uniformly Gateaux differentiable norm.

To avoid any ambiguity in terminology note also that η-strongly monotone mappings
in Banach spaces are usually called η-strongly accretive.
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