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Matthews (1994) introduced a new distance p on a nonempty set X, which is called partial metric.
If (X, p) is a partial metric space, then p(x, x) may not be zero for x ∈ X. In the present paper, we
give some fixed point results on these interesting spaces.

1. Introduction

There are a lot of fixed and common fixed point results in different types of spaces. For
example, metric spaces, fuzzy metric spaces, and uniform spaces. One of the most interesting
is partial metric space, which is defined by Matthews [1]. In partial metric spaces, the
distance of a point in the self may not be zero. After the definition of partial metric space,
Matthews proved the partial metric version of Banach fixed point theorem. Then, Valero
[2], Oltra and Valero [3], and Altun et al. [4] gave some generalizations of the result
of Matthews. Again, Romaguera [5] proved the Caristi type fixed point theorem on this
space.

First, we recall some definitions of partial metric spaces and some properties of theirs.
See [1–3, 5–7] for details.

A partial metric on a nonempty set X is a function p : X × X → �
+ such that for all

x, y, z ∈ X :

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),
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(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is
a partial metric on X. It is clear that if p(x, y) = 0, then from (p1) and (p2) x = y.
But if x = y, p(x, y) may not be 0. A basic example of a partial metric space is the
pair (�+ , p), where p(x, y) = max{x, y} for all x, y ∈ �

+ . Other examples of partial
metric spaces, which are interesting from a computational point of view, may be found in
[1, 8].

Each partial metric p on X generates a T0 topology τp on X, which has as a base the
family open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}
for all x ∈ X and ε > 0.

If p is a partial metric on X, then the function ps : X ×X → �
+ given by

ps
(
x, y

)
= 2p

(
x, y

) − p(x, x) − p
(
y, y

)
(1.1)

is a metric on X.
Let (X, p) be a partial metric space, then we have the following.

(i) A sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X if and
only if p(x, x) = limn→∞p(x, xn).

(ii) A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if there
exists (and is finite) limn,m→∞p(xn, xm).

(iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence
{xn} in X converges, with respect to τp, to a point x ∈ X such that p(x, x) =
limn,m→∞p(xn, xm).

(iv) A mapping F : X → X is said to be continuous at x0 ∈ X, if for every ε > 0, there
exists δ > 0 such that F(Bp(x0, δ)) ⊆ Bp(Fx0, ε).

Lemma 1.1 (see [1, 3]). Let (X, p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric
space (X, ps).

(b) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is complete.
Furthermore, limn→∞ps(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm). (1.2)

On the other hand, existence of fixed points in partially ordered sets has been
considered recently in [9], and some generalizations of the result of [9] are given in [10–
15] in a partial ordered metric spaces. Also, in [9], some applications to matrix equations are
presented; in [14, 15], some applications to ordinary differential equations are given. Also,
we can find some results on partial ordered fuzzy metric spaces and partial ordered uniform
spaces in [16–18], respectively.

The aim of this paper is to combine the above ideas, that is, to give some fixed point
theorems on ordered partial metric spaces.
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2. Main Result

Theorem 2.1. Let (X,�) be partially ordered set, and suppose that there is a partial metric p on
X such that (X, p) is a complete partial metric space. Suppose F : X → X is a continuous and
nondecreasing mapping such that

p
(
Fx, Fy

) ≤ Ψ
(
max

{
p
(
x, y

)
, p(x, Fx), p

(
y, Fy

)
,
1
2
[
p
(
x, Fy

)
+ p

(
y, Fx

)]
})

(2.1)

for all x, y ∈ X with y � x, where Ψ : [0,∞) → [0,∞) is a continuous, nondecreasing function
such that

∑∞
n=1 Ψ

n(t) is convergent for each t > 0. If there exists an x0 ∈ X with x0 � Fx0, then there
exists x ∈ X such that x = Fx. Moreover, p(x, x) = 0.

Proof. From the conditions on Ψ, it is clear that limn→∞Ψn(t) = 0 for t > 0 and Ψ(t) < t. If
Fx0 = x0, then the proof is finished, so suppose x0 /=Fx0. Now, let xn = Fxn−1 for n = 1, 2, . . ..
If xn0 = xn0+1 for some n0 ∈ �, then it is clear that xn0 is a fixed point of F. Thus, assume
xn /=xn+1 for all n ∈ �. Notice that since x0 � Fx0 and F is nondecreasing, we have

x0 � x1 � x2 � · · · � xn � xn+1 � · · · . (2.2)

Now, since xn−1 � xn, we can use the inequality (2.1) for these points, then we have

p(xn+1, xn)

= p(Fxn, Fxn−1)

≤ Ψ
(
max

{
p(xn, xn−1), p(xn, Fxn), p(xn−1, Fxn−1),

1
2
[
p(xn, Fxn−1) + p(xn−1, Fxn)

]})

≤ Ψ
(
max

{
p(xn, xn−1), p(xn, xn+1),

1
2
[
p(xn−1, xn) + p(xn, xn+1)

]
})

= Ψ
(
max

{
p(xn, xn−1), p(xn, xn+1)

})

(2.3)

since

p(xn, xn) + p(xn−1, xn+1) ≤ p(xn−1, xn) + p(xn, xn+1) (2.4)

and Ψ is nondecreasing. Now, if

max
{
p(xn, xn−1), p(xn, xn+1)

}
= p(xn, xn+1) (2.5)

for some n, then from (2.3) we have

p(xn+1, xn) ≤ Ψ
(
p(xn, xn+1)

)
< p(xn, xn+1), (2.6)
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which is a contradiction since p(xn, xn+1) > 0. Thus

max
{
p(xn, xn−1), p(xn, xn+1)

}
= p(xn, xn−1) (2.7)

for all n. Therefore, we have

p(xn+1, xn) ≤ Ψ
(
p(xn, xn−1)

)
, (2.8)

and so

p(xn+1, xn) ≤ Ψn(p(x1, x0)
)
. (2.9)

On the other hand, since

max
{
p(xn, xn), p(xn+1, xn+1)

} ≤ p(xn, xn+1), (2.10)

then from (2.9) we have

max
{
p(xn, xn), p(xn+1, xn+1)

} ≤ Ψn(p(x1, x0)
)
. (2.11)

Therefore,

ps(xn, xn+1) = 2p(xn, xn+1) − p(xn, xn) − p(xn+1, xn+1)

≤ 2p(xn, xn+1) + p(xn, xn) + p(xn+1, xn+1)

≤ 4Ψn(p(x1, x0)
)
.

(2.12)

This shows that limn→∞ps(xn, xn+1) = 0. Now, we have

ps(xn+k, xn) ≤ ps(xn+k, xn+k−1) + · · · + ps(xn+1, xn)

≤ 4Ψn+k−1(p(x1, x0)
)
+ · · · + 4Ψn

(
p(x1, x0)

)
.

(2.13)

Since
∑∞

n=1 Ψ
n(t) is convergent for each t > 0, then {xn} is a Cauchy sequence in the metric

space (X, ps). Since (X, p) is complete, then, from Lemma 1.1, the sequence {xn} converges in
the metric space (X, ps), say limn→∞ps(xn, x) = 0. Again, from Lemma 1.1, we have

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm). (2.14)

Moreover, since {xn} is a Cauchy sequence in the metric space (X, ps), we have
limn,m→∞ps(xn, xm) = 0, and, from (2.11), we have limn→∞p(xn, xn) = 0, thus, from definition
ps, we have limn,m→∞p(xn, xm) = 0. Therefore, from (2.14), we have

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm) = 0. (2.15)
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Now, we claim that Fx = x. Suppose p(x, Fx) > 0. Since F is continuous, then, given ε > 0,
there exists δ > 0 such that F(Bp(x, δ)) ⊆ Bp(Fx, ε). Since p(x, x) = limn→∞p(xn, x) = 0, then
there exists k ∈ � such that p(xn, x) < p(x, x)+δ for all n ≥ k. Therefore, we have xn ∈ Bp(x, δ)
for all n ≥ k. Thus, F(xn) ∈ F(Bp(x, δ)) ⊆ Bp(Fx, ε), and so p(Fxn, Fx) < p(Fx, Fx) + ε for all
n ≥ k. This shows that p(Fx, Fx) = limn→∞p(xn+1, Fx). Now, we use the inequality (2.1) for
x = y, then we have

p(Fx, Fx) ≤ Ψ
(
max

{
p(x, x), p(x, Fx)

})
= Ψ

(
p(x, Fx)

)
. (2.16)

Therefore, we obtain

p(x, Fx) ≤ p(x, xn+1) + p(xn+1, Fx) − p(xn+1, xn+1)

≤ p(x, xn+1) + p(xn+1, Fx),
(2.17)

and letting n → ∞, we have

p(x, Fx) ≤ lim
n→∞

p(x, xn+1) + lim
n→∞

p(xn+1, Fx)

= p(Fx, Fx)

≤ Ψ
(
p(x, Fx)

)

< p(x, Fx),

(2.18)

which is a contradiction since p(x, Fx) > 0. Thus, p(x, Fx) = 0, and so x = Fx.

In the following theorem, we remove the continuity of F. Also, The contractive
condition (2.1) does not have to be satisfied for x = y, but we add a condition on X.

Theorem 2.2. Let (X,�) be a partially ordered set, and suppose that there is a partial metric p on X
such that (X, p) is a complete partial metric space. Suppose F : X → X is a nondecreasing mapping
such that

p
(
Fx, Fy

) ≤ Ψ
(
max

{
p
(
x, y

)
, p(x, Fx), p

(
y, Fy

)
,
1
2
[
p
(
x, Fy

)
+ p

(
y, Fx

)]})
(2.19)

for all x, y ∈ X with y ≺ x (i.e., y � x and y /=x ), where Ψ : [0,∞) → [0,∞) is a continuous,
nondecreasing function such that

∑∞
n=1 Ψ

n(t) is convergent for each t > 0. Also, the condition

If {xn} ⊂ X is a increasing sequence with xn −→ x in X, then xn ≺ x, ∀n (2.20)

holds. If there exists an x0 ∈ X with x0 � Fx0, then there exists x ∈ X such that x = Fx. Moreover,
p(x, x) = 0.
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Proof. As in the proof of Theorem 2.1, we can construct a sequence {xn} inX by xn = Fxn−1 for
n = 1, 2, . . .. Also, we can assume that the consecutive terms of {xn} are different. Otherwise
we are finished. Therefore, we have

x0 ≺ x1 ≺ x2 ≺ · · · ≺ xn ≺ xn+1 ≺ · · · . (2.21)

Again, as in the proof of Theorem 2.1, we can show that {xn} is a Cauchy sequence in the
metric space (X, ps), and, therefore, there exists x ∈ X such that

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm) = 0. (2.22)

Now, we claim that Fx = x. Suppose p(x, Fx) > 0. Since the condition (2.20) is satisfied, then
we can use (2.19) for y = xn. Therefore, we obtain

p(Fx, Fxn)

≤ Ψ
(
max

{
p(x, xn), p(x, Fx), p(xn, Fxn),

1
2
[
p(x, Fxn) + p(xn, Fx)

]
})

≤ Ψ
(
max

{
p(x, xn), p(x, Fx), p(xn, xn+1),

1
2
[
p(x, xn+1) + p(xn, x) + p(x, Fx) − p(x, x)

]})

= Ψ
(
max

{
p(x, xn), p(x, Fx), p(xn, xn+1),

1
2
[
p(x, xn+1) + p(xn, x) + p(x, Fx)

]})
,

(2.23)

using the continuity of Ψ and letting n → ∞, we have limn→∞p(Fx, Fxn) ≤ Ψ(p(x, Fx)).
Therefore, we obtain

p(x, Fx) ≤ lim
n→∞

p(x, xn+1) + lim
n→∞

p(xn+1, Fx)

= lim
n→∞

p(x, xn+1) + lim
n→∞

p(Fxn, Fx)

≤ Ψ
(
p(x, Fx)

)

< p(x, Fx),

(2.24)

which is a contradiction. Thus, p(x, Fx) = 0, and so x = Fx.

Example 2.3. Let X = [0,∞) and p(x, y) = max{x, y}, then it is clear that (X, p) is a complete
partial metric space. We can define a partial order on X as follows:

x � y ⇐⇒ x = y or
{
x, y ∈ [0, 1] with x ≤ y

}
. (2.25)
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Let F : X → X,

Fx =

⎧
⎪⎨

⎪⎩

x2

1 + x
, x ∈ [0, 1],

2x, x ∈ (1,∞),
(2.26)

and Ψ : [0,∞) → [0,∞), Ψ(t) = t2/(1 + t). Therefore, Ψ is continuous and nondecreasing.
Again we can show by induction that Ψn(t) ≤ t(t/(1 + t))n, and so we have

∑∞
n=1 Ψ

n(t)
that is convergent. Also, F is nondecreasing with respect to �, and for y ≺ x, we
have

p
(
Fx, Fy

)
= max

{
x2

1 + x
,

y2

1 + y

}

=
x2

1 + x

= Ψ
(
p
(
x, y

))

≤ Ψ
(
max

{
p
(
x, y

)
, p(x, Fx), p

(
y, Fy

)
,
1
2
[
p
(
x, Fy

)
+ p

(
y, Fx

)]
})

,

(2.27)

that is, the condition (2.19) of Theorem 2.2 is satisfied. Also, it is clear that the condition
(2.20) is satisfied, and for x0 = 0, we have x0 � Fx0. Therefore, all conditions of
Theorem 2.2 are satisfied, and so F has a fixed point in X. Note that if x = 1 and y = 2,
then

p
(
Fx, Fy

)
= 4 /≤ 16

5
= Ψ

(
max

{
p
(
x, y

)
, p(x, Fx), p

(
y, Fy

)
,
1
2
[
p
(
x, Fy

)
+ p

(
y, Fx

)]})
.

(2.28)

This shows that the contractive condition of Theorem 1 of [4] is not satisfied.

Theorem 2.4. If one uses the following condition instead of (2.1) in Theorem 2.1, one has the same
result.

p
(
Fx, Fy

) ≤ Ψ
(
max

{
p
(
x, y

)
,
1
2
[
p(x, Fx) + p

(
y, Fy

)]
,
1
2
[
p
(
x, Fy

)
+ p

(
y, Fx

)]})

(2.29)

for all x, y ∈ X with y � x.

In what follows, we give a sufficient condition for the uniqueness of the fixed point in
Theorem 2.4, this condition is

for x, y ∈ X there exists a lower bound or an upper bound. (2.30)
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In [15], it was proved that condition (2.30) is equivalent to

for x, y ∈ X there exists z ∈ X which is comparable to x and y. (2.31)

Theorem 2.5. Adding condition (2.31) to the hypotheses of Theorem 2.4, one obtains uniqueness of
the fixed point of F.

Proof. Suppose that there exists z and that y ∈ X are different fixed points of F, then p(z, y) >
0. Now, we consider the following two cases.

(i) If z and y are comparable, then Fnz = z and Fny = y are comparable for n = 0, 1, . . ..
Therefore, we can use the condition (2.1), then we have

p
(
z, y

)
= p

(
Fnz, Fny

)

≤ Ψ
(
max

{
p
(
Fn−1z, Fn−1y

)
,
1
2

[
p
(
Fn−1z, Fnz

)
+ p

(
Fn−1y, Fny

)]
,

1
2

[
p
(
Fn−1z, Fny

)
+ p

(
Fn−1y, Fnz

)]})

= Ψ
(
max

{
p
(
z, y

)
,
1
2
[
p(z, z) + p

(
y, y

)]
})

= Ψ
(
p
(
z, y

))

< p
(
z, y

)
,

(2.32)

which is a contradiction.
(ii) If z and y are not comparable, then there exists x ∈ X comparable to z and y. Since

F is nondecreasing, then Fnx is comparable to Fnz = z and Fny = y for n = 0, 1, . . .. Moreover,

p(z, Fnx) = p(Fnz, Fnx)

≤ Ψ
(
max

{
p
(
Fn−1z, Fn−1x

)
,
1
2

[
p
(
Fn−1z, Fnz

)
+ p

(
Fn−1x, Fnx

)]
,

1
2

[
p
(
Fn−1z, Fnx

)
+ p

(
Fn−1x, Fnz

)]})

= Ψ
(
max

{
p
(
z, Fn−1x

)
,
1
2

[
p(z, z) + p

(
Fn−1x, Fnx

)]
,
1
2

[
p(z, Fnx) + p

(
Fn−1x, z

)]})

≤ Ψ
(
max

{
p
(
z, Fn−1x

)
,
1
2

[
p
(
Fn−1x, z

)
+ p(z, Fnx)

]
,
1
2

[
p(z, Fnx) + p

(
Fn−1x, z

)]})

= Ψ
(
max

{
p
(
z, Fn−1x

)
,
1
2

[
p
(
Fn−1x, z

)
+ p(z, Fnx)

]})
.

(2.33)
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Now, if p(z, Fn−1x) < p(z, Fnx) for some n, then we have

p(z, Fnx) ≤ Ψ
(
p(z, Fnx)

)
< p(z, Fnx), (2.34)

which is a contradiction. Thus, p(z, Fn−1x) ≥ p(z, Fnx) for all n, and so

p(z, Fnx) ≤ Ψ
(
p
(
z, Fn−1x

))
< p

(
z, Fn−1x

)
. (2.35)

This shows that p(z, Fnx) is a nonnegative and nondecreasing sequence and so has a limit,
say α ≥ 0. From the last inequality, we can obtain

α ≤ Ψ(α) < α, (2.36)

hence α = 0. Similarly, it can be proven that, limn→∞p(y, Fnx) = 0. Finally,

p
(
z, y

) ≤ p(z, Fnx) + p
(
Fnx, y

) − p(Fnx, Fnx)

≤ p(z, Fnx) + p
(
Fnx, y

)
,

(2.37)

and taking limit n → ∞, we have p(z, y) = 0. This contradicts p(z, y) > 0.
Consequently, F has no two fixed points.
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