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We introduce a viscosity approximation method for finding a common element of the set of
solutions for an equilibrium problem involving a bifunction defined on a closed, convex subset
and the set of fixed points for a nonexpansive semigroup on another one in Hilbert’s spaces.

1. Introduction

Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Denote the metric
projection from x ∈ H onto C by PCx. Let T : C → C be a nonexpansive mapping on C, that
is, T : C → C and ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C. We use F(T) to denote the set of fixed
points of T , that is, F(T) = {x ∈ C : x = Tx}.

Let {T(s) : s > 0} be a nonexpansive semigroup on a closed convex subset C, that is,

(1) for each s > 0, T(s) is a nonexpansive mapping on C,

(2) T(0)x = x for all x ∈ C,

(3) T(s1 + s2) = T(s1) ◦ T(s2) for all s1, s2 > 0,

(4) for each x ∈ C, the mapping T(·)x from (0,∞) into C is continuous.

Denote by F =
⋂

s>0 F(T(s)). We know [1, 2] that F is a closed, convex subset inH and
F/= ∅ if C is bounded.
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The equilibrium problem is for a bifunction G(u, v) defined on C × C to find u∗ ∈ C
such that

G(u∗, v) ≥ 0, ∀v ∈ C. (1.1)

Assume that the bifunction G satisfies the following set of standard properties:

(A1) G(u, u) = 0, for all u ∈ C,

(A2) G(u, v) +G(v, u) ≤ 0 for all (u, v) ∈ C ×C,

(A3) for every u ∈ C, G(u, ·) : C → (−∞,+∞) is weakly lower semicontinuous and
convex,

(A4) limt→+0G((1 − t)u + tz, v) ≤ G(u, v), for all (u, z, v) ∈ C × C × C.

Denote the set of solutions of (1.1) by EP(G). We also know [3] that EP(G) is a closed convex
subset in H .

The problem studied in this paper is formulated as follows. Let C1 and C2 be closed
convex subsets in H . Let G(u, v) be a bifunction satisfying conditions (A1)–(A4) with C
replaced by C1 and let {T(s) : s > 0} be a nonexpansive semigroup on C2. Find an element

p ∈ EP(G) ∩ F, (1.2)

where EP(G) and F denote the set of solutions of an equilibrium problem involving by a
bifunction G(u, v) on C1 ×C1 and the fixed point set of a nonexpansive semigroup {T(s) : s >
0} on a closed convex subset C2, respectively.

In the case that C1 ≡ H ,G(u, v) = 0, C2 = C, and T(s) = T , a nonexpansive mapping on
C, for all s > 0, (1.2) is the fixed point problem of a nonexpansive mapping. In 2000, Moudafi
[4] proved the following strong convergence theorem.

Theorem 1.1. Let C be a nonempty, closed, convex subset of a Hilbert space H and let T be a
nonexpansive mapping onC such that F(T)/= ∅. Let f be a contraction onC and let {xk} be a sequence
generated by: x1 ∈ C and

xk+1 =
εk

1 + εk
f(xk) +

1
1 + εk

Txk, k ≥ 1, (1.3)

where {εk} ∈ (0, 1) satisfies

lim
k→∞

εk = 0,
∞∑

k=1

εk = ∞, lim
k→∞

∣
∣
∣
∣

1
εk+1

− 1
εk

∣
∣
∣
∣ = 0. (1.4)

Then, {xk} converges strongly to p ∈ F(T), where p = PF(T)f(p).
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Such a method for approximation of fixed points is called the viscosity approximation
method. It has been developed by Chen and Song [5] to find p ∈ F, the set of fixed points for
a semigroup {T(s) : s > 0} on C. They proposed the following algorithm: x1 ∈ C and

xk+1 = μkf(xk) +
(
1 − μk

) 1
sk

∫ sk

0
T(s)xkds, k ≥ 1, (1.5)

where f : C → C, is a contraction, {μk} ⊂ (0, 1) and {sk} are sequences of positive real
numbers satisfying the conditions: μk → 0,

∑∞
k=1 μk = ∞, and sk → ∞ as k → ∞.

Recently, Yao and Noor [6] proposed a new viscosity approximation method

xk+1 = μkf(xk) + βkxk + γkT(sk)xk, k ≥ 0, x0 ∈ C, (1.6)

where {μk}, {βk}, and {γk} are in (0, 1), sk → ∞, for finding p ∈ F, when {T(s) : s > 0}
satisfies the uniformly asymptotically regularity condition

lim
s→∞

sup
x∈C̃

‖T(t)T(s)x − T(s)x‖ = 0, (1.7)

uniformly in t, and C̃ is any bounded subset of C. Further, Plubtieng and Pupaeng in [7]
studied the following algorithm:

xk+1 = μkf(xk) + βkxk +
(
1 − βk − μk

)
∫ sk

0
T(s)xkds, k ≥ 0, x0 ∈ C, (1.8)

where {μk} and {βk} are in [0, 1] satisfying the following conditions: μk + βk < 1, limk→∞μk =
limk→∞βk = 0,

∑
k≥1 μk = ∞, and {sk} is a positive divergent real sequence.

There were some methods proposed to solve equilibrium problem (1.1); see for
instance [8–12]. In particular, Combettes and Histoaga [3] proposed several methods for
solving the equilibrium problem.

In 2007, S. Takahashi and W. Takahashi [13] combinated the Moudafi’s method with
the Combettes and Histoaga’s result in [3] to find an element p ∈ EP(G) ∩ F(T). They proved
the following strong convergence theorem.

Theorem 1.2. Let C be a nonempty, closed, convex subset of a Hilbert space H , let T be a
nonexpansive mapping on C and let G be a bifunction from C × C to (−∞,+∞) satisfying (A1)–
(A4) such that EP(G) ∩ F(T)/= ∅. Let f be a contraction on C and let {xk} and {uk} be sequences
generated by: x1 ∈ H and

G
(
uk, y

)
+

1
rk

〈
uk − xk, y − uk

〉 ≥ 0, ∀y ∈ C,

xk+1 = μkf(xk) +
(
1 − μk

)
Tuk, k ≥ 1,

(1.9)
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where {μk} ∈ (0, 1) and {rk} ⊂ (0,∞) satisfy

lim
k→∞

μk = 0,
∞∑

k=1

μk = ∞, lim inf
k→∞

rk > 0,

∞∑

k=1

∣
∣μk+1 − μk

∣
∣ < ∞,

∞∑

k=1

|rk+1 − rk| < ∞.

(1.10)

Then, {xk} and {uk} converge strongly to p ∈ EP(G) ∩ F(T), where p = PEP(G)∩F(T)f(p).

Very recently, Ceng and Wong in [14] combined algorithm (1.6) with the result in [3]
to propose the following procudure:

G
(
uk, y

)
+

1
rk

〈
uk − xk, y − uk

〉 ≥ 0, ∀y ∈ C,

xk+1 = μkf(xk) + βkxk + γkT(sk)uk, k ≥ 1,

(1.11)

for finding an element p ∈ EP(G) ∩ F in the case that C1 = C2 = C under the uniformly
asymptotic regularity condition on the nonexpansive semigroup {T(s) : s > 0} on C.

In this paper, motivated by the above results, to solve (1.2), we introduce the following
algorithm:

x1 ∈ H, any element,

uk ∈ C1 : G
(
uk, y

)
+

1
rk

〈
uk − xk, y − uk

〉 ≥ 0, ∀y ∈ C1,

xk+1 = μkf(uk) + βkxk + γkTkPC2uk, k ≥ 1,

(1.12)

where f is a contraction on H , that is, f : H → H and ‖f(x) − f(y)‖ ≤ a‖x − y‖, for all
x, y ∈ H , 0 ≤ a < 1,

Tkx =
1
sk

∫ sk

0
T(s)xds, (1.13)

for all x ∈ C2, {μk}, {βk}, and {γk} be the sequences in (0,1), and {rk}, {sk} are the sequences
in (0,∞) satisfy the following conditions:

(i) μk + βk + γk = 1,

(ii) limk→∞μk = 0,
∑

k≥1 μk = ∞,

(iii) 0 < lim infk→∞βk ≤ lim supk→∞βk < 1,

(iv) limk→∞sk = ∞with bounded supk≥1|sk − sk+1|,
(v) lim infk→∞rk > 0 and limk→∞|rk − rk+1| = 0.

The strong convergence of (1.12)-(1.13) and its corollaries are showed in the next section.
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2. Main Results

We formulate the following facts needed in the proof of our results.

Lemma 2.1. Let H be a real Hilbert space H . There holds the following identity:

∥
∥x + y

∥
∥2 ≤ ‖x‖2 + 2

〈
y, x + y

〉
, ∀x, y ∈ H. (2.1)

Lemma 2.2 (see [15]). Let C be a nonempty, closed, convex subset of a real Hilbert spaceH . For any
x ∈ H , there exists a unique z ∈ C such that ‖z − x‖ ≤ ‖y − x‖, for all y ∈ C, and z ∈ PCx if and
only if 〈z − x, y − z〉 ≥ 0 for all y ∈ C.

Lemma 2.3 (see [16]). Let {ak} be a sequence of nonnegative real numbers satisfying the following
condition:

ak+1 ≤ (1 − bk)ak + bkck, (2.2)

where {bk} and {ck} are sequences of real numbers such that bk ∈ [0, 1],
∑∞

k=1 bk = ∞, and
lim supk→∞ck ≤ 0. Then, limk→∞ak = 0.

Lemma 2.4 (see [9]). Let C be a nonempty, closed, convex subset ofH andG be a bifunction ofC×C
into (−∞,+∞) satisfying the conditions (A1)–(A4). Let r > 0 and x ∈ H . Then, there exists z ∈ C
such that

G(z, v) +
1
r
〈z − x, v − z〉 ≥ 0, ∀v ∈ C. (2.3)

Lemma 2.5 (see [9]). Assume that G : C ×C → (−∞,+∞) satisfies the conditions (A1)–(A4). For
r > 0 and x ∈ H , define a mapping Tr : H → C as follows:

Tr(x) =
{

z ∈ C : G(z, v) +
1
r
〈z − x, v − z〉 ≥ 0 , ∀v ∈ C

}

. (2.4)

Then, the following statements hold:

(i) Tr is single-valued,

(ii) Tr is firmly nonexpansive, that is, for any x, y ∈ H ,

∥
∥Tr(x) − Tr(y)

∥
∥2 ≤ 〈

Tr(x) − Tr
(
y
)
, x − y

〉
, (2.5)

(iii) F(Tr) = EP(G),

(iv) EP(G) is closed and convex.
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Lemma 2.6 (see [17]). Let C be a nonempty bounded closed convex subset in a real Hilbert space H
and let {T(s) : s > 0} be a nonexpansive semigroup on C. Then, for any h > 0,

lim sup
t→∞

sup
y∈C

∥
∥
∥
∥
∥
T(h)

(
1
t

∫ t

0
T(s)yds

)

− 1
t

∫ t

0
T(s)yds

∥
∥
∥
∥
∥
= 0. (2.6)

Lemma 2.7 (Demiclosedness Principle [18]). If C is a closed convex subset of H , T is a
nonexpansive mapping on C, {xk} is a sequence in C such that xk ⇀ x ∈ C and xk − Txk → 0, then
x − Tx = 0.

Lemma 2.8 (see [19]). Let {xk} and {zk} be bounded sequences in a Banach space E and {βk} be a
sequence in [0, 1] with 0 < lim infk→∞βk ≤ lim supk→∞βk < 1. Suppose xk+1 = βkxk + (1 − βk)zk
for all k ≥ 1 and lim supk→∞‖zk+1 − zk‖ − ‖xk+1 − xk‖ ≤ 0. Then, limk→∞‖zk − xk‖ = 0.

Now, we are in a position to prove the following result.

Theorem 2.9. LetC1 andC2 be two nonempty, closed, convex subsets in a real Hilbert spaceH . LetG
be a bifunction from C1 ×C1 to (−∞,+∞) satisfying conditions (A1)–(A4) with C replaced by C1, let
{T(s) : s > 0} be a nonexpansive semigroup on C2 such that EP(G)∩F /= ∅ and let f be a contraction
ofH into itself. Then, {xk} and {uk} generated by (1.12)-(1.13) converge strongly to p ∈ EP(G)∩F,
where p = PEP(G)∩Ff(p).

Proof. LetQ = PEP(G)∩F . Then,Qf is a contraction ofH into itself. In fact, from ‖f(x)−f(y)‖ ≤
a‖x −y‖ for all x, y ∈ H and the nonexpansive property of PC for a closed convex subset C in
H , it implies that

‖Qf(x) − Qf
(
y
)‖ ≤ ‖f(x) − f

(
y
)‖ ≤ a‖x − y‖. (2.7)

Hence, Qf is a contraction ofH into itself. SinceH is complete, there exists a unique element
p ∈ H such that p = Qf(p). Such a p is an element of C1 ∩ C2, because EP(G) ∩ F/= ∅.

By Lemma 2.4, {uk} and {xk} are well defined. For each u ∈ EP(G) ∩ F, by putting
uk = Trkxk and using (ii) and (iii) in Lemma 2.5, we have that

‖uk − u‖ = ‖Trkxk − Trku‖ ≤ ‖xk − u‖. (2.8)

PutMu = max{‖x1−u‖, (1/(1−a))‖f(u)−u‖}. Clearly, ‖x1−u‖ ≤ Mu. Suppose that ‖xk−u‖ ≤
Mu. Then, we have, from the nonexpansive property of TkPC2 , condition (i) and (2.8), that

‖xk+1 − u‖ = ‖μk

(
f(uk) − u

)
+ βk(xk − u) + γk(TkPC2uk − u)‖

≤ μk‖f(uk) − u‖ + βk‖xk − u‖ + γk‖TkPC2uk − TkPC2u‖

≤ μk

(‖f(uk) − f(u)‖ + ‖f(u) − u‖) + βk‖xk − u‖ + γk‖uk − u‖

≤ μk

(
a‖uk − u‖ + ‖f(u) − u‖) + (

1 − μk

)‖xk − u‖
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≤ (
1 − μk(1 − a)

)‖xk − u‖ + μk(1 − a)
1

1 − a
‖f(u) − u‖

≤ (
1 − μk(1 − a)

)
Mu + μk(1 − a)Mu = Mu.

(2.9)

So, ‖xk − u‖ ≤ Mu for all k ≥ 1 and hence {xk} is bounded. Therefore, {uk}, {TkPC2uk}, and
{f(uk)} are also bounded.

Next, we show that ‖xk+1−xk‖ → 0 as k → ∞. For this purpose, we define a sequence
{xk} by

xk+1 = βkxk +
(
1 − βk

)
zk. (2.10)

Then, we observe that

zk+1 − zk =
μk+1f(uk+1) + γk+1Tk+1PC2uk+1

1 − βk+1

− μkf(uk) + γkTkPC2uk

1 − βk

=
μk+1

1 − βk+1
f(uk+1) −

μk

1 − βk
f(uk)

+
γk+1

1 − βk+1
(Tk+1PC2uk+1 − Tk+1PC2uk)

+
γk+1

1 − βk+1
Tk+1PC2uk −

γk
1 − βk

TkPC2uk

=
μk+1

1 − βk+1
f(uk+1) −

μk

1 − βk
f(uk)

+
γk+1

1 − βk+1
(Tk+1PC2uk+1 − Tk+1PC2uk) + Tk+1PC2uk

− μk+1

1 − βk+1
Tk+1PC2uk − TkPC2uk +

μk

1 − βk
TkPC2uk,

(2.11)

and, hence,

‖zk+1 − zk‖ − ‖xk+1 − xk‖ ≤ μk+1

1 − βk+1

(‖f(uk+1)‖ + ‖Tk+1PC2uk‖
)

+
μk

1 − βk

(‖f(uk)‖ + ‖TkPC2uk‖
) γk+1
1 − βk+1

‖uk+1 − uk‖

+ ‖Tk+1PC2uk − TkPC2uk‖ − ‖xk+1 − xk‖.

(2.12)
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Now, we estimate the value ‖uk+1 − uk‖ by using uk = Trkxk and uk+1 = Trk+1xk+1. We have
from (2.4) that

G
(
uk, y

)
+

1
rk

〈
uk − xk, y − uk

〉 ≥ 0, ∀y ∈ C1, (2.13)

G
(
uk+1, y

)
+

1
rk+1

〈
uk+1 − xk+1, y − uk+1

〉 ≥ 0, ∀y ∈ C1. (2.14)

Putting y = uk+1 in (2.13) and y = uk in (2.14), adding the one to the other obtained result
and using (A2), we obtain that

〈
uk − xk

rk
− uk+1 − xk+1

rk+1
, uk+1 − uk

〉

≥ 0 (2.15)

and, hence,

〈

uk − uk+1 + uk+1 − xk − rk
rk+1

(uk+1 − xk+1), uk+1 − uk

〉

≥ 0. (2.16)

Without loss of generality, let us assume that there exists a real number b such that rk > b > 0
for all k ≥ 1. Then, we have

‖uk+1 − uk‖2 ≤
〈

xk+1 − xk +
(

1 − rk
rk+1

)

(uk+1 − xk+1), uk+1 − uk

〉

≤
(

‖xk+1 − xk‖ +
∣
∣
∣
∣1 −

rk
rk+1

∣
∣
∣
∣‖uk+1 − xk+1‖

)

‖uk+1 − uk‖
(2.17)

and, hence,

‖uk+1 − uk‖ ≤ ‖xk+1 − xk‖ + 1
rk+1

|rk+1 − rk|‖uk+1 − xk+1‖

≤ ‖xk+1 − xk‖ + 2Mu

b
|rk+1 − rk|.

(2.18)

On the other hand,

‖TkPC2uk − Tk+1PC2uk‖

=
∥
∥
∥
∥
1
sk

∫ sk

0
T(s)PC2ukds − 1

sk+1

∫ sk+1

0
T(s)PC2ukds

∥
∥
∥
∥

=
∥
∥
∥
∥
1
sk

∫ sk

0
[T(s)PC2uk − T(s)PC2u]ds −

1
sk+1

∫sk+1

0
[T(s)PC2uk − T(s)PC2u]ds

∥
∥
∥
∥
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=

∥
∥
∥
∥
∥

(
1
sk

− 1
sk+1

)∫ sk+1

0
[T(s)PC2uk − T(s)PC2u]ds +

1
sk

∫ sk

sk+1

[T(s)PC2uk − T(s)PC2u]ds

∥
∥
∥
∥
∥

≤
∣
∣
∣
∣
1
sk

− 1
sk+1

∣
∣
∣
∣sk+1Mu +

|sk − sk+1|
sk

Mu

≤
supk≥1|sk+1 − sk|

sk
2Mu.

(2.19)

So, we get from (2.10), (2.12), (2.18), (2.19), and the nonexpansive property of Tk+1PC2 that

‖zk+1 − zk‖ − ‖xk+1 − xk‖ ≤ μk+1

1 − βk+1

(‖f(uk+1)‖ + ‖Tk+1PC2uk‖
)

+
μk

1 − βk

(‖f(uk)‖ + ‖TkPC2uk‖
)

+
γk+12Mu

(
1 − βk+1

)
b
|rk+1 − rk| +

supk≥1|sk+1 − sk|
sk

2Mu.

(2.20)

So,

lim sup
k→∞

‖zk+1 − zk‖ − ‖xk+1 − xk‖ ≤ 0, (2.21)

and by Lemma 2.8, we have

lim
k→∞

‖zk − xk‖ = 0. (2.22)

Consequently, it follows from (2.10) and condition (iii) that

lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

(
1 − βk

)‖zk − xk‖ = 0. (2.23)

By (2.18), (2.23), and

lim
k→∞

|rk − rk+1| = 0, (2.24)

we also obtain

lim
k→∞

‖uk+1 − uk‖ = 0. (2.25)
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We have, for every u ∈ EP(G) ∩ F, from (iii) in Lemma 2.5, that

‖uk − u‖2 = ‖Trkxk − Trku‖2

≤ 〈Trkxk − Trku, xk − u〉
= 〈uk − u, xk − u〉

=
1
2

[
‖uk − u‖2 + ‖xk − u‖2 − ‖uk − xk‖2

]

(2.26)

and, hence,

‖uk − u‖2 ≤ ‖xk − u‖2 − ‖uk − xk‖2. (2.27)

Therefore, from the convexity of ‖ · ‖2 and condition (i), we have

‖xk+1 − u‖2 ≤ μk

∥
∥f(uk) − u

∥
∥2 + βk‖xk − u‖2 + γk‖TkPC2uk − u‖2

≤ μk

∥
∥f(uk) − u

∥
∥2 + βk‖xk − u‖2 + γk‖uk − u‖2

≤ μk

∥
∥f(uk) − u

∥
∥2 + βk‖xk − u‖2 + γk

(
‖xk − u‖2 − ‖uk − xk‖2

)

≤ μk

∥
∥f(uk) − u

∥
∥2 +

(
1 − μk

)‖xk − u‖2 − γk‖uk − xk‖2

≤ μk

∥
∥f(uk) − u

∥
∥ + ‖xk − u‖2 − γk‖uk − xk‖2

(2.28)

and, hence,

γk‖uk − xk‖2 ≤ μk‖f(uk) − u‖ + ‖xk − u‖2 − ‖xk+1 − u‖2

≤ μk‖f(uk) − u‖ + 2Mu‖xk − xk+1‖.
(2.29)

Without loss of generality, we assume that 0 < β∗ ≤ βk ≤ β̃ < 1 for all k ≥ 1. Then, for
sufficiently large k,

0 ≤
(
1 − β̃ − μk

)
‖uk − xk‖2 ≤ μk‖f(uk) − u‖ + 2Mu‖xk − xk+1‖. (2.30)

So, we have

lim
k→∞

‖uk − xk‖ = 0. (2.31)
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Further, since xk+1 = μkf(uk) + βkxk + γkTkPC2uk, by condition (i), (2.19) and

xk+1 − Tk+1PC2uk+1 = μkf(uk) + βkxk + γkTkPC2uk

− (
μk + βk + γk

)
TkPC2uk + TkPC2uk − Tk+1PC2uk+1

= μk

(
f(uk) − TkPC2uk

)
+ βk(xk − TkPC2uk)

+ TkPC2uk − Tk+1PC2uk+1,

(2.32)

we obtain that

‖xk+1 − Tk+1PC2uk+1‖ ≤ μk‖f(uk) − TkPC2uk‖ + βk‖xk − TkPC2uk‖

+ ‖uk+1 − uk‖ +
supk≥1|sk+1 − sk|

sk
2Mu.

(2.33)

Then, from (2.25), (2.33) and the conditions on {μk} and {sk}, it implies that

(
1 − β̃

)
lim sup

k→∞
‖xk − TkPC2uk‖ ≤ 0, (2.34)

and so

lim sup
k→∞

‖xk − TkPC2uk‖ ≤ 0. (2.35)

Since

‖TkPC2uk − uk‖ ≤ ‖TkPC2uk − xk‖ + ‖xk − uk‖, (2.36)

we obtain from (2.31) that

lim
k→∞

‖TkPC2uk − uk‖ = 0. (2.37)

Next, we show that

lim sup
k→∞

〈
f
(
p
) − p, xk − p

〉 ≤ 0. (2.38)

We choose a subsequence {uki} of the sequence {uk} such that

lim sup
k→∞

〈
f
(
p
) − p, xk − p

〉
= lim

i→∞
〈
f
(
p
) − p, xki − p

〉
. (2.39)

As {uk} is bounded, there exists a subsequence {ukj} of the sequence {uki} which converges
weakly to z. From (2.37), we also have that {TkjPC2ukj} convergesweakly to z. Since {uk} ⊂ C1

and {TkPC2uk} ⊂ C2 and C1, C2 are two closed convex subsets inH , we have that z ∈ C1 ∩C2.
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First, we prove that z ∈ EP(G). From (2.4) it follows that

G
(
uk, y

)
+

1
rk

〈
uk − xk, y − uk

〉 ≥ 0, ∀y ∈ C1, (2.40)

and, hence, by using condition (A2), we get

1
rk

〈
uk − xk, y − uk

〉 ≥ G
(
y, uk

)
, ∀y ∈ C1. (2.41)

Therefore,

〈
ukj − xkj

rkj
, y − ukj

〉

≥ G
(
y, ukj

)
, ∀y ∈ C1. (2.42)

This together with condition (A3) and (2.31) imply that

0 ≥ G
(
y, z

)
, ∀y ∈ C1. (2.43)

So, G(z, y) ≥ 0 for all y ∈ C1. It means that z ∈ EP(G).
Next we show that z ∈ F. Since TkPC2uk ∈ C2, we have

‖TkPC2uk − PC2uk‖ = ‖PC2TkPC2uk − PC2uk‖
≤ ‖TkPC2uk − uk‖,

(2.44)

and, hence, from (2.31) it follows that

lim
k→∞

‖TkPC2uk − PC2uk‖ = 0. (2.45)

Thus, (2.37) together with (2.45) imply

lim
k→∞

‖uk − PC2uk‖ = 0. (2.46)

Therefore, {PC2ukj} also converges weakly to z, as j → ∞.
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On the other hand, for each h > 0, we have that

‖T(h)PC2uk − PC2uk‖ ≤
∥
∥
∥
∥T(h)PC2uk − T(h)

(
1
sk

∫ sk

0
T(s)PC2ukds

)∥
∥
∥
∥

+
∥
∥
∥
∥T(h)

(
1
sk

∫ sk

0
T(s)PC2ukds

)

− 1
sk

∫ sk

0
T(s)PC2ukds

∥
∥
∥
∥

+
∥
∥
∥
∥
1
sk

∫ sk

0
T(s)PC2ukds − PC2uk

∥
∥
∥
∥

≤ 2
∥
∥
∥
∥
1
sk

∫ sk

0
T(s)PC2ukds − PC2uk

∥
∥
∥
∥

+
∥
∥
∥
∥T(h)

(
1
sk

∫ sk

0
T(s)PC2ukds

)

− 1
sk

∫ sk

0
T(s)PC2ukds

∥
∥
∥
∥.

(2.47)

Let C0
2 = {x ∈ C2 : ‖x − p‖ ≤ Mp}. Since p = PF∩EQ(G)f(p) ∈ C2, we have from (2.33) that

‖PC2uk − p‖ = ‖PC2uk − PC2p‖ ≤ ‖uk − p‖ ≤ ‖xk − p‖ ≤ Mp. (2.48)

So, C0
2 is a nonempty bounded closed convex subset. It is easy to verify that {T(s) : s > 0} is

a nonexpansive semigroup on C0
2. By Lemma 2.6, we get

lim
k→∞

∥
∥
∥
∥T(h)

(
1
sk

∫ sk

0
T(s)PC2ukds

)

− 1
sk

∫ sk

0
T(s)PC2ukds

∥
∥
∥
∥ = 0, (2.49)

for every fixed h > 0, and hence, by (2.45)–(2.47), we obtain

lim
n→∞

‖T(h)PC2uk − uk‖ = 0 (2.50)

for each h > 0. By Lemma 2.7, z ∈ F(T(h)PC2) = F(T(h)) for all h > 0, because F(TPC) =
F(T) for any mapping T : C → C. It means that z ∈ F. Therefore, z ∈ F ∩ EP(G). Since
p = PEP(G)∩Ff(p), we have from Lemma 2.2 that

lim sup
k→∞

〈
f
(
p
) − p, xk − p

〉
= lim

i→∞
〈
f
(
p
) − p, xki − p

〉

=
〈
f
(
p
) − p, z − p

〉 ≤ 0.
(2.51)
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So, (2.38) is proved. Further, since xk+1 − p = μk(f(uk) − p) + βk(xk − p) + γk(TkPC2uk − p), by
using Lemma 2.1, we have that

∥
∥xk+1 − p

∥
∥2 ≤ ∥

∥βk(xk − p) + γk(TkPC2uk − p)
∥
∥2 + 2μk

〈
f(uk) − p, xk+1 − p

〉

≤ (
βk‖xk − p‖ + γk‖uk − p‖)2 + 2μk

〈
f(uk) − f

(
p
)
, xk+1 − p

〉

+ 2μk

〈
f
(
p
) − p, xk+1 − p

〉

≤ (
1 − μk

)2∥∥xk − p
∥
∥2 + 2μka‖uk − p‖‖xk+1 − p‖

+ 2μk

〈
f
(
p
) − p, xk+1 − p

〉

≤ (
1 − μk

)2∥∥xk − p
∥
∥2 + μka

[∥
∥uk − p

∥
∥2 +

∥
∥xk+1 − p

∥
∥2
]

+ 2μk

〈
f
(
p
) − p, xk+1 − p

〉
.

(2.52)

This with (2.8) implies that

∥
∥xk+1 − p

∥
∥2 ≤

(
1 − μk

)2 + μka

1 − μka

∥
∥xk − p

∥
∥2 +

2μk

1 − μka

〈
f
(
p
) − p, xk+1 − p

〉

=
1 − 2μk + μka

1 − μka

∥
∥xk − p

∥
∥2 +

μ2
k

1 − μka

∥
∥xk − p

∥
∥2

+
2μk

1 − μka

〈
f
(
p
) − p, xk+1 − p

〉

=
(

1 − 2(1 − a)μk

1 − μka

)
∥
∥xk − p

∥
∥2 +

2(1 − a)μk

1 − μka

×
[

μkM2
p

2(1 − a)
+

1
1 − a

〈
f
(
p
) − p, xk+1 − p

〉
]

= (1 − bk)‖xk − p‖2 + bkck,

(2.53)

where

bk =
2(1 − a)μk

1 − μka
, ck =

[
μkM2

p

2(1 − a)
+

1
1 − a

〈
f
(
p
) − p, xk+1 − p

〉
]

. (2.54)

Using Lemma 2.3, we get

lim
k→∞

‖xk − p‖ = 0. (2.55)

From (2.33) it follows that uk → p as k → ∞. This completes the proof.
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Remarks. (a)Note that the following parameters μk = 1/(3+k), βk = μk+1/4, γk = −2μk+3/4,
rk = μk + a0 for any fixed number a0 > 0, and sk = (b0k + c0)with b0, c0 > 0 for all k ≥ 1 satisfy
all conditions in Theorem 2.9.

(b) If T(s) = T for all s > 0 and C1 = C2 = C, then we have the following corollary.

Corollary 2.10. Let C be a nonempty, closed, convex subsets in a real Hilbert space H . Let G be a
bifunction fromC×C to (−∞,+∞) satisfying conditions (A1)–(A4), let T be a nonexpansive mapping
on C such that EP(G) ∩ F(T)/= ∅ and let f be a contraction of H into itself. Let {xk} and {uk} be
sequences generated by x1 ∈ H and

uk ∈ C, G
(
uk, y

)
+

1
rk

〈
uk − xk, y − uk

〉 ≥ 0, ∀y ∈ C,

xk+1 = μkf(uk) + βkxk + γkTuk, k ≥ 1,

(2.56)

where {μk}, {βk}, {γk}, and {rk} satisfy conditions (i)–(v). Then, {xk} and {uk} converge strongly
to p ∈ EP(G) ∩ F(T), where p = PEP(G)∩F(T)f(p).

Proof. From the proof of the theorem, ‖TkPC2uk−1 − Tk−1PC2uk−1‖ = ‖Tuk−1 − Tuk−1‖ = 0 in
(2.12).

(c) In the case that C1 = C2 = C, a closed convex subset in H , G(u, v) = 0 for all
(u, v) ∈ C × C, we have the following result.

Corollary 2.11. Let C be a nonempty, closed, convex subsets in a real Hilbert space H . Let {T(s) :
s > 0} be a nonexpansive semigroup on C such that F/= ∅ and let f be a contraction of H into itself.
Let {xk} and {uk} be sequences generated by x1 ∈ H and

uk = PCxk,

xk+1 = μkf(uk) + βkxk + γkTkuk, k ≥ 1,
(2.57)

where Tkx is defined by (1.13) for all x ∈ C and {μk}, {βk}, {γk}, and {sk} satisfy conditions (i)–(v).
Then, the sequences {xk} and {uk} converge strongly to p ∈ F, where p = PFf(p).

Proof. By Lemma 2.2, uk = PCxk if and only if

〈
uk − xk, y − uk

〉 ≥ 0, ∀y ∈ C. (2.58)

Clearly, in addition, if f is a contraction of C into itself and x1 ∈ C, then we obtain the
algoritm

xk+1 = μkf(xk) + βkxk + γkTkxk, k ≥ 1, (2.59)

where Tk is defined by (1.13) and {μk}, {βk}, {γk}, and {sk} satisfy conditions (i)–(v). This
algorithm is different from Yao and Noor’s algorithm (1.6), in which Tkx = T(sk)x for all
x ∈ C. It likes completely the Plubtieng and Punpaeng’s algorithm (1.8), but converges under
a new condition on {βk}.
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