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We introduce implicit and explicit viscosity iterative algorithms for a finite family of m-accretive
operators. Strong convergence theorems of the iterative algorithms are established in a reflexive
Banach space which has a weakly continuous duality map.

1. Introduction

Let E be a real Banach space, and let J denote the normalized duality mapping from E into
2E

∗
given by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥∥f∥∥2

}
, x ∈ E, (1.1)

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality pairing. In the
sequel, we denote a single-valued normalized duality mapping by j.

Let K be a nonempty subset of E. Recall that a mapping f : K → K is said to be a
contraction if there exists a constant α ∈ (0, 1) such that

∥∥f(x) − f
(
y
)∥∥ ≤ α

∥∥x − y
∥∥, ∀x, y ∈ K. (1.2)

Recall that a mapping T : K → K is said to be nonexpansive if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ K. (1.3)
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A point x ∈ K is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of T ,
that is, F(T) = {x ∈ K : Tx = x}. Given a real number t ∈ (0, 1) and a contraction f : C → C,
we define a mapping

T
f
t x = tf(x) + (1 − t)Tx, x ∈ K. (1.4)

It is obviously that Tf
t is a contraction on K. In fact, for x, y ∈ K, we obtain

∥∥∥Tf
t x − T

f
t y

∥∥∥ ≤ ∥∥t(f(x) − f
(
y
))

+ (1 − t)
(
Tx − Ty

)∥∥

≤ αt
∥∥x − y

∥∥ + (1 − t)
∥∥Tx − Ty

∥∥

≤ αt
∥∥x − y

∥∥ + (1 − t)
∥∥x − y

∥∥

= (1 − t(1 − α))
∥∥x − y

∥∥.

(1.5)

Let xt be the unique fixed point of Tf
t , that is, xt is the unique solution of the fixed point

equation

xt = tf(xt) + (1 − t)Txt. (1.6)

A special case has been considered by Browder [1] in a Hilbert space as follows. Fix
u ∈ C and define a contraction St on K by

Stx = tu + (1 − t)Tx, x ∈ K. (1.7)

We use zt to denote the unique fixed point of St, which yields that zt = tu+ (1− t)Tzt. In 1967,
Browder [1] proved the following theorem.

Theorem B. In a Hilbert space, as t → 0, zt converges strongly to a fixed point of T , that is, closet
to u, that is, the nearest point projection of u onto F(T).

In [2], Moudafi proposed a viscosity approximation method which was considered by
many authors [2–8]. If H is a Hilbert space, T : K → K is a nonexpansive mapping and
f : K → K is a contraction, he proved the following theorems.

Theorem M 1. The sequence {xn} generated by the following iterative scheme:

xn =
1

1 + εn
Txn +

εn
1 + εn

f(xn) (1.8)

converges strongly to the unique solution of the variational inequality

x ∈ F(T), such that
〈(
I − f

)
x, x − x

〉 ≤ 0, ∀x ∈ F(T), (1.9)

where {εn} is a sequence of positive numbers tending to zero.
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Theorem M 2. With and initial z0 ∈ C defined the sequence {zn} by

zn+1 =
1

1 + εn
Tzn +

εn
1 + εn

f(zn). (1.10)

Suppose that limn→∞εn = 0, and
∑∞

n=1 ε = ∞ and limn→∞|1/εn+1 − 1/ε| = 0. Then, {zn} converges
strongly to the unique solution of the unique solutions of the variational inequality

x ∈ F(T), such that
〈(
I − f

)
x, x − x

〉 ≤ 0, ∀x ∈ F(T). (1.11)

Recall that a (possibly multivalued) operatorAwith domainD(A) and range R(A) in
E is accretive if for each xi ∈ D(A) and yi ∈ Axi (i = 1, 2), there exists a j(x2 −x1) ∈ J(x2 −x1)
such that

〈
y2 − y1, j(x2 − x1)

〉 ≥ 0. (1.12)

An accretive operator A is m-accretive if R(I + rA) = E for each r > 0. The set of zeros
of A is denoted byN(A). Hence,

N(A) = {z ∈ D(A) : 0 ∈ A(z)} = A−1(0). (1.13)

For each r > 0, we denote by Jr the resolvent of A, that is, Jr = (I + rA)−1. Note that if A
is m-accretive, then Jr : E → E is nonexpansive and F(Jr) = N(A), for all r > 0. We also
denote by Ar the Yosida approximation of A, that is, Ar = (1/r)(I − Jr). It is known that Jr is
a nonexpansive mapping from E to D(A).

Recently, Kim and Xu [9] and Xu [10] studied the sequence generated by the following
iterative algorithm:

x0 ∈ K, xn+1 = αnu + (1 − αn)Jrnxn, n ≥ 0, (1.14)

where {αn} is a real sequence [0, 1] and Jrn = (I+rA)−1. They obtained the strong convergence
of the iterative algorithm in the framework of uniformly smooth Banach spaces and reflexive
Banach space, respectively. Xu [10] also studied the following iterative algorithm by viscosity
approximation method

x0 ∈ K, xn+1 = αnf(xn) + (1 − αn)Txn, n ≥ 0, (1.15)

where {αn} is a real sequence [0, 1], f : K → K is a contractive mapping, and T : K → K is
a nonexpansive mapping with a fixed point. Strong convergence theorems of fixed points are
obtained in a uniformly smooth Banach space; see [10] for more details.

Very recently, Zegeye and Shahzad [11] studied the common zero problem of a family
ofm-accretive mappings. To be more precise, they proved the following result.

Theorem ZS. Let E be a strictly convex and reflexive Banach space with a uniformly Gâteaux
differentiable norm, K a nonempty, closed, convex subset of E, and Ai : K → E (i = 1, 2, . . . , r)
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a family of m-accretive mappings with
⋂r

i=1 N(Ai)/= ∅. For any u, x0 ∈ K, let {xn} be generated by
the algorithm

xn+1 := αnu + (1 − αn)Srxn, n ≥ 0, (1.16)

where {αn}is a real sequence which satisfies the following conditions: limn→∞αn = 0;
∑∞

n=0 αn = ∞;∑∞
n=0 |αn − αn−1| < ∞ or limn→∞(|αn − αn−1|/αn) = 0 and Sr := a0I + a1JA1 + a2JA2 + · · · + arJAr

with JAi := (I + Ai)
−1 for 0 < ai < 1 for i = 0, 1, 2, . . . , r and

∑r
i=0 ai = 1. If every nonempty,

closed, bounded convex subset of E has the fixed point property for a nonexpansive mapping, then
{xn} converges strongly to a common solution of the equations Aix = 0 for i = 1, 2, . . . , r.

In this paper, motivated by the recent work announced in [3, 5, 9, 11–20], we consider
the following implicit and explicit iterative algorithms by the viscosity approximation
method for a finite family of m-accretive operators {A1, A2, . . . , Ar}. The algorithms are as
following:

x0 ∈ K, xn = αnf(xn) + (1 − αn)Srxn, n ≥ 0, (1.17)

x0 ∈ K, xn+1 = αnf(xn) + (1 − αn)Srxn, n ≥ 0, (1.18)

where Sr := a0I + a1JA1 + a2JA2 + · · · + arJAr with 0 < ai < 1 for i = 0, 1, 2, . . . , r,
∑r

i=0 ai = 1 and
{αn} is a real sequence in [0, 1]. It is proved that the sequence {xn} generated in the iterative
algorithms (1.17) and (1.18) converges strongly to a common zero point of a finite family of
m-accretive mappings in reflexive Banach spaces, respectively.

2. Preliminaries

The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.1)

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. It is said to be uniformly Fréchet
differentiable (and E is said to be uniformly smooth) if the limit in (2.1) is attained uniformly for
(x, y) ∈ U ×U.

A Banach space E is said to be strictly convex if, for ai ∈ (0, 1), i = 1, 2, . . . , r, such that∑r
i=1 ai = 1,

‖a1x1 + a2x2 + · · · + arxr‖ < 1, ∀xi ∈ E, i = 1, 2, . . . , r, (2.2)

with ‖xi‖ = 1, i = 1, 2, . . . , r, and xi /=xj for some i /= j. In a strictly convex Banach space E, we
have that, if

‖x1‖ = ‖x2‖ = · · · = ‖xr‖ = ‖a1x1 + a2x2 + · · · + arxr‖ (2.3)

for xi ∈ E, ai ∈ (0, 1), i = 1, 2, . . . , r, where
∑r

i=1 ai = 1, then x1 = x2 = · · · = xr (see [21]).
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Recall that a gauge is a continuous strictly increasing function ϕ : [0,∞) → [0,∞)
such that ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. Associated to a gauge ϕ is the duality map
Jϕ : E → E∗ defined by

Jϕ(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖ϕ(‖x‖), ‖x∗‖ = ϕ(‖x‖)}, x ∈ E. (2.4)

Following Browder [22], we say that a Banach space E has a weakly continuous duality map if
there exists a gauge ϕ for which the duality map Jϕ(x) is single valued and weak-to-weak∗

sequentially continuous (i.e., if {xn} is a sequence in E weakly convergent to a point x, then
the sequence Jϕ(xn) converges weakly∗ to Jϕx). It is known that lp has a weakly continuous
duality map for all 1 < p < ∞ with the gauge ϕ(t) = tp−1. In the case where ϕ(t) = t for all
t > 0, we write the associated duality map as J and call it the (normalized) duality map. Set

Φ(t) =
∫ t

0
ϕ(τ)dτ, ∀t ≥ 0, (2.5)

then

Jϕ(x) = ∂Φ(‖x‖), ∀x ∈ E, (2.6)

where ∂ denotes the subdifferential in the sense of convex analysis. It also follows from (2.5)
that Φ is convex and Φ(0) = 0.

In order to prove our main results, we also need the following lemmas.
The first part of the next lemma is an immediate consequence of the subdifferential

inequality, and the proof of the second part can be found in [23].

Lemma 2.1. Assume that E has a weakly continuous duality map Jϕ with the gauge ϕ.

(i) For all x, y ∈ E and jϕ(x + y) ∈ Jϕ(x + y), there holds the inequality

Φ
(∥∥x + y

∥∥) ≤ Φ(‖x‖) + 〈
y, jϕ

(
x + y

)〉
. (2.7)

In particular, for x, y ∈ E and j(x + y) ∈ J(x + y),

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
. (2.8)

(ii) For λ ∈ R and for nonzero x ∈ E,

Jϕ(λx) = sgn(λ)
(
ϕ(|λ|/‖x‖)

‖x‖
)
J(x). (2.9)

Lemma 2.2 (see [24]). Let E be a Banach space satisfying a weakly continuous duality map, letK be
a nonempty, closed, convex subset of E, and let T : K → K be a nonexpansive mapping with a fixed
point. Then, I − T is demiclosed at zero, that is, if {xn} is a sequence in K which converges weakly to
x and if the sequence {(I − T)xn} converges strongly to zero, then x = Tx.
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Lemma 2.3 (see [11]). LetK be a nonempty, closed, convex subset of a strictly convex Banach space
E. Let Ai : K → E, i = 1, 2, . . . , r, be a family of m-accretive mappings such that

⋂r
i=1 N(Ai)/= ∅.

Let a0, a1, a2, . . . , ar be real numbers in (0, 1) such that
∑r

i=0 ai = 1 and Sr := a0I + a1JA1 + a2JA2 +
· · · + arJAr , where JAi := (I +Ai)

−1. Then, Sr is nonexpansive and F(Sr) =
⋂r

i=1 N(Ai).

Lemma 2.4 (see [25]). Let
∑∞

n=0{αn} be a sequence of nonnegative real numbers satisfying the
condition

αn+1 ≤
(
1 − γn

)
αn + γnσn, n ≥ 0, (2.10)

where {γn}∞n=0 ⊂ (0, 1) and {σn}∞n=0 such that
(i) limn→∞γn = 0 and

∑∞
n=0 γn = ∞,

(ii) either lim supn→∞σn ≤ 0 or
∑∞

n=0 |γnσn| < ∞.

Then {αn}∞n=0 converges to zero.

3. Main Results

Theorem 3.1. Let E be a strictly convex and reflexive Banach space which has a weakly continuous
duality map Jϕ with the gauge ϕ. Lek K be a nonempty, closed, convex subset of E and f : K → K
a contractive mapping with the coefficient α (0 < α < 1). Let {Ai}ri=1 : K → E be a family of m-
accretive mappings with

⋂r
i=1 N(Ai)/= ∅. Let JAi := (I+Ai)

−1, for each i = 1, 2, . . . , r. For any x0 ∈ K,
let {xn} be generated by the algorithm (1.17), where Sr := a0I + a1JA1 + a2JA2 + · · · + arJAr with
0 < ai < 1 for i = 0, 1, 2, . . . , r,

∑r
i=0 ai = 1 and {αn} is a sequence in [0, 1]. If limn→∞‖xn −Srxn‖ =

0, then {xn} converges strongly to a common solution x∗ of the equations Aix = 0 for i = 1, 2, . . . , r,
which solves the following variational inequality:

〈(
I − f

)
x∗, J

(
p − x∗)〉 ≥ 0, p ∈ F(Sr). (3.1)

Proof. From Lemma 2.3, we see that Sr is a nonexpansive mapping and

F(Sr) =
r⋂
i=1

N(Ai)/= ∅. (3.2)

Notice that Φ is convex. From Lemma 2.1, for any fixed p ∈ F(Sr) =
⋂r

i=1 N(Ai), we have

Φ
(∥∥xn − p

∥∥) = Φ
(∥∥αn

(
f(xn) − f

(
p
))

+ αn

(
f
(
p
) − p

)
+ (1 − αn)

(
Srxn − p

)∥∥)

≤ Φ
(∥∥αn

(
f(xn) − f

(
p
))

+ (1 − αn)
(
Srxn − p

)∥∥) + αn

〈
f
(
p
) − p, Jϕ

(
xn − p

)〉

≤ [1 − αn(1 − α)]Φ
(∥∥xn − p

∥∥) + αn

〈
f
(
p
) − p, Jϕ

(
xn − p

)〉
,

(3.3)

which in turn implies that

Φ
(∥∥xn − p

∥∥) ≤ 1
1 − α

〈
f
(
p
) − p, Jϕ

(
xn − p

)〉
. (3.4)



Fixed Point Theory and Applications 7

Note that (3.4) actually holds for all duality maps Jϕ; in particular, if we take the normalized
duality J (in which case, we have Φ(r) = (1/2)r2), then we get

∥∥xn − p
∥∥2 ≤ 2

1 − α

〈
f
(
p
) − p, J

(
xn − p

)〉
(3.5)

that is,

∥∥xn − p
∥∥ ≤ 2

1 − α

∥∥f(p) − p
∥∥. (3.6)

This implies that the sequence {xn} is bounded. Now assume that x∗ is a weak limit point of
{xn} and a subsequence {xnj} of {xn} converges weakly to x∗. Then, by Lemma 2.2, we see
that x∗ is a fixed point of Sr . Hence, x∗ ∈ ⋂r

i=1 N(Ai). In (3.4), replacing xn with xnj and p
with x∗, respectively, and taking the limit as j → ∞, we obtain from the weak continuity of
the duality map Jϕ that

lim
j→∞

Φ
(∥∥∥xnj − x∗

∥∥∥
)
≤ 0. (3.7)

Hence, we have xnj → x∗.
Next, we show that x∗ solves the variation inequality (3.1). For p ∈ F(Sr) =

⋂r
i=1 N(Ai),

we obtain

Φ
(∥∥xn − p

∥∥) = Φ
(∥∥αn

(
f(xn) − xn

)
+ αn

(
xn − p

)
+ (1 − αn)

(
Srxn − p

)∥∥)

≤ Φ
(∥∥αn

(
xn − p

)
+ (1 − αn)

(
Srxn − p

)∥∥) + αn

〈
f(xn) − xn, Jϕ

(
xn − p

)〉

≤ Φ
(∥∥xn − p

∥∥) + αn

〈
f(xn) − xn, Jϕ

(
xn − p

)〉
,

(3.8)

which implies that

〈
xn − f(xn), Jϕ

(
xn − p

)〉 ≤ 0. (3.9)

Replacing xn with xnj in (3.9) and passing through the limit as j → ∞, we conclude that

〈
x∗ − f(x∗), Jϕ

(
x∗ − p

)〉
= lim

j→∞

〈
xnj − f

(
xnj

)
, Jϕ

(
xnj − p

)〉
≤ 0. (3.10)

It follows from Lemma 2.1 that J(x∗ − p) is a positive-scalar multiple of Jϕ(x∗ − p). We,
therefore, obtain that x∗ is a solution to (3.1).

Finally, we prove that the full sequence {xn} actually converges strongly to x∗. It
suffices to prove that the variational inequality (3.1) can have only one solution. This is an
easy consequence of the contractivity of f . Indeed, assume that both u ∈ F(Sr) =

⋂r
i=1 N(Ai)

and v ∈ F(Sr) =
⋂r

i=1 N(Ai) are solutions to (3.1). Then, we see that

〈(
I − f

)
u, J(u − v)

〉 ≤ 0,
〈(
I − f

)
v, J(v − u)

〉 ≤ 0. (3.11)
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Adding them yields that

〈(
I − f

)
u − (

I − f
)
v, J(u − v)

〉 ≤ 0. (3.12)

This implies that

0 ≥ 〈(
I − f

)
u − (

I − f
)
v, J(u − v)

〉 ≥ (1 − α)‖u − v‖2 ≥ 0, (3.13)

which guarantees u = v. So, (3.1) can have at most one solution. This completes the proof.

Next, we shall consider the explicit algorithm (1.18) which is rephrased below, the
initial guess z0 ∈ K is arbitrary and

zn+1 = αnf(zn) + (1 − αn)Srzn, n ≥ 0. (3.14)

We need the strong convergence of the implicit algorithm (1.17) to prove the strong
convergence of the explicit algorithm (3.14).

Theorem 3.2. Let E be a strictly convex and reflexive Banach space which has a weakly continuous
duality map Jϕ with the gauge ϕ. Lek K be a nonempty, closed, convex subset of E and f : K → K a
contractive mapping. Let {Ai}ri=1 : K → E be a family ofm-accretive mappings with

⋂r
i=1 N(Ai)/= ∅.

Let JAi := (I +Ai)
−1 for each i = 1, 2, . . . , r. For any x0 ∈ K, let {xn} be generated by the algorithm

(1.18), where Sr := a0I + a1JA1 + a2JA2 + · · · + arJAr with 0 < ai < 1 for i = 0, 1, 2, . . . , r,∑r
i=0 ai = 1, and {αn} is a sequence in [0, 1] which satisfies the following conditions: limn→∞αn = 0

and
∑∞

n=0 αn = ∞. Assume also that

(i) limn→∞‖zn − Srzn‖ = 0,

(ii) {xn} converges strongly to x∗ ∈ ⋂r
i=1 N(Ai), where {xn} is the sequence generated by the

implicity algorithm (1.17).

Then, {zn} converges strongly to x∗, which solves the variational inequality (3.1).

Proof. From Lemma 2.3, we obtain that Sr is a nonexpansive mapping and

F(Sr) =
r⋂
i=1

N(Ai)/= ∅. (3.15)

We observe that {zn}∞n=0 is bounded. Indeed, take p ∈ F(Sr) =
⋂r

i=1 N(Ai) and notice that

∥∥zn+1 − p
∥∥ =

∥∥αn

(
f(zn) − p

)
+ (1 − αn)

(
Srzn − p

)∥∥

≤ αn

(∥∥f(zn) − f
(
p
)∥∥ +

∥∥f(p) − p
∥∥) + (1 − αn)

∥∥zn − p
∥∥

= [1 − αn(1 − α)]
∥∥zn − p

∥∥ + αn

∥∥f(p) − p
∥∥

≤ max

{∥∥zn − p
∥∥,

∥∥f(p) − p
∥∥

1 − α

}
.

(3.16)
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By simple inductions, we have

∥∥zn − p
∥∥ ≤ max

{∥∥z0 − p
∥∥,

∥∥p − f
(
p
)∥∥

1 − α

}
, (3.17)

which gives that the sequence {zn} is bounded, so are {f(zn)} and {Srzn}. From (1.17), we
have

xm − zn = αm

[
f(xm) − zn

]
+ (1 − αm)(Srxm − zn). (3.18)

This implies that

‖xm − zn‖2 ≤ (1 − αm)2‖Srxm − zn‖2 + 2αm

〈
f(xm) − zn, J(xm − zn)

〉

= (1 − αm)2‖Srxm − Srzn + Srzn − zn‖2 + 2αm

〈
f(xm) − xm, J(xm − zn)

〉

+ 2αm〈xm − zn, J(xm − zn)〉

≤ (1 − αm)2(‖xm − zn‖ + ‖Srzn − zn‖)2 + 2αm

〈
f(xm) − xm, J(xm − zn)

〉

+ 2αm‖xm − zn‖2

≤
(
1 + α2

m

)
‖xm − zn‖2 + ‖Srzn − zn‖(‖Srzn − zn‖ + 2‖xm − zn‖)

+ 2αm

〈
f(xm) − xm, J(xm − zn)

〉
,

(3.19)

which in turn implies that

〈
f(xm) − xm, J(zn − xm)

〉 ≤ αm‖xm − zn‖2 + ‖Srzn − zn‖
αm

(‖Srzn − zn‖ + 2‖xm − zn‖). (3.20)

It follows from limn→∞‖Srzn − zn‖ = 0 that

lim sup
n→∞

〈
f(xm) − xm, J(zn − xm)

〉 ≤ lim sup
n→∞

αm‖xm − zn‖2. (3.21)

From the assumption xm → x∗ and the weak continuity of Jϕ imply that,

J(xm − zn) =
‖xm − zn‖

ϕ(‖xm − zn‖)Jϕ(xm − zn) ⇀
‖x∗ − zn‖

ϕ(‖x∗ − zn‖)Jϕ(x
∗ − zn) = J(x∗ − zn). (3.22)

Letting m → ∞ in (3.21), we obtain that

lim sup
n→∞

〈
f(x∗) − x∗, J(zn − x∗)

〉 ≤ 0. (3.23)
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Finally, we show the sequence {zn} converges stongly to x∗. Observe that

zn+1 − x∗ = αn

(
f(zn) − x∗) + (1 − αn)(Srzn − x∗). (3.24)

It follows from Lemma 2.1 that

‖zn+1 − x∗‖2 ≤ (1 − αn)2‖Srzn − x∗‖2 + 2αn

〈
f(zn) − x∗, J(zn+1 − x∗)

〉

≤ (1 − αn)2‖zn − x∗‖2 + 2αn

〈
f(zn) − f(x∗), J(zn+1 − x∗)

〉

+ 2αn

〈
f(x∗) − x∗, J(zn+1 − x∗)

〉

≤ (1 − αn)2‖zn − x∗‖2 + αnα
(
‖zn − x∗‖2 + ‖zn+1 − x∗‖2

)

+ 2αn

〈
f(x∗) − x∗, J(zn+1 − x∗)

〉
,

(3.25)

which yields that

‖zn+1 − x∗‖2 ≤ (1 − αn)2 + ααn

1 − ααn
‖zn − x∗‖2 + 2αn

1 − ααn

〈
f(x∗) − x∗, J(zn+1 − x∗)

〉

≤
[
1 − 2αn(1 − α)

1 − ααn

]
‖zn − x∗‖2 + 2αn

1 − ααn

〈
f(x∗) − x∗, J(zn+1 − x∗)

〉
+Mα2

n

≤
[
1 − 2αn(1 − α)

1 − ααn

]
‖zn − x∗‖2 + 2αn(1 − α)

1 − ααn

×
[

1
1 − α

〈
f(x∗) − x∗, J(zn+1 − x∗)

〉
+M

(1 − ααn)αn

2(1 − α)

]
,

(3.26)

where M is a appropriate constant such that M ≥ supn≥0{‖zn − x∗‖2/(1 − ααn)}. In view of
Lemma 2.4, we can obtain the desired conclusion easily. This completes the proof.

As an application of Theorems 3.1 and 3.2, we have the following results for a single
mapping.

Corollary 3.3. Let E be a reflexive Banach space which has a weakly continuous duality map Jϕ with
the gauge ϕ. LekK be a nonempty, closed, convex subset of E and f : K → K a contractive mapping
with the coefficient α (0 < α < 1). Let A : K → E be a m-accretive mapping with N(A)/= ∅. Let
JA := (I +A)−1. For any x0 ∈ K, let {xn} be generated by the following iterative algorithm:

x0 ∈ K, xn = αnf(xn) + (1 − αn)JAxn, n ≥ 0. (3.27)

Then, {xn} converges strongly to a solution of the equations Ax = 0.

Corollary 3.4. Let E be a reflexive Banach space which has a weakly continuous duality map Jϕ with
gauge ϕ. Let K be a nonempty, closed, convex subset of E and f : K → K a contractive mapping.
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Let A : K → E be a m-accretive mappings with N(A)/= ∅. Let JA := (I +A)−1. For any x0 ∈ K, let
{xn} be generated by the following algorithm:

x0 ∈ K, xn+1 = αnf(xn) + (1 − αn)JAxn, n ≥ 0, (3.28)

where {αn} is a sequence in [0, 1] which satisfies the following conditions: limn→∞αn = 0 and∑∞
n=0 αn = ∞. Also assume that

(i) limn→∞‖zn − S1zn‖ = 0,

(ii) {xn} converges strongly to x∗, where {xn} is the sequence generated by the implicity scheme
(3.27) and x∗ ∈ N(A).

Then, the sequence {zn} generated by the following iterative algorithm

zn+1 = αnf(zn) + (1 − αn)JAzn, n ≥ 0 (3.29)

converges strongly to a solution x∗ of the equation Ax = 0.
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