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We generalize and modify Lefschetz sets defined in 1976 by L. Górniewicz, which leads to more
general results in fixed point theory.

1. Introduction

In 1976 L. Górniewicz introduced a notion of a Lefschetz set for multivalued admissible
maps. The paper attempts at showing that Lefschetz sets can be defined on a broader class of
multivaluedmaps than admissible maps. This definition can be presented in many ways, and
each time it is the generalization of the definition from 1976. These generalizations essentially
broaden the class of admissible maps that have a fixed point. Also, they are a homologic
tool for examining fixed points for a class of multivalued maps broader than just admissible
maps.

2. Preliminaries

Throughout this paper all topological spaces are assumed to be metric. Let H∗ be the C̆ech
homology functor with compact carriers and coefficients in the field of rational numbers Q

from the category of Hausdorff topological spaces and continuous maps to the category of
graded vector spaces and linear maps of degree zero. Thus H∗(X) = {Hq(X)} is a graded
vector space, Hq(X) being the q-dimensional C̆ech homology group with compact carriers
of X. For a continuous map f : X → Y , H∗(f) is the induced linear map f∗ = {fq}, where
fq : Hq(X) → Hq(Y ) (see [1, 2]). A space X is acyclic if

(i) X is nonempty,

(ii) Hq(X) = 0 for every q ≥ 1,

(iii) H0(X) ≈ Q.
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A continuous mapping f : X → Y is called proper if for every compact set K ⊂ Y the set
f−1(K) is nonempty and compact. A proper map p : X → Y is called Vietoris provided that
for every y ∈ Y the set p−1(y) is acyclic. Let X and Y be two spaces, and assume that for
every x ∈ X a nonempty subset ϕ(x) of Y is given. In such a case we say that ϕ : X � Y is a
multivalued mapping. For a multivalued mapping ϕ : X � Y and a subsetU ⊂ Y , we let:

ϕ−1(U) =
{
x ∈ X; ϕ(x) ⊂ U}

. (2.1)

If for every open U ⊂ Y the set ϕ−1(U) is open, then ϕ is called an upper semicontinuous
mapping; we will write that ϕ is u.s.c.

Proposition 2.1 (see [1, 2]). Assume that ϕ : X � Y and ψ : Y � T are u.s.c. mappings with
compact values and p : Z → X is a Vietoris mapping. Then

(2.1.1) for any compact A ⊂ X, the image ϕ(A) =
⋃
x∈A ϕ(x) of the set A under ϕ is a compact

set;

(2.1.2) the composition ψ ◦ ϕ : X � T , (ψ ◦ ϕ)(x) = ⋃
y∈ϕ(x) ψ(y), is an u.s.c. mapping;

(2.1.3) the mapping ϕp : X � Z, given by the formula ϕp(x) = p−1(x), is u.s.c..

Let ϕ : X � Y be a multivalued map. A pair (p, q) of single-valued, continuous maps
is called a selected pair of ϕ (written (p, q) ⊂ ϕ) if the following two conditions are satisfied:

(i) p is a Vietoris map,

(ii) q(p−1(x)) ⊂ ϕ(x) for any x ∈ X.

Definition 2.2. A multivalued mapping ϕ : X � Y is called admissible provided that there
exists a selected pair (p, q) of ϕ.

Proposition 2.3 (see [2]). Let ϕ : X � Y and ψ : Y � Z be two admissible maps. Then the
composition ψ ◦ ϕ : X � Z is an admissible map.

Proposition 2.4 (see [2]). Let ϕ : X � Y and ψ : Z � T be admissible maps. Then the map
ϕ × ψ : X × Z � Y × T is admissible.

Proposition 2.5 (see [2]). If ϕ : X � Y is an admissible map, Y0 ⊂ Y , and X0 = ϕ−1(Y0), then the
contraction ϕ0 : X0 � Y0 of ϕ to the pair (X0, Y0) is an admissible map.

Proposition 2.6 (see [1]). If p : X → Y is a Vietoris map, then an induced mapping

p∗ : H∗(X) −→ H∗(Y ) (2.2)

is a linear isomorphism.

Let u : E → E be an endomorphism of an arbitrary vector space. Let us put N(u) =
{x ∈ E : un(x) = 0 for some n}, where un is the nth iterate of u and Ẽ = E/N(u). Since
u(N(u)) ⊂N(u), we have the induced endomorphism ũ : Ẽ → Ẽ defined by ũ([x]) = [u(x)].
We call u admissible provided that dim Ẽ <∞.
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Let u = {uq} : E → E be an endomorphism of degree zero of a graded vector space
E = {Eq}. We call u a Leray endomorphism if

(i) all uq are admissible,

(ii) almost all Ẽq are trivial.

For such a u, we define the (generalized) Lefschetz number Λ(u) of u by putting

Λ(u) =
∑

q

(−1)q tr(ũq
)
, (2.3)

where tr(ũq) is the ordinary trace of ũq (cf. [1]). The following important property of a
Leray endomorphism is a consequence of a well-known formula tr(u ◦ v) = tr(v ◦ u) for
the ordinary trace. An endomorphism u : E → E of a graded vector space E is called
weakly nilpotent if for every q ≥ 0 and for every x ∈ Eq, there exists an integer n such that
unq(x) = 0. Since for a weakly nilpotent endomorphism u : E → E we haveN(u) = E, we get
the following.

Proposition 2.7. If u : E → E is a weakly nilpotent endomorphism, then Λ(u) = 0.

Proposition 2.8. Assume that in the category of graded vector spaces the following diagram
commutes

E′

E′

u′

u

u

v
u′′

E′′

E′′

(2.4)

If one of u′,u′′ is a Leray endomorphism, then so is the other and Λ(u′) = Λ(u′′).

Let ϕ : X � X, be an admissible map. Let (p, q) ⊂ ϕ, where p : Z → X is a Vietoris
mapping and q : Z → X a continuous map. Assume that q∗ ◦ p−1∗ : H∗(X) → H∗(X) is a
Leray endomorphism for all pairs (p, q) ⊂ ϕ. For such a ϕ, we define the Lefschetz set Λ(ϕ) of
ϕ by putting

Λ
(
ϕ
)
=
{
Λ
(
q∗p−1∗

)
;
(
p, q

) ⊂ ϕ
}
. (2.5)

Let X0 ⊂ X and let ϕ : (X,X0) � (X,X0) be an admissible map. We define two admissible
maps ϕX : X � X given by ϕX(x) = ϕ(x) for all x ∈ X and ϕX0 : X0 � X0 ϕX0(x) =
ϕ(x) for all x ∈ X0. Let (p, q) ⊂ ϕX , where p : Z → X is a Vietoris mapping and
q : Z → X a continuous map. We shall denote by p̃ : (Z, p−1(X0)) → (X,X0) p̃(z) = p(z),
q̃ : (Z, p−1(X0)) → (X,X0) q̃(z) = q(z) for all z ∈ Z, p : p−1(X0) → X0 p(z) = p(z), and
q : p−1(X0) → X0 q(z) = q(z) for all z ∈ p−1(X0). We observe that (p̃, q̃) ⊂ ϕ and (p, q) ⊂ ϕX0 .
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Proposition 2.9 (see [2]). Let ϕ : (X,X0) � (X,X0) be an admissible map of pairs and (p, q) ⊂
ϕX . If any two of the endomorphisms q̃∗p̃−1∗ : H(X,X0) → H(X,X0), q∗p−1∗ : H(X) → H(X),
q∗p

−1
∗ : H(X0) → H(X0) are Leray endomorphisms, then so is the third and

Λ
(
q̃∗p̃−1∗

)
= Λ

(
q∗p−1∗

)
−Λ

(
q∗p

−1
∗
)
. (2.6)

Proposition 2.10 (see [2]). If ϕ : X � Y and ψ : Y � T are admissible, then the composition
ψ ◦ ϕ : X � T is admissible, and for every (p1, q1) ⊂ ϕ and (p2, q2) ⊂ ψ there exists a pair
(p, q) ⊂ ψ ◦ ϕ such that q2∗p−12∗ ◦ q1∗p−11∗ = q∗p−1∗ .

Definition 2.11. An admissible map ϕ : X � X is called a Lefschetz map provided that the
Lefschetz set Λ(ϕ) of ϕ is well defined and Λ(ϕ)/= {0} implies that the set Fix(ϕ) = {x ∈ X :
x ∈ ϕ(x)} is nonempty.

Definition 2.12. Let E be a topological vector space. One shall say that E is a Klee admissible
space provided that for any compact subsetK ⊂ E and for any open cover α ∈ CovE(K) there
exists a map

πα : K −→ E (2.7)

such that the following two conditions are satisfied:

(2.12.1) for each x ∈ K there exists V ∈ α such that x, πα(x) ∈ V ,

(2.12.2) there exists a natural number n = nK such that πα(K) ⊂ En, where En is an n-
dimensional subspace of E.

Definition 2.13. One shall say that E is locally convex provided that for each x ∈ E and for
each open set U ⊂ E such that x ∈ U there exists an open and convex set V ⊂ E such that
x ∈ V ⊂ U.

It is clear that if E is a normed space, then E is locally convex.

Proposition 2.14 (see [1, 2]). Let E be locally convex. Then E is a Klee admissible space.

Let Y be a metric space, and let IdY : Y → Y be a map given by formula IdY (y) = y
for each y ∈ Y .

Definition 2.15 (see [3]). Amap r : X → Y of a spaceX onto a space Y is said to be anmr-map
if there is an admissible map ϕ : Y � X such that r ◦ ϕ = IdY .

Definition 2.16 (see [3, 4]). A metric space X is called an absolute multiretract (notation: X ∈
AMR) provided there exists a locally convex space E and an mr-map r : E → X from E onto
X.

Definition 2.17 (see [3, 4]). A metric space X is called an absolute neighborhood multiretract
(notation: X ∈ ANMR) provided that there exists an open subset U of some locally convex
space E and an mr-map r : U → X fromU onto X.
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Proposition 2.18 (see [3, 4]). A space X is an ANMR if and only if there exists a metric space Z
and a Vietoris map p : Z → X which factors through an open subsetU of some locally convex E, that
is, there are two continuous maps α and β such that the following diagram is commutative.

Z
p

X

β
α

U

(2.8)

Proposition 2.19 (see [3]). Let X ∈ ANMR, and let V ⊂ X be an open set. Then V ∈ ANMR.

Proposition 2.20 (see [3]). Assume thatX is ANMR. LetU be an open subset inX and ϕ : U � U
an admissible and compact map, then ϕ is a Lefschetz map.

Let ϕX : X � X be a map. Then

ϕnX =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

IdX, for n = 0,

ϕX, for n = 1,

ϕX ◦ ϕX ◦ · · · ◦ ϕX(n-iterates) for n > 1.

(2.9)

We denote multivalued maps with ϕXY : X � Y , and ψZ : Z � Z. If a nonempty set
A ⊂ X, a nonempty set B ⊂ Y and ϕXY (A) ⊂ B then a multivalued map ϕAB : A � B given
by ϕAB(x) = ϕXY (x) for each x ∈ X.

Definition 2.21 (see [5]). A multivalued map ϕXY : X � Y is called locally admissible
provided for any compact and nonempty set K ⊂ X there exists an open set V ⊂ X such
that K ⊂ V and ϕVX : V � X is admissible.

Proposition 2.22 (see [5]). Let ϕXY : X � Y and ψYZ : Y � Z be locally admissible maps. Then
the map ΦXZ = (ψYZ ◦ ϕXY ) : X � Z is locally admissible.

Proposition 2.23 (see [5]). Let A ⊂ X be a nonempty set, and let ϕXY : X � Y be a locally
admissible map. Then a map ϕAY : A � Y is locally admissible.

Definition 2.24 (see [2, 5]). A multivalued map ϕX : X � X is called a compact absorbing
contraction (written ϕX ∈ CAC(X)) provided there exists an open setU ⊂ X such that

(2.24.1) ϕX(U) ⊂ U and the ϕU : U � U, ϕU(x) = ϕX(x) for every x ∈ X is compact
(ϕX(U) ⊂ U),

(2.24.2) for every x ∈ X there exists n = nx such that ϕnX(x) ⊂ U.

Proposition 2.25 (see [3]). Let ϕX : X � X be an admissible map, X ∈ ANMR, and ϕX ∈
CAC(X) then ϕX is a Lefschetz map.
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Proposition 2.26 (see [5]). Let ϕX ∈ CAC(X), and letU ⊂ X be an open set from Definition 2.24.

(2.26.1) Let B be a nonempty set in X and ϕX(B) ⊂ B. ThenU ∩ B /= ∅.
(2.26.2) For any n ∈ N ϕnX ∈ CAC(X).

(2.26.3) Let V ⊂ X be a nonempty and open set. Assume that ϕX(V ) ⊂ V . Then ϕV ∈ CAC(V).

3. Main result

Let X be a metric space, ϕX : X � X a multivalued map, and let

ΩAD
(
ϕ
)
=
{
V ⊂ X : V is open, ϕV : V � V is admissible, ϕV (V ) ⊂ V

}
. (3.1)

Obviously the above family of sets can be empty. Thus we can define the following class of
multivalued maps:

ADL =
{
ϕX : X � X, ΩAD

(
ϕ
)
/= ∅}. (3.2)

All the admissible maps ϕX : X � X particularly belong to the above class of maps because
X ∈ ΩAD(ϕ). We shall remind that the multivalued map ϕX : X � X is called acyclic
if for every x ∈ X the set ϕX(x) is nonempty, acyclic, and compact. It is known from the
mathematical literature that an acyclic map is admissible and the maps

r, s : Γ → X given by r
(
x, y

)
= x, s

(
x, y

)
= y for every

(
x, y

) ∈ Γ, (3.3)

where Γ = {(x, y) ∈ X × Y ;y ∈ ϕX(x)}, are a selective pair (r, s) ⊂ ϕX .
Moreover, for an acyclic map ϕX : X � X, if the homomorphism s∗r−1∗ : H∗(X) →

H∗(X) is a Leray endomorphism, then Lefschetz set Λ(ϕX) consists of only one element and

Λ
(
ϕX

)
=
{
Λ
(
s∗r−1∗

)}
. (3.4)

For a certain class of multivalued maps ϕX ∈ ADL we define a generalized Lefschetz set
ΛG(ϕX) of a map ϕX in such a way that the conditions of the following definition are satisfied.

Let ϕV : V → V be an admissible map. One shall say that a set Λ(ϕV ) is well defined
if for every (p, q) ⊂ ϕV the map q∗p−1∗ : H∗(V ) → H∗(V ) is a Leray endomorphism.

Definition 3.1. Assume that there exists a nonempty family of sets ΥAD(ϕ) ⊂ ΩAD(ϕ) such that
if for any V ∈ ΥAD(ϕ) Λ(ϕV ) is well defined, then the following conditions are satisfied:

(3.1.1) if ϕX : X � X is acyclic, then ΛG(ϕX) = {Λ(s∗r−1∗ )} (see (3.3)),
(3.1.2) if ϕX : X � X is admissible, then X ∈ ΥAD(ϕ) and

(
Λ
(
ϕX

)
/= {0}) =⇒

(
ΛG(ϕX

)
/= {0}

)
, (3.5)

(3.1.3) (ΛG(ϕX)/= {0}) ⇒ (there exists V ∈ ΥAD(ϕ) such that Λ(ϕV )/= {0}).
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From the above definition it in particular results that (see (3.1.1)) if f : X → X is a single-
valued map, continuous and Λ(f) is well defined, then

ΛG(f
)
= Λ

(
f
)
. (3.6)

We shall present a few examples proving that Lefschetz sets can be defined in many ways
while retaining the conditions contained in Definition 3.1.

Example 3.2. Let ϕX : X � X be an admissible map, and let ΥAD(ϕ) = {X}. If Λ(ϕX) is well
defined, then we define

ΛG(ϕX
)
= Λ

(
ϕX

)
. (3.7)

The above example consists of Lefschetz set definitions common in mathematical literature
and introduced by L. Górniewicz.

Example 3.3. Let ϕX : X � X be an admissible map, and let ΥAD(ϕ) be a family of sets
V ∈ ΩAD(ϕ) such that there exists (p, q) ⊂ ϕV and there exists (p, q) ⊂ ϕX such that the
following diagram

H∗(V )

H∗(V )

q∗(p∗)
−1 q∗p−1∗

H∗(X)

H∗(X)
u∗

u∗

υ∗ (3.8)

is commutative. It is obvious that X ∈ ΥAD(ϕ), hence ΥAD(ϕ)/= ∅. Assume that for any V ∈
ΥAD(ϕ) Λ(ϕV) is well defined. We define

ΛG(ϕX
)
=

⋃

V∈ΥAD(ϕ)
Λ
(
ϕV

)
. (3.9)

Justification 1

Let us notice that if ϕX is acyclic, then from the commutativity of the above diagram it results
that for every V ∈ ΥAD(ϕ) Λ(ϕV ) = {Λ(s∗r−1∗ ))}, hence ΛG(ϕV ) = {Λ(s∗r−1∗ ))}. The second
and third conditions of Definition 3.1 are obvious.

Let A ⊂ X be a nonempty set, and let

Oε(A) =
{
x ∈ X; there exists y ∈ A such that d

(
x, y

)
< ε

}
, (3.10)

where d is metric in X.
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Example 3.4. Let (X, d) be a metric space, where d is a metric such that, for each (x, y) ∈
X ×X d(x, y) ≤ 1, let ϕX : X � X be a multivalued map and let K = ϕX(X). Let

ΥAD
(
ϕ
)
=
{
V ∈ ΩAD

(
ϕ
)
: V = O2/n(K) for some n

}
. (3.11)

Assume that ΥAD(ϕ)/= ∅ and for all V ∈ ΩAD(ϕ) Λ(ϕV ) is well defined. We define

ΛG(ϕX
)
= Λ

(
ϕU

)
, where

U = O2/k(K), k = min
{
n ∈N;O2/n(K) ∈ ΥAD

(
ϕ
)}
.

(3.12)

Justification 2

The first condition of Definition 3.1 results from the commutativity of the following diagram:

q∗(p∗)
−1 q∗p−1∗

H∗(X)

u∗

u∗

υ∗

H∗(X),

H∗(U)

H∗(U)

(3.13)

where u∗ = i∗ is a homomorphism determined by the inclusions i : U → X, v∗ = q∗p
−1
∗ .

The maps p, q are the respective contractions of maps p, q, (p, q) ⊂ ϕX . Condition
(3.1.2) results from the fact that X = O2(K) ∈ ΥAD(ϕ) and

ΛG(ϕX
)
= Λ

(
ϕO2(K)

)
= Λ

(
ϕX

)
. (3.14)

Satisfying Condition (3.1.3) is obvious.

Before the formulation of another example, let us introduce the following definition
and provide necessary theorems.

Definition 3.5. Let ϕX : X � X be a map. One shall say that a nonempty set B ⊂ X has an
absorbing property (writes B ∈ AP(ϕ)) if for each x ∈ X there exists a natural number n such
that ϕnX(x) ⊂ B.

Let ΘAD(ϕ) = ΩAD(ϕ) ∩ AP(ϕ). We observe that if ϕX : X � X is admissible then
ΘAD(ϕ)/= ∅ since X ∈ ΘAD(ϕ).

Theorem 3.6 (see [2]). Let ϕX : X � X be an admissible map. Then for any V ∈ ΘAD(ϕ) and for
all (p, q) ⊂ ϕX the homomorphism

q̃∗p̃
−1
∗ : H∗(X,V ) −→ H∗(X,V ) (3.15)

is weakly nilpotent (see Proposition 2.9), where p̃, q̃ denote a respective contraction of p, q.
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Theorem 3.7. Let ϕX : X � X be an admissible map. Assume that for each V ∈ ΘAD(ϕ) Λ(ϕV ) is
well defined. Then

Λ
(
ϕX

)
=

⋂

V∈ΘAD(ϕ)
Λ
(
ϕV

)
.

(3.16)

Proof. Let V ∈ ΘAD(ϕ), (p, q) ⊂ ϕX , and let Λ(q∗p−1∗ ) = c0. We observe that a map q̃∗p̃−1∗ :
H∗(X,V ) � H∗(X,V ) ((p̃, q̃) ⊂ ϕ, ϕ : (X,V ) � (X,V )) is weakly nilpotent so from
Propositions 2.7 and 2.9 Λ(q∗p−1∗ ) = Λ(q∗p

−1
∗ ) = c0, where (p, q) ⊂ ϕV and p, q denote a

respective contraction of p, q. Hence c0 ∈ Λ(ϕV ) and Λ(ϕX) ⊂ ⋂
V∈ΘAD(ϕ) Λ(ϕV ). It is clear

that X ∈ ΘAD(ϕ) and the proof is complete.

Example 3.8. Let ϕX : X � X be a multivalued map, and let

ΥAD
(
ϕ
)
= ΘAD

(
ϕ
)
. (3.17)

Assume that the following conditions are satisfied:

(3.8.1) ΥAD(ϕ)/= ∅,
(3.8.2) for all V ∈ ΥAD(ϕ) Λ(ϕV ) is well defined,

(3.8.3)
⋂
V∈ΥAD(ϕ) Λ(ϕV )/= ∅.

We define

ΛG(ϕX
)
=

⋂

V∈ΥAD(ϕ)
Λ
(
ϕV

)
. (3.18)

Justification 3

Condition (3.1.1) results from Proposition 2.7 and Theorem 3.6. Let us notice that if a map
ϕX : X � X is admissible, then X ∈ ΥAD(ϕ) and from Theorem 3.7 we get

ΛG(ϕX
)
= Λ

(
ϕX

)
, (3.19)

and condition (3.1.2) is satisfied. Condition (3.1.3) is obvious.

It is crucial to notice that the definition of Lefschetz set encompassed in this example
agrees in the class of admissible maps with the familiar definition of a Lefschetz set
introduced by L. Górniewicz. It is possible to create an example (see [5]) of a multivalued
map ϕX : X � X that is not admissible and satisfies the conditions of Example 3.8.

Example 3.9. Let ϕX : X � X be a multivalued map, and let

ΥAD
(
ϕ
)
= ΘAD

(
ϕ
)
. (3.20)

Assume that the following conditions are satisfied:

(3.9.1) ΥAD(ϕ)/= ∅,
(3.9.2) for all V ∈ ΥAD(ϕ) Λ(ϕV ) is well defined.
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We define

ΛG(ϕX
)
=

⋃

V∈ΥAD(ϕ)
Λ
(
ϕV

)
. (3.21)

Justification 4

Condition (3.1.1) results from Proposition 2.7 and Theorem 3.6. If a map ϕX : X � X is
admissible, then X ∈ ΥAD(ϕ) and hence condition (3.1.2) is satisfied. Condition (3.1.3) is
obvious.

The definition of a Lefschetz set in Example 3.9 is much more general than the
definition in Example 3.8, and as consequence it encompasses a broader class of maps. This
definition ignores the inconvenient assumption (3.8.3).

Let us define a Lefschetz map by the application of the new Lefschetz set definition.

Definition 3.10. One shall say that a map ϕX ∈ ADL is a general Lefschetz map provided that
the following conditions are satisfied:

(3.10.1) there exists ΥAD(ϕ)/= ∅ such that conditions (3.1.1)–(3.1.3) are satisfied,

(3.10.2) for any V ∈ ΥAD(ϕ) Λ(ϕV ) is well defined.

We will formulate, and then prove, a very general fixed point theorem.

Theorem 3.11. Let X ∈ ANMR. Assume that the following conditions are satisfied:

(3.11.1) ϕX ∈ CAC(X) (see Definiation 2.24),

(3.11.2) there exists ΥAD(ϕ)/= ∅ such that conditions (3.1.1)–(3.1.3) are satisfied.

Then ϕX is a general Lefschetz map, and if ΛG(ϕX)/= {0} then Fix(ϕX)/= ∅.

Proof. From the assumption ΥAD(ϕ)/= ∅, thus we show that for all V ∈ ΥAD(ϕ) Λ(ϕV ) is well
defined. Let V ∈ ΥAD(ϕ), then from (2.26.3) ϕV ∈ CAC(V), so from Propositions 2.19 and
2.25 Λ(ϕV ) is well defined. Assume that ΛG(ϕX)/= {0}, then from (3.1.3) there exists V ′ ∈
ΥAD(ϕ) such that Λ(ϕV ′)/= {0}. By the application of (2.26.3), Propositions 2.19, and 2.25, we
get ∅/= Fix(ϕV ′) ⊂ Fix(ϕX) and the proof is complete.

The following is a conclusion from Theorem 3.11.

Corollary 3.12. Let X ∈ ANMR, ϕX : X � X be locally admissible (not necessarily admissible),
and let ϕX ∈ CAC(X). Then ϕX is a general Lefschetz map, and if ΛG(ϕX)/= {0} then Fix(ϕX)/= ∅.

Proof. Let U ⊂ X be an open set from Definition 2.24, and let K = ϕU(U) ⊂ U. We define
ΥAD(ϕ) = ΘAD(ϕ) (see Examples 3.8 and 3.9). The map ϕX is locally admissible, so there
exists an open set V ⊂ X such that K ⊂ V and ϕVX : V � X is admissible. We observe that
U ∩ V ∈ ΥAD(ϕ) since ϕU∩V : U ∩ V � U ∩ V is admissible, compact and (U ∩ V ) ∈ AP(ϕ),
hence ΥAD(ϕ)/= ∅. If we define a generalized Lefschetz set now as in Example 3.9, then from
Theorem 3.11 we get a thesis.
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Finally we shall provide an example which shows that the new Lefschetz set definition
is more general than the definition of Lefschetz set for admissible maps already familiar in
mathematical literature.

Example 3.13 (see [5]). Let C be a complex number set, and let f : C \ {0} → C \ {0} be
single-valued continuous and compact map. Assume that Fix(f) = ∅, and choose an open set
V such that f(C \ {0}) ⊂ V ⊂ C\{0}. Let g : V → V be a compact (g(V ) ⊂ V ) and continuous
map such that Λ(g)/= 0. We define a multivalued map ϕC\{0} : C \ {0} � C \ {0} given by
formula

ϕC\{0}(z) =

⎧
⎨

⎩

f(z), for z /∈ V,
{
f(z), g(z)

}
for z ∈ V.

(3.22)

The map ϕC\{0} is admissible, so ΥAD(ϕ) = ΘAD(ϕ)/= ∅ (see Examples 3.8 and 3.9). Let

ΛG(ϕ
)
=

⋃

U∈ΥAD(ϕ)
Λ
(
ϕU

)
. (3.23)

(see Example 3.9). We observe that

Λ
(
ϕC\{0}

)
= {0} (3.24)

since the only selective pair is the pair (IdC\{0}, f) ⊂ ϕC\{0}, but

Fix
(
f
)
= ∅. (3.25)

It is clear that V ∈ ΥAD(ϕ) and Λ(ϕV )/= {0}, since from the assumption Λ(g)/= 0. Hence

ΛG(ϕX
)
/= {0}, ∅/= Fix

(
ϕV

) ⊂ Fix
(
ϕC\{0}

)
. (3.26)
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