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We introduce a new general iterative scheme for finding a common element of the set of solutions
of variational inequality problem for an inverse-strongly monotone mapping and the set of fixed
points of a nonexpansive mapping in a Hilbert space and then establish strong convergence of
the sequence generated by the proposed iterative scheme to a common element of the above
two sets under suitable control conditions, which is a solution of a certain optimization problem.
Applications of the main result are also given.

1. Introduction

Let H be a real Hilbert space with inner product (:,-) and induced norm || - ||. Let C be a
nonempty closed convex subset of H and S : C — C be self-mapping on C. We denote by
F(S) the set of fixed points of S and by P¢ the metric projection of H onto C.

Let A be a nonlinear mapping of C into H. The variational inequality problem is to
find a u € C such that

(v-—u,Au) >0, YveC. (1.1)

We denote the set of solutions of the variational inequality problem (1.1) by VI(C, A). The
variational inequality problem has been extensively studied in the literature; see [1-5] and
the references therein.

Recently, in order to study the problem (1.1) coupled with the fixed point problem,
many authors have introduced some iterative schemes for finding a common element of the
set of the solutions of the problem (1.1) and the set of fixed points of nonexpansive mappings;
see [6-9] and the references therein. In particular, in 2005, liduka and Takahashi [8]
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introduced an iterative scheme for finding a common point of the set of fixed points of a
nonexapansive mapping S and the set of solutions of the problem (1.1) for an inverse-strong
monotone mapping A: x; € C and

Xni1 = apX + (1 — ay)SPc(x, — MyAxy,), n>1, (1.2)

where {a,} C [0,1) and {),} C [0,2a]. They proved that the sequence generated by (1.2)
strongly converges strongly to Pr(s)nvi(c,4)x. In 2010, Jung [10] provided the following new
composite iterative scheme for the fixed point problem and the problem (1.1): x; = x € C and

Yn = nf (xn) + (1 — ay) SPc(xp — MyAxy),

1.3
Xn+l = (1 - ﬂn)yn + ﬂnSPC (yn - )‘nAyn)/ n>1, (9
where f is a contraction with constant k € (0,1),{a,},{f.} € [0,1], and {A,} C [0,2a]. He
proved that the sequence {x,} generated by (1.3) strongly converges strongly to a point in
F(S) nVI(C, A), which is the unique solution of a certain variational inequality.
On the other hand, the following optimization problem has been studied extensively
by many authors:

. M 1 2
= llx —ul? - 14
r}glgr;2<Bx,x>+2||x ull” - h(x), (1.4)

where Q = (2, C,, C1,Cy,... are infinitely many closed convex subsets of H such that
N1 Cn#0,u € H, u > 0is areal number, B is a strongly gositive bounded linear operator on
H (i.e., there is a constant ¥ > 0 such that (Bx, x) > ¥||x||*, for all x € H), and h is a potential
function for yf (ie., h'(x) = yf(x) for all x € H). For this kind of optimization problems,
see, for example, Deutsch and Yamada [11], Jung [10], and Xu [12, 13] when Q = Y, C; and
h(x) = (x,b) for a given point b in H.

In 2007, related to a certain optimization problem, Marino and Xu [14] introduced the
following general iterative scheme for the fixed point problem of a nonexpansive mapping:

Xn+1 = tnY f(xn) + I —a,B)Sx,, n2>0, (1.5)

where {a,} € (0,1) and y > 0. They proved that the sequence {x,} generated by (1.5)
converges strongly to the unique solution of the variational inequality

((B=yf)x*,x—x*)>0, x€F(S), (1.6)

which is the optimality condition for the minimization problem

.1
xrex}lgsl)z(Bx,x) - h(x), (1.7)

where h is a potential function for yf. The result improved the corresponding results of
Moudafi [15] and Xu [16].
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In this paper, motivated by the above-mentioned results, we introduce a new general
composite iterative scheme for finding a common point of the set of solutions of the
variational inequality problem (1.1) for an inverse-strongly monotone mapping and the set
of fixed points of a nonexapansive mapping and then prove that the sequence generated by
the proposed iterative scheme converges strongly to a common point of the above two sets,
which is a solution of a certain optimization problem. Applications of the main result are also
discussed. Our results improve and complement the corresponding results of Chen et al. [6],
liduka and Takahashi [8], Jung [10], and others.

2. Preliminaries and Lemmas

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. We write
X, — x to indicate that the sequence {x,} converges weakly to x. x, — x implies that {x,}
converges strongly to x.

First we recall that a mapping f : C — Cis a contraction on C if there exists a constant
k € (0,1) such that || f(x) = f(y)ll < kllx -y, x, y € C. Amapping T : C — C is called
nonexpansive if ||Tx - Ty|| < |[x —y|l, x, y € C. We denote by F(T) the set of fixed points of T.

For every point x € H, there exists a unique nearest point in C, denoted by Pc(x), such
that

llx = Pc(x)|| < ||x - y]| (2.1)

for all y € C. Pc is called the metric projection of H onto C. It is well known that Pc is
nonexpansive and Pc satisfies

(x =, Pe(x) - Pe()) 2 [[Pe@) ~ Pe(y) I 22)

for every x, y € H. Moreover, Pc(x) is characterized by the properties:

%= y|I” 2 I = Pe@)IP + |y = Pe) ||,

2.3)
u="Pc(x) = (x-uu-y)>0, VxeH, yeC.

In the context of the variational inequality problem for a nonlinear mapping A, this implies
that

u € VI(C,A) &< u = Pc(u—-\Au), forany A>0. (2.4)

It is also well known that H satisfies the Opial condition, that is, for any sequence {x,} with
X, — x, the inequality

lim inf||x,, — x|| < im inf||x, - y|| (2.5)

holds for every y € H with y # x.
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A mapping A of C into H is called inverse-strongly monotone if there exists a positive
real number a such that

(x—y, Ax - Ay) > al| Ax - Ay||” (26)

for all x, y € C; see [4, 7, 17]. For such a case, A is called a-inverse-strongly monotone. We
know thatif A = I-T, where T is a nonexpansive mapping of C into itself and I is the identity
mapping of H, then A is 1/2-inverse-strongly monotone and VI(C, A) = F(T). A mapping A
of C into H is called strongly monotone if there exists a positive real number 7 such that

(x -y, Ax - Ay) 2 nlx -y’ (2.7)

forall x, y € C.Insuch a case, we say A is 7j-strongly monotone. If A is 7j-strongly monotone
and «-Lipschitz continuous, that is, ||[Ax — Ay|| < x|x — y|| for all x, y € C, then A is 1/x>-
inverse-strongly monotone. If A is an a-inverse-strongly monotone mapping of C into H,
then it is obvious that A is 1/a-Lipschitz continuous. We also have that for all x, y € C and
A>0,

1= 24)x = (I = 2A)y* = [|(x - y) - A(Ax - Ay) |
=||x- y”z - 2Mx -y, Ax - Ay) + \*||Ax - Ay”2 (2.8)

<lx - y||2 + (A - 2a) || Ax - Ay”z.

So, if A < 2a, then I — 1A is a nonexpansive mapping of C into H. The following result for the
existence of solutions of the variational inequality problem for inverse strongly-monotone
mappings was given in Takahashi and Toyoda [9].

Proposition 2.1. Let C be a bounded closed convex subset of a real Hilbert space and let A be an
a-inverse-strongly monotone mapping of C into H. Then, VI(C, A) is nonempty.

A set-valued mapping T : H — 2H is called monotone if for all x, y € H, f € Tx, and
g € Ty imply (x-y, f—g) > 0. Amonotone mapping T : H — 2H is maximal if the graph G(T)
of T is not properly contained in the graph of any other monotone mapping. It is known that
a monotone mapping T is maximal if and only if for (x, f) € HxH, (x-y, f—g) > 0 for every
(y,8) € G(T) implies f € Tx. Let A be an inverse-strongly monotone mapping of C into H
and let Ncv be the normal cone to C at v, thatis, Ncv = {w € H : (v—u,w) >0, for all u € C},
and define

Av+ Ncov, veC,
Tov = (2.9)

0, v¢C.

Then T is maximal monotone and 0 € Tv if and only if v € VI(C, A); see [18, 19].
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We need the following lemmas for the proof of our main results.

Lemma 2.2. In a real Hilbert space H, there holds the following inequality:
o+ yIP< 1l + 20y, x + ), (210)

forallx,y € H.

Lemma 2.3 (Xu [12]). Let {s,} be a sequence of nonnegative real numbers satisfying

Sus1 < (1= Ay)sp + ﬂn +Yn, n2>1, (2.11)

where {A,} and {P,} satisfy the following conditions:
(i) {Aa} € [0,1] and 3774 Ay = o0 or, equivalently, [T (1-A,) =0;
(ii) imsup, ,  (Bn/An) <0o0r 377 |Bnl < oo;
(iii) y, >0 (n > 1), Z;szl Yn < oo.

Then lim,, _, .S, = 0.

Lemma 2.4 (Marino and Xu [14]). Assume that A is a strongly positive linear bounded operator on
a Hilbert space H with constanty > 0and 0 < p < IBI™*. Then ||I - pB| <1-py.

The following lemma can be found in [20, 21] (see also Lemma 2.2 in [22]).

Lemma 2.5. Let C be a nonempty closed convex subset of a real Hilbert space H, and let g : C —
R U {oo} be a proper lower semicontinunous differentiable convex function. If x* is a solution to the
minimization problem

g(x") = inf g(x), (2.12)
then
(g'(x),x-x*)>0, xeC. (2.13)

In particular, if x* solves the optimization problem

u 1 5
= Sl —ul* - 2.14
min® (Bx, x) + 5 |lx — ull? = h(x), (2.14)
then
(u+(yf-(I+uB))x*,x-x*)<0, x€C, (2.15)

where h is a potential function for y f.
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3. Main Results

In this section, we present a new general composite iterative scheme for inverse-strongly
monotone mappings and a nonexpansive mapping.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H such that C + C C
C. Let A be an a-inverse-strongly monotone mapping of C into H and S a nonexpansive mapping of
C into itself such that F(S) N VI(C, A) # 0. Let u € C and let B be a strongly positive bounded linear
operator on C with constant y € (0,1) and f a contraction of C into itself with constant k € (0,1).
Assume that > 0and 0 <y < (1 + pu)y/k. Let {x,} be a sequence generated by

x1=x€C,
Yn =y (u+7yf(xn)) + (I —ay(I+uB))SPc(x, — Ay Ax,), (1S)
Xnt1 = (1 - ﬂn)yn + ﬂnSPC (yn - )‘nAyn)/ n>1,

where {1,,} € [0,2a], {a,} C [0,1), and {B,} C [0,1]. Let {a,}, { L.}, and {B,} satisfy the following
conditions:

(i) an = 0 (n — o0); Xooqay =0,
(ii) Bn C [0, a) for all n > 0 and for some a € (0,1);
(iii) A, € [c, d] for some ¢, d with0 < ¢ < d < 2a;

(1v) X2 lan — an| < 00, 3571 |Bns1 — Pul < 00, 22 A1 — Au| < oo

Then {x,} converges strongly to q € F(S)NVI(C, A), which is a solution of the optimization problem

) U 1 2
KB e — ull? —
XGF(ﬁg}(C,A)2< X, x) + 2||x ull” — h(x), (OP1)

where h is a potential function for y f.

Proof. We note that from the control condition (i), we may assume, without loss of generality,
that a,, < (1 + p||B||)"". Recall that if B is bounded linear self-adjoint operator on H, then

Bl = sup{|[(Bu,u)| : u € H, |lul =1}. (3.1)

Observe that

((I-an(I+uB))u,uy=1-a, - ayu(Bu,u)
>1-a, —ayu|B| (3.2)

20,
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which is to say that I — a, (I + uB) is positive. It follows that

|II = an(I+ puB)|| =sup{{(I - an(I +uB))u,u):ucH, |ul =1}
=sup{l—a, — ayu(Bu,u) :u € H, |lul| =1}
(3.3)
<T-an(1+py)

<1-a,(1+p)y.

Now we divide the proof into several steps.

Step 1. We show that {x,} is bounded. To this end, let z,, = Pc(x, — A, Ax,) and w,, = Pc(y, —
AnAyy) for every n > 1. Let p € F(S) N VI(C, A). Since I — 1, A is nonexpansive and p =
Pc(p — L, Ap) from (2.4), we have

20 =Pl < 1| Gen = AnAxa) = (p = AaAp) |

(3.4)
< lxn—pll-
Similarly, we have
le0n = pll < llv ~ | 65)
Now, set B = (I + uB). Letp € F(S) N VI(C, A). Then, from (IS) and (3.4), we obtain
=l = ||+ (£ 5) - Bp) + (I - 2,B) (20 -p)|
< (1= 1+ p)yan) 2o —pll + anllu]
+any|[f () = F(P) | + an| £ () = Bp |
< (1 - (1+I’l)?“”>”z”_p” +an”u” (36)
+anyk]|xo = pll + au||vf (p) - Bp |
= (1= (1 + w7y - yk)an) || 2ne1 = p|
v/ () = Bp|| + lul

+ ((1+#)?_Yk)an (1+‘H)?—Yk



8 Fixed Point Theory and Applications
From (3.5) and (3.6), it follows that
11 = pll = [[ (1= ) (v = p) + P (Swn = p) |

< (=B llyn = pll + ullwon - p
< (=B llyn=pll + ully=—pll

(3.7)
= |lya - pll
< ma] - |vf () = Bp|| + llul
<max{ [|x. —p||, — .
(L+p)y -vk
By induction, it follows from (3.7) that
yf(p) = Bp| + llul
|2 = p| < maxq ||lx1 —p||, ” — ” n>1. (3.8)
(L+u)y-vk

Therefore, {x,} is bounded. So {y.}, {zn}, {wn}, {f(xn)}, {Ax.}, {Ay,}, and {BSz,} are
bounded. Moreover, since ||Sz, — p|| < ||x, — p|| and ||Sw, — pll < |lyn — pll, {Sz.} and {Sw;,,}
are also bounded. And by the condition (i), we have

[y = Szall = @nll (u+ v (xa)) = (T + pB) Sz

_ (3.9)
(u+yf(xn)) — BSzn

=a, — 0 (asn— o).

Step 2. We show that limy, _, o, ||n+1 = Xn|| = 0 and lim,, —, o || Y41 — ¥l = 0. Indeed, since I -1, A
and Pc are nonexpansive and z, = Pc(x, — A, Ax;,), we have

”Zn - Zn—l” < ”(xn = MAxy) = (Xp1 — )Ln—len—l)H

(3.10)
< lxn = xn-all + A = Apa || A ||
Similarly, we get
c0n = wn-all < [[ Y = Yot || + A = et ]| Ayea . (3.11)
Simple calculations show that
Yn—Yn1 = (u+yf(xn)) + <I - zxn§> Szy— apa (U +yf(xn1)) — <I - zxn,1§> Sz,
= (@ = 1) (+ 7 f (Xn1) = BSZpe1 ) + tay (f (%) = f (1)) (3.12)

+ <I - anﬁ) (Sz, — Szp-1)-
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So, we obtain

1= et < e = aacal (sl + ¥ £ Geac) | + | B 1S 201)
+anykllxy = xpall + (1= (1+ p)yan)l1zn = zp-1 |l
< lay = et (1l + ¥ ]| f o) | + || B| 1S 2011) (313)
+ anykll2cn = xp-1ll + (1= (1+ p)yen) [ xn = xXn-a |

+ |-’\'n - An71|||Axn71||'

Also observe that

Xn+l — Xp = (1 - ,ﬁn) (yn - ]/n—l) + (,ﬁn - ,ﬁn—l) (Swn—l - ]/n—l)

(3.14)
+ pn(Swy, — Swy1).
By (3.11), (3.13), and (3.14), we have
”xn+1 - xn” S (1 - ﬁn) ”]/n - ]/n—l ” + |ﬂn - ﬂn—l | (llsxn—ln + ”yn—l”)
+ Pullwn — wy||
< (L= Bu)llyn = yurll + Bullyn = v || + Buldn = Xncal || Ayna |
+|Bn = Pt | (ISwn-all + [y )
<y = v [l + 1An = Xaal [ Aynaa || + 1Bn = Brua | (1Swnall + [y ||)
(3.15)

< (1= ((T+p)Y = yk)an)llxn = X1
+ = et (Il + | f ent) || + || B[ 1S Z0-111)
+ |)“rl - )‘Tl—ll(”Ayn—lll + ”Axn—lll) + |ﬂn _pn—l|(“5wn—1” + ”yn—l”)

< (1= ((A+ w7y —yk)an) llxn = na
+ Mll“n - “n—ll + M2|)‘n - )ln—ll + M3|ﬂn - ﬁn—llr

where My = sup{||u]| + Y| f (xu) | + Bl Tuzall : 7 > 1}, M = sup{ || Ayy| + | Axy|| : n > 1}, and
M = sup{||Swy|| + ||yl : n > 1}. From the conditions (i) and (iv), it is easy to see that

Bim (14T~ P)an =0, 3 ((1+ p)F - yk), = oo
n=1
(3.16)
Z(Mllan - an—ll + MZl)‘n - -)tn—ll + MBlﬁn - ,ﬁn—ll) < co.

n=2
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Applying Lemma 2.3 to (3.15), we obtain

lim ||x,41 — x4]| = 0. (3.17)

Moreover, by (3.10) and (3.13), we also have

lim flzp = zal =0, lim ||y = ya =0. (3.18)

Step 3. We show that limy, _, oo ||x, — ¥l = 0 and lim,, _, oo ||x, — Sz,|| = 0. Indeed,

1 = yull = Bl Swon = |
< Bu(IISwn — Szull + ||Szu — yul|)
< a(||wn = zall + [|S2n = yull) (3.19)
< a(|lyn — x|l + [|Szn = yul))

< a(llyn = x| + Ixni = xall + | Sz = yul])
which implies that
a
[l2001 = yall S 3= (1 = xall + {1520 =y [)- (3:20)

Obviously, by (3.9) and Step 2, we have ||x,.1 — yu|| = 0asn — oo. This implies that

”x" - yn” < ”xn - xn+1“ + ”xn+1 - yn” — 0 asn— oo. (321)

By (3.9) and (3.21), we also have

10 = Szull < |20 = Y| + ||yn = Szn|| — 0 as n — co. (3.22)
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Step 4. We show that lim,, _, o, [|x, — 24|l = 0 and lim,,_, .||y — 24| = 0. To this end, let pF(S) N
VI(C, A). Since z,, = Pc(x,, — Ay Axy,) and p = Pc(p — A,p), we have

au(u+yf (i) = Bp) + (I - a,B) (Szu—p)||

lya - pl* =

< <“n

<ay

ISz0—pll)’

u+yf(xn) —Ep” + ||I—(xn§

uryf Gea) = Bp|| + (1= @1+ )T 20 - pII?

llzn =Pl

+ 20, (1 — ay (1 +‘u)?)“u +yf(xn) —§p|

— 2
<a, u+yf(xn)—Bp||
i X (3.23)
- (=14 0T [ = I + o 200 Ay — Ap)]
+2a, (1 - ay (1 +‘u)?)“yu+f(xn) —§p| |z - p||
— 2 )
Scxn||u+yf(xn)—Bp|| + ||xn = pl|
+ (1=, (1+p)¥)c(d - 2a) | Ax,, - Ap||®
+ 200, [+ y £ () = Bp||[|20 - -
So we obtain
~ (1= a,(1+ p)y)e(d - 2a) || Ax, — Ap||®
— 2
< an|yu+ £Gen) =Bp||+ (= pll + lyn =PI (lxa =2l = llyn =)
+2ay Yu+f(xn)—§r7| |z - pll (3.24)

— 112
yu+ £ ) = Bp|| + (10 = pll + lya = 1) 0 =

<ay

+2ay,

yu+ f(xn) = Bp||l122 - pll-
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Since a, — 0 from the condition (i) and ||x, — y,|| — 0 from Step 3, we have ||Ax, — Ap| —
0 (n — o0). Moreover, from (2.4) we obtain

120 = pII” = 1P (n = A Axn) = Pe(p = AuAp) ||

< (xn = MyAxy = (p = LnAp), zn — P)

1
= {11 = XuAx) = (p = 1 Ap) |+ || z0 - I

(3.25)
_”(xn - )‘nAxn) - (P - J\HAP) - (Zn _P) ”2}

1
< (e =l + 2Pl ~ I~ 2l

+240 (% = 2n, Axn — Ap) — \2|| Ax, - Ap||2},
and so
2 =PI < 1% =PI = 1200 = ZalP* + 20 (20 — 20, Ax — Ap) = A2|| Axs — Ap|)>.  (3.26)
Thus

ur v Ge) = Bp|| + (1= a1+ )P |z - pI?

Iy - Pl < @
+ 20, (1= aa (1+ )¥) |y + £ () = Bp| |z = 2

— 2 —
< [+ yf o) = Bp|| + v —pl* - (1 - an (1 + 7)o = zall

(3.27)

+2(1 = an (1 + p)7) X (20 — 20, Axy — Ap)
- (- a1+ T2 A - Al

+2ay,

w+yf (n) = B|| |z - pll.
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Then, we have

(1= a(1+ ) P)llxn = zul?

— 12
w+f () = Bp|| + (%0 = pll + llyn = 1) (2 =PIl = llya - pII)

<ay

+2(1 = an(1+ )7) Au(n = 20, Axw = Ap) = (1= @ (14 )T A; || Az — Ap|®

+ 2,

w+yf(x) = Bp|| |z -l (3.28)

<ay

— 2
ws £ Gen) = Bp| + (U =pll+ 1y = plD) 0 - vl

#2(1 = (14 WP A%~ 20, A%y Ap) - (1 - (1 + T2 | Ax, - Apl

+2a,

w+yf(xn) = Bp|| |z - pll

Since a, — 0, ||x — yul| — Oand ||Ax, — Au|| — 0, we get ||x, — z,|| — 0. Also by (3.21)
lyn = zall < |¥n = x| + X0 = zall — 0 (n — o0). (3.29)

Step 5. We show that lim,, _, »||Sz, — z,|| = 0. In fact, since

1520 = zull < [[S20 = all + |y = 2|
_ (3.30)
u+yf(x,) —BSz,

+lyn = zall,

=an

from (3.9) and (3.29) , we have lim,, . ,||Sz,, — z,|| = 0.

Step 6. We show that

limsup(u+ (yf = (I+uB))q,yn—q) = limsup<u+ (yf —E)q,yn - q> <0, (3.31)

n—oo n— oo

where g is a solution of the optimization problem (OP1). First we prove that

lim sup<u + (yf - E)q, Sz, - q> <0. (3.32)

n—oo
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Since {z,} is bounded, we can choose a subsequence {z,,} of {z,} such that

limsup<u + <yf —E)q, Sz, - q> = ilingo<u + (yf —E)q,Szni - q>. (3.33)

n—oo

Without loss of generality, we may assume that {z,,} converges weakly to z € C.
Now we will show that z € F(S) N VI(C, A). First we show that z € F(S). Assume that
z ¢ F(S). Since z,, — z and Sz # z, by the Opial condition and Step 5, we obtain

liminf||z,, — z|| < liminf||z,, — Sz||
1— 0 1— 00

< liminf(||zy, — Szu, || + [[Sz0, — Sz|))

(3.34)
= liminf||Sz,, — Sz||
< liminf||z,, -z,
which is a contradiction. Thus we have z € F(S).
Next, let us show that z € VI(C, A). Let
Av+ Ncov, veC,
Tv = (3.35)
0, vgC.

Then T is maximal monotone. Let (v, w) € G(T). Since w — Av € Ncv and z, € C, we have

(v=2z,,w—- Av) >0. (3.36)

On the other hand, from z, = Pc(x, — A, Ax,), we have (v — z,, z,, — (x, — \,Az,;)) > 0 and
hence

(0= 2, 22" 1 Ax,) >0, (3.37)
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Therefore, we have

(V= zp, w) 2 (v~ 2y, AV)

Ay,

i

Zp, — X,
> (v -z, Av) —<v—zni, +Axn,.>

Zn,

i

— _ — —_ _xni
_<v 2 A = Ay, = 2 > (3.38)

Zy — Xn
=(0— 2y, AV — Azp,) + (U — 2y, AZy, — AXp,) — <v—zni, "‘A n’>
n

i

Zn, — Xn,
> (v —zy, Azy, — Axy,) — <v—zni, n’)t "’>.
ni

Since ||z, — xu|| — 01in Step 4 and A is a-inverse-strongly monotone, we have (v — z,w) >0
asi — co. Since T is maximal monotone, we have z € T~'0 and hence z € VI(C, A).
Therefore, z € F(S) N VI(C, A). Now from Lemma 2.5 and Step 5, we obtain

limsup<u + (yf —E)q, Sz, —q> = ilirg<u + <yf —E)q,Szni - q>

n— oo

-t (1 B 1)

(3.39)
= (u+ (1/ -B)az-q)
<0.
By (3.9) and (3.39), we conclude that
1iIans;}p<u +(yf-B)ayi-q)
< 1ir::s;p<u +(Yf-B)ayn—Szu)+ 1ir::5£p<u +(vf-B)a,Szu-q)
(3.40)

< lirnrlszp”u + <yf —E)q””yn - Sz,|| +liinﬁszp<u+ <yf —E)q,Szn - q>

<0.
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Step 7. We show that lim,,_, ;||x,, — g|| = 0 and lim,, ., ||u,, — g|| = O, where g is a solution of
the optimization problem (OP1). Indeed from (IS) and Lemma 2.2, we have

1 = qlI* < [|ya - qI?

ay(u+yf(x) = Bg) + (I - 0:B) (Szu— q)|

< || (1~ aB) (520 - )| + 200 (e v () ~ By - )
< (1= (14 p)¥an) [lza = qll* + 20y (f (xa) = £ (4), yu — )
+20,(u+1f(9) ~Ba,yu—q)

< (1= (1+ p)yan)’[|xn — q|1* + 2aayk]|2, = q| ||y - 4]

(3.41)
+2an<u+ (yf—B)q,yn —q>
< (1= (1+ p)yan)’ ||l — qll”* + 2anyk]|xn = gl ([|yn = xall + |0 - q]])
+2an<u+ <yf—§>q,yn —q>
= (1-2((1+ p)¥ - yk)an) || - q]|*
+a ((1+ )7)*[l2n = qlI”* + 2anyk]|x0 = g |y = x|
+2[Xn<u+ <Yf—§>q/yn_q>/
that is,
201 = qll* < (1=2((1+ p)¥ = yk) ) || - q|°
+a (1+ w)Y)* M; + 20,7k |y = ]| M
B (3.42)
+2zxn<u+ <yf—B>q,yn —q>
= (=) |ln = qlI* + Bu,
where My =sup{||x, —gl| : n > 1}, &, = 2((1 + )y — yk)a,, and
B = [zxn(l + 17) M2 + 27k yn — x| My + 2<u + <yf —E)q,yn - q>] (3.43)

From (i), ||y — xu|| — 0 in Steps 3, and 6, it is easily seen that a, — 0, >, a, = oo,
and limsup, ,  (B./a,) < 0. Hence, by Lemma 2.3, we conclude x, — qasn — oo. This
completes the proof. O

As a direct consequence of Theorem 3.1, we have the following results.
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Corollary 3.2. Let H,C,S,B, f,u,y,y,k, and pu be as in Theorem 3.1. Let {x,} be a sequence
generated by
x1=x€C,
Yn =y (u+yf(xn)) + (I —ay(I+uB))Sxy, (3.44)
Xn+l = (1 - ﬂn)yn + ﬂnsynr n>1,

where {a,} and {B,} C [0,1]. Let {a,} and {B,} satisfy the conditions (i), (ii), and (iv) in
Theorem 3.1. Then {x,} converges strongly to q € F(S), which is a solution of the optimization
problem

in © L P -
xg}rl(rsl)2<3x,x)+2||x ull” = h(x), (OP2)

where h is a potential function for y f.

Corollary 3.3. Let H,C,A,B, f,u,y,Y,k, and p be as in Theorem 3.1. Let {x,} be a sequence
generated by

x1=x€C,

Yn =y (u+7yf(xn)) + (I —ay(I+uB))Pc(xy — AyAxy), (3.45)
Xn+l = (1 - ﬁn)yn + ﬁan (yn - )tnAyn)r n>1,

where {1} C [0,2a], {a,} C [0,1), and {B,} C [0,1]. Let {a,}, {Xn} and { P, } satisfy the conditions
(i), (ii), (iii), and (iv) in Theorem 3.1. Then {x,} converges strongly to q € VI(C, A), which is a
solution of the optimization problem

. U 1 2
(B Zlx = - P
xe{/r}}g}qﬂ( X, x) + 2||x ul|” - h(x), (OP3)

where h is a potential function for y f.

Remark 3.4. (1) Theorem 3.1 and Corollary 3.3 improve and develop the corresponding
results in Chen et al. [6], liduka and Takahashi [8], and Jung [10].

(2) Even though B, = 0 for n > 1, the iterative scheme (3.44) in Corollary 3.2 is a new
one for fixed point problem of a nonexpansive mapping.

4. Applications

In this section, as in [6, 8, 10], we prove two theorems by using Theorem 3.1. First of all, we
recall the following definition.
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A mapping T : C — C is called strictly pseudocontractive if there exists &« with0 < a <1
such that

ITx = Ty|" < llx - yI* + al| (1 - D)x - T = Dy (4.1)

for every x, y € C. If k = 0, then T is nonexpansive. Put A = I =T, where T : C — Cis
a strictly pseudo-contractive mapping with constant a. Then A is (1 — a) /2-inverse-strongly
monotone; see [2]. Actually, we have, forall x, y € C,

1= A - (1 - Ay < [l - I + el Ax - Ay 42)
On the other hand, since H is a real Hilbert space, we have
1T - A)x = - Ay|* = lx -yl + | Ax - Ay|* ~2(x -y, Ax - Ay).  (4)
Hence we have

1-
(x -y, Ax - Ay) 2 — || Ax - Ay|[". (44)

Using Theorem 3.1, we found a strong convergence theorem for finding a common fixed point
of a nonexpansive mapping and a strictly pseudo-contractive mapping.

Theorem4.1. Let H,C, S, B, f, u,y,¥, k, and p be as in Theorem 3.1. Let T be an a-strictly pseudo-
contractive mapping of C into itself such that F(S) N F(T) #0. Let {x,} be a sequence generated by
x1=x€C,
Yn =y (u+yf(xn)) + (I —an(I+puB))S((1—Ay)xy + 1yTxy), (4.5)
Xn+l = (1 - ﬁn)yn + pns((l - )ln)yn + /\nTyn)r n>1,
where {A,} C [0,1 - a], {a,} C [0,1), and {B,} C [0,1]. Let {an}, {An}, and {P,.} satisfy the

conditions (i), (ii), (iii), and (iv) in Theorem 3.1. Then {x,} converges strongly to g € F(S) N F(T),
which is a solution of the optimization problem

. H 1 2 OP.
— — — — 4
xeFI(Isl)lrlw}?(T)Z (Bx,x) + 2||x ul” = hix), ( )

where h is a potential function for y f.

Proof. Put A = I-T. Then A is (1-a)/2-inverse-strongly monotone. We have F(T) = VI(C, A)
and Pc(x, — A, Axy,) = (1= \,)x, + A, Tx,. Thus, the desired result follows from Theorem 3.1.
O

Using Theorem 3.1, we also obtain the following result.
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Theorem 4.2. Let H be a real Hilbert space. Let A be an a-inverse-strongly monotone mapping of
Hinto H and S a nonexpansive mapping of H into itself such that F(S) N A™'0#0. Let u € H, and
let B be a strongly positive bounded linear operator on H with constanty > OQand f : H — H
a contraction with constant k € (0,1). Assume that u > 0and 0 < y < (1 + p)y/k. Let {x,} be a
sequence generated by

x1=x€ H,
Yn=an(u+yf(xn)) + (I —a,(I+uB))S(x, — X, Axy), (4.6)
Xn+1 = (1 - ﬂn)]/n + ﬂns(]/n - -)tnA]/n)/ nz 1/

where {A,} C [0,2a], {a,} C [0,1), and {B,} C [0,1]. Let {an}, {X.}, and {B,} satisfy the
conditions (i), (ii), (iii), and (iv) in Theorem 3.1. Then {x,} converges strongly to g € F(S) n A~10,
which is a solution of the optimization problem

n M -
xepfg)lnrlA402<Bx,x>+2||x ul|” = h(x), (OP5)

where h is a potential function for y f.

Proof. We have A710 = VI(H, A). So, putting Py = I, by Theorem 3.1, we obtain the desired
result. O

Remark 4.3. (1) Theorems 4.1 and 4.2 complement and develop the corresponding results in
Chen et al. [6] and Jung [10].

(2) In all our results, we can replace the condition 3,7, |@,+1 — | < oo on the control
parameter {a,} by the condition a, € (0,1] for n > 1, lim, , ., /a1 = 1 [12, 13] or by the
perturbed control condition |a,+1 — &, < 0(Ay41) + On, Dy On < 0 [23].
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