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The purpose of this paper is to introduce and investigate two kinds of iterative algorithms for
the problem of finding zeros of maximal monotone operators. Weak and strong convergence
theorems are established in a real Hilbert space. As applications, we consider a problem of finding
a minimizer of a convex function.

1. Introduction

Let C be a nonempty, closed, and convex subset of a real Hilbert space H . In this paper, we
always assume that T : C → 2H is a maximal monotone operator. A classical method to solve
the following set-valued equation:

0 ∈ Tx (1.1)

is the proximal point method. To be more precise, start with any point x0 ∈ H , and update
xn+1 iteratively conforming to the following recursion:

xn ∈ xn+1 + λnTxn+1, ∀n ≥ 0, (1.2)

where {λn} ⊂ [λ,∞) (λ > 0) is a sequence of real numbers. However, as pointed out in [1], the
ideal form of the method is often impractical since, in many cases, to solve the problem (1.2)



2 Fixed Point Theory and Applications

exactly is either impossible or has the same difficulty as the original problem (1.1). Therefore,
one of the most interesting and important problems in the theory of maximal monotone
operators is to find an efficient iterative algorithm to compute approximate zeros of T .

In 1976, Rockafellar [2] gave an inexact variant of the method

x0 ∈ H, xn + en+1 ∈ xn+1 + λnTxn+1, ∀n ≥ 0, (1.3)

where {en} is regarded as an error sequence. This is an inexact proximal point method. It was
shown that, if

∞∑

n=0
‖en‖ < ∞, (1.4)

the sequence {xn} defined by (1.3) converges weakly to a zero of T provided that T−1(0)/= ∅.
In [3], Güler obtained an example to show that Rockafellar’s inexact proximal point method
(1.3) does not converge strongly, in general.

Recently, many authors studied the problems of modifying Rockafellar’s inexact
proximal point method (1.3) in order to strong convergence to be guaranteed. In 2008, Ceng
et al. [4] gave new accuracy criteria to modified approximate proximal point algorithms in
Hilbert spaces; that is, they established strong and weak convergence theorems for modified
approximate proximal point algorithms for finding zeros of maximal monotone operators
in Hilbert spaces. In the meantime, Cho et al. [5] proved the following strong convergence
result.

Theorem CKZ 1. Let H be a real Hilbert space, Ω a nonempty closed convex subset of H , and
T : Ω → 2H a maximal monotone operator with T−1(0)/= ∅. Let PΩ be the metric projection ofH onto
Ω. Suppose that, for any given xn ∈ H , λn > 0, and en ∈ H , there exists xn ∈ Ω conforming to the
following set-valued mapping equation:

xn + en ∈ xn + λnTxn, (1.5)

where {λn} ⊂ (0,+∞) with λn → ∞ as n → ∞ and

∞∑

n=1

‖en‖2 < ∞. (1.6)

Let {αn} be a real sequence in [0, 1] such that

(i) αn → 0 as n → ∞,

(ii)
∑∞

n=0 αn = ∞.

For any fixed u ∈ Ω, define the sequence {xn} iteratively as follows:

xn+1 = αnu + (1 − αn)PΩ(xn − en), ∀n ≥ 0. (1.7)

Then {xn} converges strongly to a zero z of T , where z = limt→∞Jtu.
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They also derived the following weak convergence theorem.

Theorem CKZ 2. Let H be a real Hilbert space, Ω a nonempty closed convex subset of H , and
T : Ω → 2H a maximal monotone operator with T−1(0)/= ∅. Let PΩ be the metric projection ofH onto
Ω. Suppose that, for any given xn ∈ H , λn > 0, and en ∈ H , there exists xn ∈ Ω conforming to the
following set-valued mapping equation:

xn + en ∈ xn + λnTxn, (1.8)

where lim infn→∞λn > 0 and

∞∑

n=0

‖en‖2 < ∞. (1.9)

Let {αn} be a real sequence in [0, 1] with lim supn→∞αn < 1, and define a sequence {xn} iteratively
as follows:

x0 ∈ Ω, xn+1 = αnxn + βnPΩ(xn − en), ∀n ≥ 0, (1.10)

where αn + βn = 1 for all n ≥ 0. Then the sequence {xn} converges weakly to a zero x∗ of T .

Very recently, Qin et al. [6] extended (1.7) and (1.10) to the iterative scheme

x0 ∈ H, xn+1 = αnu + βnPC(xn − en) + γnPCfn, ∀n ≥ 0, (1.11)

and the iterative one

x0 ∈ C, xn+1 = αnxn + βnPC(xn − en) + γnPCfn, ∀n ≥ 0, (1.12)

respectively, where αn+βn+γn = 1, supn≥0‖fn‖ < ∞, and ‖en‖ ≤ ηn‖xn−xn‖with supn≥0ηn = η <
1. Under appropriate conditions, they derived one strong convergence theorem for (1.11) and
another weak convergence theorem for (1.12). In addition, for other recent research works
on approximate proximal point methods and their variants for finding zeros of monotone
maximal operators, see, for example, [7–10] and the references therein.

In this paper, motivated by the research work going on in this direction, we continue
to consider the problem of finding a zero of the maximal monotone operator T . The iterative
algorithms (1.7) and (1.10) are extended to develop the following new iterative ones:

x0 ∈ H, xn+1 = αnu + βnPC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

]
, ∀n ≥ 0, (1.13)

x0 ∈ C, xn+1 = αnxn + βnPC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

]
, ∀n ≥ 0, (1.14)

respectively, where u is any fixed point in C, αn + βn = 1, γn + δn ≤ 1, supn≥0‖fn‖ < ∞, and
‖en‖ ≤ ηn‖xn − xn‖ with supn≥0ηn = η < 1. Under mild conditions, we establish one strong
convergence theorem for (1.13) and another weak convergence theorem for (1.14). The results
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presented in this paper improve the corresponding results announced by many others. It is
easy to see that in the case when γn = 1 and δn = 0 for all n ≥ 0, the iterative algorithms (1.13)
and (1.14) reduce to (1.7) and (1.10), respectively. Moreover, the iterative algorithms (1.13)
and (1.14) are very different from (1.11) and (1.12), respectively. Indeed, it is clear that the
iterative algorithm (1.13) is equivalent to the following:

x0 ∈ H,

yn =
(
1 − γn − δn

)
xn + γn(xn − en) + δnfn,

xn+1 = αnu + βnPCyn, ∀n ≥ 0.

(1.15)

Here, the first iteration step yn = (1 − γn − δn)xn + γn(xn − en) + δnfn, is to compute the
prediction value of approximate zeros of T ; the second iteration step, xn+1 = αnu + βnPCyn,
is to compute the correction value of approximate zeros of T . Similarly, it is obvious that the
iterative algorithm (1.14) is equivalent to the following:

x0 ∈ C,

yn =
(
1 − γn − δn

)
xn + γn(xn − en) + δnfn,

xn+1 = αnxn + βnPCyn, ∀n ≥ 0.

(1.16)

Here, the first iteration step, yn = (1 − γn − δn)xn + γn(xn − en) + δnfn, is to compute the
prediction value of approximate zeros of T ; the second iteration step, xn+1 = αnxn +βnPCyn, is
to compute the correction value of approximate zeros of T . Therefore, there is no doubt that
the iterative algorithms (1.13) and (1.14) are very interesting and quite reasonable.

In this paper, we consider the problem of finding zeros of maximal monotone
operators by hybrid proximal point method. To be more precise, we introduce two kinds
of iterative schemes, that is, (1.13) and (1.14). Weak and strong convergence theorems are
established in a real Hilbert space. As applications, we also consider a problem of finding a
minimizer of a convex function.

2. Preliminaries

In this section, we give some preliminaries which will be used in the rest of this paper. LetH
be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let T be a set-valued mapping.
The set D(T) defined by

D(T) = {u ∈ H : T(u)/= ∅} (2.1)

is called the effective domain of T . The set R(T) defined by

R(T) =
⋃

u∈H
T(u) (2.2)
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is called the range of T . The set G(T) defined by

G(T) = {(x, u) ∈ H ×H : x ∈ D(T), u ∈ T(x)} (2.3)

is called the graph of T . A mapping T is said to be monotone if

〈x − y, u − v〉 ≥ 0, ∀(x, u), (y, v) ∈ G(T). (2.4)

T is said to be maximal monotone if its graph is not properly contained in the one of any
other monotone operator.

The class of monotone mappings is one of the most important classes of mappings
among nonlinear mappings. Within the past several decades, many authors have been
devoted to the study of the existence and iterative algorithms of zeros for maximal monotone
mappings; see [1–5, 7, 11–30]. In order to prove our main results, we need the following
lemmas. The first lemma can be obtained from Eckstein [1, Lemma 2] immediately.

Lemma 2.1. Let C be a nonempty, closed, and convex subset of a Hilbert space H . For any given
xn ∈ H , λn > 0, and en ∈ H , there exists xn ∈ C conforming to the following set-valued mapping
equation (SVME ):

xn + en ∈ xn + λnTxn. (2.5)

Furthermore, for any p ∈ T−1(0), we have

〈xn − xn, xn − xn + en〉 ≤ 〈
xn − p, xn − xn + en

〉
,

‖xn − en − p‖2 ≤ ‖xn − p‖2 − ‖xn − xn‖2 + ‖en‖2.
(2.6)

Lemma 2.2 (see [30, Lemma 2.5, page 243]). Let {sn} be a sequence of nonnegative real numbers
satisfying the inequality

sn+1 ≤ (1 − αn)sn + αnβn + γn, ∀n ≥ 0, (2.7)

where {αn}, {βn}, and {γn} satisfy the conditions
(i) {αn} ⊂ [0, 1],

∑∞
n=0 αn = ∞, or equivalently

∏∞
n=0(1 − αn) = 0,

(ii) lim supn→∞βn ≤ 0,

(iii) {γn} ⊂ [0,∞),
∑∞

n=0 γn < ∞.

Then limn→∞sn = 0.

Lemma 2.3 (see [28, Lemma 1, page 303]). Let {an} and {bn} be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ an + bn, ∀n ≥ 0. (2.8)

If
∑∞

n=0 bn < ∞, then limn→∞an exists.
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Lemma 2.4 (see [11]). Let E be a uniformly convex Banach space, let C be a nonempty closed convex
subset of E, and let S : C → C be a nonexpansive mapping. Then I − S is demiclosed at zero.

Lemma 2.5 (see [31]). Let E be a uniformly convex Banach space, and and Br(0) be a closed ball
of E. Then there exists a continuous strictly increasing convex function g : [0,∞) → [0,∞) with
g(0) = 0 such that

‖λx + μy + νz‖2 ≤ λ‖x‖2 + μ‖y‖2 + ν‖z‖2 − λμg
(‖x − y‖) (2.9)

for all x, y, z ∈ Br(0) and λ, μ, ν ∈ [0, 1] with λ + μ + ν = 1.
It is clear that the following lemma is valid.

Lemma 2.6. Let H be a real Hilbert space. Then there holds

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H. (2.10)

3. Main Results

Let C be a nonempty, closed, and convex subset of a real Hilbert spaceH . We always assume
that T : C → 2H is a maximal monotone operator. Then, for each t > 0, the resolvent Jt =
(I + tT)−1 is a single-valued nonexpansive mapping whose domain is all H . Recall also that
the Yosida approximation of T is defined by

Tt =
1
t
(I − Jt). (3.1)

Assume that T−1(0)/= ∅, where T−1(0) is the set of zeros of T . Then T−1(0) = Fix(Jt) for all t > 0,
where Fix(Jt) is the set of fixed points of the resolvent Jt.

Theorem 3.1. Let H be a real Hilbert space, C a nonempty, closed, and convex subset of H , and
T : C → 2H a maximal monotone operator with T−1(0)/= ∅. Let PC be a metric projection from H
onto C. For any given xn ∈ H , λn > 0, and en ∈ H , find xn ∈ C conforming to SVME (2.5), where
{λn} ⊂ (0,∞) with λn → ∞ as n → ∞ and ‖en‖ ≤ ηn‖xn − xn‖ with supn≥0ηn = η < 1. Let {αn},
{βn}, {γn}, and {δn} be real sequences in [0, 1] satisfying the following control conditions:

(i) αn + βn = 1 and γn + δn ≤ 1,

(ii) limn→∞αn = 0 and
∑∞

n=0 αn = ∞,

(iii) limn→∞γn = 1 and
∑∞

n=0 δn < ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ H, xn+1 = αnu + βnPC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

]
, ∀n ≥ 0, (3.2)

where u ∈ C is a fixed point and {fn} is a bounded sequence in H . Then the sequence {xn} generated
by (3.2) converges strongly to a zero z of T , where z = limt→∞Jtu, if and only if en → 0 as n → ∞.
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Proof. First, let us show the necessity. Assume that xn → z as n → ∞, where z ∈ T−1(0). It
follows from (2.5) that

‖xn − z‖ = ‖Jλn(xn + en) − Jλn(z)‖
≤ ‖xn − z‖ + ‖en‖
≤ ‖xn − z‖ + ηn‖xn − xn‖
≤ (

1 + ηn

)‖xn − z‖ + ηn‖xn − z‖,

(3.3)

and hence

‖xn − z‖ ≤ 1 + ηn

1 − ηn
‖xn − z‖ ≤ 1 + η

1 − η
‖xn − z‖. (3.4)

This implies that xn → z as n → ∞. Note that

‖en‖ ≤ ηn‖xn − xn‖ ≤ ηn(‖xn − z‖ + ‖z − xn‖). (3.5)

This shows that en → 0 as n → ∞.
Next, let us show the sufficiency. The proof is divided into several steps.

Step 1 ({xn} is bounded). Indeed, from the assumptions ‖en‖ ≤ ηn‖xn − xn‖ and supn≥0ηn =
η < 1, it follows that

‖en‖ ≤ ‖xn − xn‖. (3.6)

Take an arbitrary p ∈ T−1(0). Then it follows from Lemma 2.1 that

‖xn − en − p‖2 ≤ ‖xn − p‖2 − ‖xn − xn‖2 + ‖en‖2 ≤ ‖xn − p‖2, (3.7)

and hence

‖PC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

] − p‖2

≤ ‖(1 − γn − δn
)
xn + γn(xn − en) + δnfn − p‖2

= ‖(1 − γn − δn
)(
xn − p

)
+ γn

(
xn − en − p

)
+ δn

(
fn − p

)‖2

≤ (
1 − γn − δn

)‖xn − p‖2 + γn‖xn − en − p‖2 + δn‖fn − p‖2

≤ (
1 − γn − δn

)‖xn − p‖2 + γn‖xn − p‖2 + δn‖fn − p‖2

= (1 − δn)‖xn − p‖2 + δn‖fn − p‖2.

(3.8)
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This implies that

‖xn+1 − p‖2 = ‖αnu + βnPC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

] − p‖2

≤ αn‖u − p‖2 + βn‖PC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

] − p‖2

≤ αn‖u − p‖2 + βn
[
(1 − δn)‖xn − p‖2 + δn‖fn − p‖2

]

= αn‖u − p‖2 + βn(1 − δn)‖xn − p‖2 + βnδn‖fn − p‖2

≤ αn‖u − p‖2 + βn(1 − δn)‖xn − p‖2 + βnδnsup
n≥0

‖fn − p‖2.

(3.9)

Putting

M = max

{
‖x0 − p‖2, ‖u − p‖2, sup

n≥0
‖fn − p‖2

}
, (3.10)

we show that ‖xn − p‖2 ≤ M for all n ≥ 0. It is easy to see that the result holds for n = 0.
Assume that the result holds for some n ≥ 0. Next, we prove that ‖xn+1 − p‖2 ≤ M. As a
matter of fact, from (3.9), we see that

‖xn+1 − p‖2 ≤ M. (3.11)

This shows that the sequence {xn} is bounded.

Step 2 (lim supn→∞〈u − z, xn+1 − z〉 ≤ 0, where z = limt→∞Jtu). The existence of limt→∞Jtu is
guaranteed by Lemma 1 of Bruck [12].

Since T is maximal monotone, Ttu ∈ TJtu and Tλnxn ∈ TJλnxn, we deduce that

〈u − Jtu, Jλnxn − Jtu〉 = −t〈Ttu, Jtu − Jλnxn〉
= −t〈Ttu − Tλnxn, Jtu − Jλnxn〉 − t〈Tλnxn, Jtu − Jλnxn〉

≤ − t

λn
〈xn − Jλnxn, Jtu − Jλnxn〉.

(3.12)

Since λn → ∞ as n → ∞, for each t > 0, we have

lim sup
n→∞

〈u − Jtu, Jλnxn − Jtu〉 ≤ 0. (3.13)

On the other hand, by the nonexpansivity of Jλn , we obtain that

‖Jλn(xn + en) − Jλnxn‖ ≤ ‖(xn + en) − xn‖ = ‖en‖. (3.14)
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From the assumption en → 0 as n → ∞ and (3.13), we get

lim sup
n→∞

〈u − Jtu, Jλn(xn + en) − Jtu〉 ≤ 0. (3.15)

From (2.5), we see that

‖PC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

] − Jλn(xn + en)‖
≤ ‖(1 − γn − δn

)
xn + γn(xn − en) + δnfn − Jλn(xn + en)‖

≤ (
1 − γn − δn

)‖xn − Jλn(xn + en)‖ + γn‖(xn − en) − Jλn(xn + en)‖ + δn‖fn − Jλn(xn + en)‖
=
(
1 − γn − δn

)‖xn − Jλn(xn + en)‖ + γn‖en‖ + δn‖fn − Jλn(xn + en)‖.
(3.16)

Since limn→∞γn = 1 and
∑∞

n=0 δn < ∞, we conclude from ‖en‖ → 0 and the boundedness of
{fn} that

lim
n→∞

‖PC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

] − Jλn(xn + en)‖ = 0. (3.17)

Combining (3.15) with (3.17), we have

lim sup
n→∞

〈
u − Jtu, PC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

] − Jtu
〉 ≤ 0. (3.18)

In the meantime, from algorithm (3.2) and assumption αn + βn = 1, it follows that

xn+1 − PC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

]

= αn

{
u − PC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

]}
.

(3.19)

Thus, from the condition limn→∞αn = 0, we have

xn+1 − PC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

] −→ 0 as n −→ ∞. (3.20)

This together with (3.18) implies that

lim sup
n→∞

〈u − Jtu, xn+1 − Jtu〉 ≤ 0, ∀t > 0. (3.21)

From z = limt→∞Jtu and (3.21), we can obtain that

lim sup
n→∞

〈u − z, xn+1 − z〉 ≤ 0, ∀t > 0. (3.22)
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Step 3 (xn → z as n → ∞). Indeed, utilizing (3.8), we deduce from algorithm (3.2) that

‖xn+1 − z‖2 = ∥∥(1 − αn)
{
PC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

] − z
}
+ αn(u − z)

∥∥2

≤ (1 − αn)2‖PC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

] − z‖2

+ 2αn〈u − z, xn+1 − z〉

≤ (1 − αn)
[
(1 − δn)‖xn − z‖2 + δn‖fn − z‖2

]
+ 2αn〈u − z, xn+1 − z〉

≤ (1 − αn)‖xn − z‖2 + αn · 2〈u − z, xn+1 − z〉 + δn‖fn − z‖2.
(3.23)

Note that
∑∞

n=0 δn < ∞ and {fn} is bounded. Hence it is known that
∑∞

n=0 δn‖fn − z‖2 < ∞.
Since

∑∞
n=0 αn = ∞, lim supn→∞2〈u − z, xn+1 − z〉 ≤ 0, and

∑∞
n=0 δn‖fn − z‖2 < ∞, in terms of

Lemma 2.2, we conclude that

‖xn − z‖ −→ 0 as n −→ ∞. (3.24)

This completes the proof.

Remark 3.2. The maximal monotonicity of T is only used to guarantee the existence of
solutions of SVME (2.4), for any given xn ∈ H , λn > 0, and en ∈ H . If we assume that
T : C → 2H is monotone (not necessarily maximal) and satisfies the range condition

D(T) = C ⊂
⋂

r>0

R(I + rT), (3.25)

we can see that Theorem 3.1 still holds.

Corollary 3.3. Let H be a real Hilbert space, C a nonempty, closed, and convex subset of H , and
S : C → C a demicontinuous pseudocontraction with a fixed point in C. Let PC be a metric projection
from H onto C. For any xn ∈ C, λn > 0, and en ∈ H , find xn ∈ C such that

xn + en = (1 + λn)xn − λnSxn, (3.26)

where {λn} ⊂ (0,∞) with λn → ∞ as n → ∞ and ‖en‖ ≤ ηn‖xn − xn‖ with supn≥0ηn = η < 1. Let
{αn}, {βn}, {γn}, and {δn} be real sequences in [0, 1] satisfying the following control conditions:

(i) αn + βn = 1 and γn + δn ≤ 1,

(ii) limn→∞αn = 0 and
∑∞

n=0 αn = ∞,

(iii) limn→∞γn = 1 and
∑∞

n=0 δn < ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ C, xn+1 = αnu + βnPC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

]
, ∀n ≥ 0, (3.27)
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where u ∈ C is a fixed point and {fn} is a bounded sequence in H . If the sequence {en} satisfies the
condition en → 0 as n → ∞, then the sequence {xn} converges strongly to a fixed point z of S, where
z = limt→∞[I + t(I − S)]−1u.

Proof. Let T = I − S. Then T : C → H is demicontinuous, monotone, and satisfies the range
condition:

D(T) = C ⊂
⋂

r>0

R(I + rT). (3.28)

For any y ∈ C, define an operator G : C → C by

Gx =
t

1 + t
Sx +

1
1 + t

y. (3.29)

Then G is demicontinuous and strongly pseudocontractive. By the study of Lan and Wu [21,
Theorem 2.2], we see that G has a unique fixed point x ∈ C; that is,

y = x + t(I − S)x. (3.30)

This implies that y ∈ R(I + tT) for all t > 0. In particular, for any given xn ∈ C, λn > 0, and
en ∈ H , there exists xn ∈ C such that

xn + en = xn + λnTxn, ∀n ≥ 0, (3.31)

that is,

xn + en = (1 + λn)xn − λnSxn. (3.32)

Finally, from the proof of Theorem 3.1, we can derive the desired conclusion immediately.

From Theorem 3.1, we also have the following result immediately.

Corollary 3.4. Let H be a real Hilbert space, C a nonempty, closed, and convex subset of H , and
T : C → 2H a maximal monotone operator with T−1(0)/= ∅. Let PC be a metric projection from H
onto C. For any xn ∈ H , λn > 0 and en ∈ H , find xn ∈ C conforming to SVME (2.5), where
{λn} ⊂ (0,∞) with λn → ∞ as n → ∞ and ‖en‖ ≤ ηn‖xn − xn‖ with supn≥0ηn = η < 1. Let {αn},
{βn}, and {γn} be real sequences in [0, 1] satisfying the following control conditions:

(i) αn + βn = 1,

(ii) limn→∞αn = 0 and
∑∞

n=0 αn = ∞,

(iii) limn→∞γn = 1.
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Let {xn} be a sequence generated by the following manner:

x0 ∈ H, xn+1 = αnu + βnPC

[(
1 − γn

)
xn + γn(xn − en)

]
, ∀n ≥ 0, (3.33)

where u ∈ C is a fixed point. Then the sequence {xn} converges strongly to a zero z of T , where
z = limt→∞Jtu, if and only if en → 0 as n → ∞.

Proof. In Theorem 3.1, put δn = 0 for all n ≥ 0. Then, from Theorem 3.1, we obtain the desired
result immediately.

Next, we give a hybrid Mann-type iterative algorithm and study the weak
convergence of the algorithm.

Theorem 3.5. Let H be a real Hilbert space, C a nonempty, closed, and convex subset of H , and
T : C → 2H a maximal monotone operator with T−1(0)/= ∅. Let PC be a metric projection from H
onto C. For any given xn ∈ C, λn > 0, and en ∈ H , find xn ∈ C conforming to SVME (2.5), where
lim infn→∞λn > 0 and ‖en‖ ≤ ηn‖xn − xn‖ with supn≥0ηn = η < 1. Let {αn}, {βn}, {γn}, and {δn}
be real sequences in [0, 1] satisfying the following control conditions:

(i) αn + βn = 1 and γn + δn ≤ 1,

(ii) lim infn→∞βn > 0,

(iii) lim infn→∞γn > 0 and
∑∞

n=0 δn < ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ C, xn+1 = αnxn + βnPC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

]
, ∀n ≥ 0, (3.34)

where {fn} is a bounded sequence inH . Then the sequence {xn} generated by (3.34) converges weakly
to a zero x∗ of T .

Proof. Take an arbitrary p ∈ T−1(0). Utilizing Lemma 2.1, from the assumption ‖en‖ ≤ ηn‖xn −
xn‖with supn≥0ηn = η < 1, we conclude that

‖(xn − en) − p‖2 ≤ ‖xn − p‖2 − ‖xn − xn‖2 + ‖en‖2

≤ ‖xn − p‖2 − ‖xn − xn‖2 + η2
n‖xn − xn‖2

≤ ‖xn − p‖2 −
(
1 − η2

)
‖xn − xn‖2.

(3.35)
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It follows from Lemma 2.5 that

‖xn+1 − p‖2 = ‖αnxn + βnPC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

] − p‖2

≤ αn‖xn − p‖2 + βn‖PC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

] − p‖2

≤ αn‖xn − p‖2 + βn‖
(
1 − γn − δn

)
xn + γn(xn − en) + δnfn − p‖2

≤ αn‖xn − p‖2 + βn
[(
1 − γn − δn

)‖xn − p‖2 + γn‖(xn − en) − p‖2 + δn‖fn − p‖2
]

≤ αn‖xn − p‖2 + βn
{(

1 − γn − δn
)‖xn − p‖2 + γn

[
‖xn − p‖2 −

(
1 − η2

)
‖xn − xn‖2

]

+δn‖fn − p‖2
}

= αn‖xn − p‖2 + βn(1 − δn)‖xn − p‖2 − βnγn
(
1 − η2

)
‖xn − xn‖2 + βnδn‖fn − p‖2

≤ ‖xn − p‖2 − βnγn
(
1 − η2

)
‖xn − xn‖2 + δn‖fn − p‖2

≤ ‖xn − p‖2 + δn‖fn − p‖2.
(3.36)

Utilizing Lemma 2.3, we know that limn→∞‖xn − p‖ exists. We, therefore, obtain that the
sequence {xn} is bounded. It follows from (3.36) that

βnγn
(
1 − η2)‖xn − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + δn‖fn − p‖2. (3.37)

From the conditions lim infn→∞βn > 0, lim infn→∞γn > 0, and
∑∞

n=0 δn < ∞, we conclude that

lim
n→∞

‖xn − xn‖ = 0. (3.38)

Note that

‖xn − Jλnxn‖ = ‖xn − xn + xn − Jλnxn‖
≤ ‖xn − xn‖ + ‖xn − Jλnxn‖
≤ (

1 + ηn

)‖xn − xn‖.
(3.39)

In view of (3.38), we obtain that

lim
n→∞

‖xn − Jλnxn‖ = 0. (3.40)
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Also, note that

‖Jλnxn − J1Jλnxn‖ = ‖T1Jλnxn‖
≤ inf{‖w‖ : w ∈ TJλnxn}
≤ ‖Tλnxn‖

=
‖xn − Jλnxn‖

λn
.

(3.41)

In view of the assumption lim infn→∞λn > 0 and (3.40), we see that

lim
n→∞

‖Jλnxn − J1Jλnxn‖ = 0. (3.42)

Let x∗ ∈ C be a weakly subsequential limit of {xn} such that {xni} converges weakly to
x∗ as i → ∞. From (3.40), we see that Jλni xni also converges weakly to x∗. Since J1 is
nonexpansive, we can obtain that x∗ ∈ Fix(J1) = T−1(0) by Lemma 2.4. Opial’s condition (see
[23]) guarantees that the sequence {xn} convergesweakly to x∗. This completes the proof.

By the careful analysis of the proof of Corollary 3.3 and Theorem 3.5, it is not hard to
derive the following result.

Corollary 3.6. Let H be a real Hilbert space, C a nonempty, closed, and convex subset of H , and
S : C → C a demicontinuous pseudocontraction with a fixed point in C. Let PC be a metric projection
from H onto C. For any xn ∈ C, λn > 0, and en ∈ H , find xn ∈ C such that

xn + en = (1 + λn)xn − λnSxn, ∀n ≥ 0, (3.43)

where lim infn→∞λn > 0 and ‖en‖ ≤ ηn‖xn − xn‖ with supn≥0ηn = η < 1. Let {αn}, {βn}, {γn}, and
{δn} be real sequences in [0, 1] satisfying the following control conditions:

(i) αn + βn = 1 and γn + δn ≤ 1,

(ii) lim infn→∞βn > 0,

(iii) lim infn→∞γn > 0 and
∑∞

n=0 δn < ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ C, xn+1 = αnxn + βnPC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

]
, ∀n ≥ 0, (3.44)

where {fn} is a bounded sequence in H . Then the sequence {xn} converges weakly to a fixed point x∗

of S.

Utilizing Theorem 3.5, we also obtain the following result immediately.

Corollary 3.7. Let H be a real Hilbert space, C a nonempty, closed, and convex subset of H , and
T : C → 2H a maximal monotone operator with T−1(0)/= ∅. Let PC be a metric projection from H
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onto C. For any xn ∈ C, λn > 0, and en ∈ H , find xn ∈ C conforming to SVME (2.5), where
lim infn→∞λn > 0 and ‖en‖ ≤ ηn‖xn − xn‖ with supn≥0ηn = η < 1. Let {αn}, {βn}, and {γn} be real
sequences in [0, 1] satisfying the following control conditions:

(i) αn + βn = 1,

(ii) lim supn→∞αn < 1,

(iii) lim infn→∞γn > 0.

Let {xn} be a sequence generated by the following manner:

x0 ∈ C, xn+1 = αnxn + βnPC

[(
1 − γn

)
xn + γn(xn − en)

]
, ∀n ≥ 0. (3.45)

Then the sequence {xn} converges weakly to a zero x∗ of T .

4. Applications

In this section, as applications of the main Theorems 3.1 and 3.5, we consider the problem of
finding a minimizer of a convex function f .

Let H be a real Hilbert space, and let f : H → (−∞,+∞] be a proper convex lower
semi-continuous function. Then the subdifferential ∂f of f is defined as follows:

∂f(x) =
{
y ∈ H : f(z) ≥ f(x) + 〈z − x, y〉, z ∈ H

}
, ∀x ∈ H. (4.1)

Theorem 4.1. Let H be a real Hilbert space and f : H → (−∞,+∞] a proper convex lower semi-
continuous function such that (∂f)−1(0)/= ∅. Let {λn} be a sequence in (0,+∞) with λn → ∞ as
n → ∞ and {en} a sequence in H such that ‖en‖ ≤ ηn‖xn − xn‖ with supn≥0ηn = η < 1. Let xn be
the solution of SVME (2.5) with T replaced by ∂f ; that is, for any given xn ∈ H ,

xn + en ∈ xn + λn∂f(xn), ∀n ≥ 0. (4.2)

Let {αn}, {βn}, {γn}, and {δn} be real sequences in [0, 1] satisfying the following control conditions:

(i) αn + βn = 1 and γn + δn ≤ 1,

(ii) limn→∞αn = 0 and
∑∞

n=0 αn = ∞,

(iii) limn→∞γn = 1 and
∑∞

n=0 δn < ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ H,

xn = argminx∈H

{
f(x) +

1
2λn

‖x − xn − en‖2
}
,

xn+1 = αnu + βnPC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

]
, ∀n ≥ 0,

(4.3)

where u ∈ H is a fixed point and {fn} is a bounded sequence in H . If the sequence {en} satisfies the
condition en → 0 as n → ∞, then the sequence {xn} converges strongly to a minimizer of f nearest
to u.
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Proof. Since f : H → (−∞,+∞] is a proper convex lower semi-continuous function, we have
that the subdifferential ∂f of f is maximal monotone by the study of Rockafellar [2]. Notice
that

xn = arg minx∈H

{
f(x) +

1
2λn

‖x − xn − en‖2
}

(4.4)

is equivalent to the following:

0 ∈ ∂f(xn) +
1
λn

(xn − xn − en). (4.5)

It follows that

xn + en ∈ xn + λn∂f(xn), ∀n ≥ 0. (4.6)

By using Theorem 3.1, we can obtain the desired result immediately.

Theorem 4.2. Let H be a real Hilbert space and f : H → (−∞,+∞] a proper convex lower semi-
continuous function such that (∂f)−1(0)/= ∅. Let {λn} be a sequence in (0,+∞)with lim infn→∞λn >
0 and {en} a sequence in H such that ‖en‖ ≤ ηn‖xn − xn‖ with supn≥0ηn = η < 1. Let xn be the
solution of SVME (2.5) with T replaced by ∂f ; that is, for any given xn ∈ H ,

xn + en ∈ xn + λn∂f(xn), ∀n ≥ 0. (4.7)

Let {αn}, {βn}, {γn}, and {δn} be real sequences in [0, 1] satisfying the following control conditions:

(i) αn + βn = 1 and γn + δn ≤ 1,

(ii) lim infn→∞βn > 0,

(iii) lim infn→∞γn > 0 and
∑∞

n=0 δn < ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ H,

xn = argminx∈H

{
f(x) +

1
2λn

‖x − xn − en‖2
}
,

xn+1 = αnxn + βnPC

[(
1 − γn − δn

)
xn + γn(xn − en) + δnfn

]
, ∀n ≥ 0,

(4.8)

where {fn} is a bounded sequence in H . Then the sequence {xn} converges weakly to a minimizer of
f .

Proof. We can obtain the desired result readily from the proof of Theorems 3.5 and 4.1.
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