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We introduce a new iterative sequence for finding a common element of the set of fixed points of
a relatively nonexpansive mapping and the set of solutions of an equilibrium problem in a Banach
space. Then, we study the strong convergence of the sequences. With an appropriate setting, we
obtain the corresponding results due to Takahashi-Takahashi and Takahashi-Zembayashi. Some of
our results are established with weaker assumptions.

1. Introduction

Throughout this paper, we denote by � and � the sets of positive integers and real numbers,
respectively. Let E be a Banach space, E∗ the dual space of E and C a closed convex subsets
of E. Let F : C × C → � be a bifunction. The equilibrium problem is to find x ∈ C such that

F
(
x, y

) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP(F). The equilibrium problems include
fixed point problems, optimization problems, variational inequality problems, and Nash
equilibrium problems as special cases.

Let E be a smooth Banach space and J the normalized duality mapping from E to E∗.
Alber [1] considered the following functional ϕ : E × E → [0,∞) defined by

ϕ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥
∥y

∥
∥2 (

x, y ∈ E
)
. (1.2)
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Using this functional, Matsushita and Takahashi [2, 3] studied and investigated the following
mappings in Banach spaces. A mapping S : C → E is relatively nonexpansive if the following
properties are satisfied:

(R1) F(S)/=�,

(R2) ϕ(p, Sx) ≤ ϕ(p, x) for all p ∈ F(S) and x ∈ C,

(R3) F(S) = F̂(S),

where F(S) and F̂(S) denote the set of fixed points of S and the set of asymptotic fixed points
of S, respectively. It is known that S satisfies condition (R3) if and only if I − S is demiclosed
at zero, where I is the identity mapping; that is, whenever a sequence {xn} in C converges
weakly to p and {xn−Sxn} converges strongly to 0, it follows that p ∈ F(S). In a Hilbert space
H , the duality mapping J is an identity mapping and ϕ(x, y) = ‖x − y‖2 for all x, y ∈ H .
Hence, if S : C → H is nonexpansive (i.e., ‖Sx − Sy‖ ≤ ‖x − y‖ for all x, y ∈ C), then it is
relatively nonexpansive.

Recently, many authors studied the problems of finding a common element of the set
of fixed points for a mapping and the set of solutions of equilibrium problem in the setting of
Hilbert space and uniformly smooth and uniformly convex Banach space, respectively (see,
e.g., [4–21] and the references therein). In a Hilbert space H , S. Takahashi and W. Takahashi
[17] introduced the iteration as follows: sequence {xn} generated by u, x1 ∈ C,

F
(
zn, y

)
+

1
rn

〈
y − zn, zn − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = βnxn +
(
1 − βn

)
S(αnu + (1 − αn)zn),

(1.3)

for every n ∈ �, where S is nonexpansive, {αn} and {βn} are appropriate sequences in [0, 1],
and {rn} is an appropriate positive real sequence. They proved that {xn} converges strongly
to some element in F(S) ∩ EP(F). In 2009, Takahashi and Zembayashi [19] proposed the
iteration in a uniformly smooth and uniformly convex Banach space as follows: a sequence
{xn} generated by u1 ∈ E,

xn ∈ C such that F
(
xn, y

)
+

1
rn

〈
y − xn, Jxn − Jun

〉 ≥ 0, ∀y ∈ C,

un+1 = J−1(αnJxn + (1 − αn)JSxn),

(1.4)

for every n ∈ �, S is relatively nonexpansive, {αn} is an appropriate sequence in [0, 1], and
{rn} is an appropriate positive real sequence. They proved that if J is weakly sequentially
continuous, then {xn} converges weakly to some element in F(S) ∩ EP(F).

Motivated by S. Takahashi andW. Takahashi [17] and Takahashi and Zembayashi [19],
we prove a strong convergence theorem for finding a common element of the fixed points set
of a relatively nonexpansive mapping and the set of solutions of an equilibrium problem in a
uniformly smooth and uniformly convex Banach space.
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2. Preliminaries

We collect together some definitions and preliminaries which are needed in this paper. We
say that a Banach space E is strictly convex if the following implication holds for x, y ∈ E:

‖x‖ =
∥∥y

∥∥ = 1, x /=y imply
∥
∥∥∥
x + y

2

∥
∥∥∥ < 1. (2.1)

It is also said to be uniformly convex if for any ε > 0, there exists δ > 0 such that

‖x‖ =
∥
∥y

∥
∥ = 1,

∥
∥x − y

∥
∥ ≥ ε imply

∥∥
∥∥
x + y

2

∥∥
∥∥ ≤ 1 − δ. (2.2)

It is known that if E is a uniformly convex Banach space, then E is reflexive and strictly
convex. We say that E is uniformly smooth if the dual space E∗ of E is uniformly convex. A
Banach space E is smooth if the limit limt→ 0((‖x+ty‖−‖x‖)/t) exists for all norm one elements
x and y in E. It is not hard to show that if E is reflexive, then E is smooth if and only if E∗ is
strictly convex.

Let E be a smooth Banach space. The function ϕ : E × E → � (see [1]) is defined by

ϕ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y

∥∥2 (
x, y ∈ E

)
, (2.3)

where the duality mapping J : E → E∗ is given by

〈x, Jx〉 = ‖x‖2 = ‖Jx‖2 (x ∈ E). (2.4)

It is obvious from the definition of the function ϕ that

(‖x‖ − ∥∥y
∥∥)2 ≤ ϕ

(
x, y

) ≤ (‖x‖ + ∥∥y
∥∥)2, (2.5)

ϕ
(
x, J−1

(
λJy + (1 − λ)Jz

)) ≤ λϕ
(
x, y

)
+ (1 − λ)ϕ(x, z), (2.6)

for all λ ∈ [0, 1] and x, y, z ∈ E. The following lemma is an analogue of Xu’s inequality [22,
Theorem 2]with respect to ϕ.

Lemma 2.1. Let E be a uniformly smooth Banach space and r > 0. Then, there exists a continuous,
strictly increasing, and convex function g : [0, 2r] → [0,∞) such that g(0) = 0 and

ϕ
(
x, J−1

(
λJy + (1 − λ)Jz

)) ≤ λϕ
(
x, y

)
+ (1 − λ)ϕ(x, z) − λ(1 − λ)g

(∥∥Jy − Jz
∥∥), (2.7)

for all λ ∈ [0, 1], x ∈ E, and y, z ∈ Br .

It is also easy to see that if {xn} and {yn} are bounded sequences of a smooth Banach
space E, then xn − yn → 0 implies that ϕ(xn, yn) → 0.



4 Fixed Point Theory and Applications

Lemma 2.2 (see [23, Proposition 2]). Let E be a uniformly convex and smooth Banach space, and
let {xn} and {yn} be two sequences of E such that {xn} or {yn} is bounded. If ϕ(xn, yn) → 0, then
xn − yn → 0.

Remark 2.3. For any bounded sequences {xn} and {yn} in a uniformly convex and uniformly
smooth Banach space E, we have

ϕ
(
xn, yn

) −→ 0 ⇐⇒ xn − yn −→ 0 ⇐⇒ Jxn − Jyn −→ 0. (2.8)

Let C be a nonempty closed convex subset of a reflexive, strictly convex, and smooth
Banach space E. It is known that [1, 23] for any x ∈ E, there exists a unique point x̂ ∈ C such
that

ϕ(x̂, x) = min
y∈C

ϕ
(
y, x

)
. (2.9)

Following Alber [1], we denote such an element x̂ by ΠCx. The mapping ΠC is called the
generalized projection from E onto C. It is easy to see that in a Hilbert space, the mapping ΠC

coincides with the metric projection PC. Concerning the generalized projection, the following
are well known.

Lemma 2.4 (see [23, Propositions 4 and 5]). Let C be a nonempty closed convex subset of a
reflexive, strictly convex and smooth Banach space E, x ∈ E, and x̂ ∈ C. Then,

(a) x̂ = ΠCx if and only if 〈y − x̂, Jx − Jx̂〉 ≤ 0 for all y ∈ C,

(b) ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x) for all y ∈ C.

Remark 2.5. The generalized projection mapping ΠC above is relatively nonexpansive and
F(ΠC) = C.

Let E be a reflexive, strictly convex and smooth Banach space. The duality mapping
J∗ from E∗ onto E∗∗ = E coincides with the inverse of the duality mapping J from E onto E∗,
that is, J∗ = J−1. We make use of the following mapping V : E × E∗ → � studied in Alber [1]

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2, (2.10)

for all x ∈ E and x∗ ∈ E∗. Obviously, V (x, x∗) = ϕ(x, J−1(x∗)) for all x ∈ E and x∗ ∈ E∗. We
know the following lemma (see [1] and [24, Lemma 3.2]).

Lemma 2.6. Let E be a reflexive, strictly convex and smooth Banach space, and let V be as in (2.10).
Then,

V (x, x∗) + 2
〈
J−1(x∗) − x, y∗

〉
≤ V

(
x, x∗ + y∗), (2.11)

for all x ∈ E and x∗, y∗ ∈ E∗.
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Lemma 2.7 (see [25, Lemma 2.1]). Let {an} be a sequence of nonnegative real numbers. Suppose
that

an+1 ≤
(
1 − γn

)
an + γnδn, (2.12)

for all n ∈ �, where the sequences {γn} in (0, 1) and {δn} in � satisfy conditions: limn→∞γn = 0,∑∞
n=1 γn = ∞, and lim supn→∞δn ≤ 0. Then, limn→∞an = 0.

Lemma 2.8 (see [26, Lemma 3.1]). Let {an} be a sequence of real numbers such that there exists
a subsequence {ni} of {n} such that ani < ani+1 for all i ∈ �. Then, there exists a nondecreasing
sequence {mk} ⊂ � such thatmk → ∞,

amk ≤ amk+1, ak ≤ amk+1, (2.13)

for all k ∈ �. In fact,mk = max {j ≤ k : aj < aj+1}.

For solving the equilibrium problem, we usually assume that a bifunction F : C×C →
� satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C,

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0, for all x, y ∈ C,

(A3) for all x, y, z ∈ C, lim supt→ 0F(tz + (1 − t)x, y) ≤ F(x, y),

(A4) for all x ∈ C, F(x, ·) is convex and lower semicontinuous.

The following lemma gives a characterization of a solution of an equilibrium problem.

Lemma 2.9 (see [19, Lemma 2.8 ]). Let C be a nonempty closed convex subset of a reflexive, strictly
convex, and uniformly smooth Banach space E. Let F : C × C → � be a bifunction satisfying
conditions (A1)–(A4). For r > 0, define a mapping Tr : E → C so-called the resolvent of F as
follows:

Tr(x) =
{
z ∈ C : F

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0 ∀y ∈ C

}
, (2.14)

for all x ∈ E. Then, the following hold:

(i) Tr is single-valued,

(ii) Tr is a firmly nonexpansive-type mapping [27], that is, for all x, y ∈ E

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
, (2.15)

(iii) F(Tr) = EP(F),

(iv) EP(F) is closed and convex,

Lemma 2.10 (see [4, Lemma 2.3]). Let C be a nonempty closed convex subset of a Banach space E,
F a bifunction from C×C → � satisfying conditions (A1)–(A4) and z ∈ C. Then, z ∈ EP(F) if and
only if F(y, z) ≤ 0 for all y ∈ C.
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Remark 2.11 (see [27]). Let C be a nonempty subset of a smooth Banach space E. If S : C → E
is a firmly nonexpansive-type mapping, then

ϕ(z, Sx) ≤ ϕ(z, Sx) + ϕ(Sx, x) ≤ ϕ(z, x), (2.16)

for all x ∈ C and z ∈ F(S). In particular, S satisfies condition (R2).

Lemma 2.12 (see [3, Proposition 2.4]). Let C be a nonempty closed convex subset of a strictly
convex and smooth Banach space E and S : C → E a relatively nonexpansive mapping. Then, F(S)
is closed and convex.

3. Main Results

In this section, we prove a strong convergence theorem for finding a common element of
the fixed points set of a relatively nonexpansive mapping and the set of solutions of an
equilibrium problem in a uniformly convex and uniformly smooth Banach space.

Theorem 3.1. Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth
Banach space E and F : C × C → � a bifunction satisfying conditions (A1)–(A4) and S : C → E
a relatively nonexpansive mapping such that F(S) ∩ EP(F)/=�. Let {un} and {xn} be sequences
generated by u ∈ C, u1 ∈ E and

F
(
xn, y

)
+

1
rn

〈
y − xn, Jxn − Jun

〉 ≥ 0, ∀y ∈ C,

yn = ΠCJ
−1(αnJu + (1 − αn)Jxn),

un+1 = J−1
(
βnJxn +

(
1 − βn

)
JSyn

)
,

(3.1)

for all n ∈ �, where {αn} ⊂ (0, 1) satisfying limn→∞αn = 0 and
∑∞

n=1 αn = ∞, {βn} ⊂ [a, b] ⊂ (0, 1),
and {rn} ⊂ [c,∞) ⊂ (0,∞). Then, {un} and {xn} converge strongly to ΠF(S)∩EP(F)u.

Proof. Note that xn can be rewritten as xn = Trnun. Since F(S) ∩ EP(F) is nonempty, closed,
and convex, we put û = ΠF(S)∩EP(F)u. Since ΠC, Trn , and S satisfy condition (R2), by (2.6), we
get

ϕ
(
û, yn

) ≤ ϕ
(
û, J−1(αnJu + (1 − αn)Jxn)

)

≤ αnϕ(û, u) + (1 − αn)ϕ(û, xn)

≤ αnϕ(û, u) + (1 − αn)ϕ(û, un),

(3.2)
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and so

ϕ(û, un+1) ≤ βnϕ(û, xn) +
(
1 − βn

)
ϕ
(
û, Syn

)

≤ βnϕ(û, un) +
(
1 − βn

)
ϕ
(
û, yn

)

≤ αn

(
1 − βn

)
ϕ(û, u) +

(
1 − αn

(
1 − βn

))
ϕ(û, un)

≤ max
{
ϕ(û, u), ϕ(û, un)

}
.

(3.3)

By induction, we have

ϕ(z, un+1) ≤ max
{
ϕ(û, u), ϕ(û, u1)

}
, (3.4)

for all n ∈ �. This implies that {un} is bounded and so are {xn}, {yn}, and {Syn}. Put

zn ≡ J−1(αnJu + (1 − αn)Jxn). (3.5)

Then, yn ≡ ΠCzn. Using Lemma 2.6 gives

ϕ
(
û, yn

) ≤ ϕ(û,zn) = V (û,Jzn)

≤ V (û, Jzn − αn(Ju − Jû)) − 2〈zn − û,−αn(Ju − Jû)〉

= ϕ
(
û, J−1(αnJû + (1 − αn)Jxn)

)
+ 2αn〈zn − û, Ju − Jû〉

≤ αnϕ(û, û) + (1 − αn)ϕ(û, xn) + 2αn〈zn − û, Ju − Jû〉
≤ (1 − αn)ϕ(û, un) + 2αn〈zn − û, Ju − Jû〉.

(3.6)

Let g : [0, 2r] → [0,∞) be a function satisfying the properties of Lemma 2.1, where r =
sup{‖xn‖, ‖Syn‖ : n ∈ �}. Then, by Remark 2.11 and (3.6), we get

ϕ(û, un+1) ≤ βnϕ(û, xn) +
(
1 − βn

)
ϕ
(
û, Syn

) − βn
(
1 − βn

)
g
(∥∥Jxn − JSyn

∥
∥)

≤ βn
(
ϕ(û, un) − ϕ(xn, un)

)
+
(
1 − βn

)
ϕ
(
û, yn

)

− βn
(
1 − βn

)
g
(∥∥Jxn − JSyn

∥∥)

≤ βnϕ(û, un) +
(
1 − βn

)(
(1 − αn)ϕ(û, un) + 2αn〈zn − û, Ju − Jû〉)

− βnϕ(xn, un) − βn
(
1 − βn

)
g
(∥∥Jxn − JSyn

∥
∥)

=
(
1 − γn

)
ϕ(û, un) + 2γn〈zn − û, Ju − Jû〉

(3.7)

− βnϕ(xn, un) − βn
(
1 − βn

)
g
(∥∥Jxn − JSyn

∥∥)

≤ (
1 − γn

)
ϕ(û, un) + 2γn〈zn − û, Ju − Jû〉,

(3.8)

where γn = αn(1 − βn) for all n ∈ �. Notice that {γn} ⊂ (0, 1) satisfying limn→∞γn = 0 and∑∞
n=1 γn = ∞.
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The rest of the proof will be divided into two parts.

Case 1. Suppose that there exists n0 ∈ � such that {ϕ(û, un)}∞n=n0
is nonincreasing. In this

situation, {ϕ(û, un)} is then convergent. Then,

ϕ(û, un) − ϕ(û, un+1) −→ 0. (3.9)

It follows from (3.7) and γn → 0 that

βnϕ(xn, un) + βn
(
1 − βn

)
g
(∥∥Jxn − JSyn

∥
∥) −→ 0. (3.10)

Since {βn} ⊂ [a, b] ⊂ (0, 1),

ϕ(xn, un) −→ 0, g
(∥∥Jxn − JSyn

∥∥) −→ 0. (3.11)

Consequently, by Remark 2.3,

xn − un −→ 0, Jxn − JSyn −→ 0, xn − Syn −→ 0. (3.12)

From (2.6) and αn → 0, we obtain

ϕ
(
xn, yn

) ≤ ϕ(xn, zn) ≤ αnϕ(xn, u) + (1 − αn)ϕ(xn, xn) = αnϕ(xn, u) −→ 0. (3.13)

This implies that

xn − yn −→ 0, zn − yn −→ 0. (3.14)

Therefore,

yn − Syn −→ 0. (3.15)

Since {yn} is bounded and E is reflexive, we choose a subsequence {yni} of {yn} such that
yni ⇀ z and

lim sup
n→∞

〈
yn − û, Ju − Jû

〉
= lim

i→∞
〈
yni − û, Ju − Jû

〉
. (3.16)

Then, xni ⇀ z. Since xn − un → 0 and rn ≥ c > 0, by Remark 2.3,

lim
n→∞

1
rn
‖Jxn − Jun‖ = 0. (3.17)

Notice that

F
(
xn, y

)
+

1
rn

〈
y − xn, Jxn − Jun

〉 ≥ 0, ∀y ∈ C. (3.18)
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Replacing n by ni, we have from (A2) that

1
rni

〈
y − xni , Jxni − Juni

〉 ≥ −F(xni , y
) ≥ F

(
y, xni

)
, ∀y ∈ C. (3.19)

Letting i → ∞, we have from (3.17) and (A4) that

F
(
y, z

) ≤ 0, ∀y ∈ C. (3.20)

From Lemma 2.10, we have z ∈ EP(F). Since S satisfies condition (R3) and (3.15), z ∈ F(S).
It follows that z ∈ F(S) ∩ EP(F). By Lemma 2.4(a), we immediately obtain that

lim sup
n→∞

〈yn − û, Ju − Jû〉 = 〈z − û, Ju − Jû〉 ≤ 0. (3.21)

Since zn − yn → 0,

lim sup
n→∞

〈zn − û, Ju − Jû〉 ≤ 0. (3.22)

It follows from Lemma 2.7 and (3.8) that ϕ(û, un) → 0. Then, un → û and so xn → û.

Case 2. Suppose that there exists a subsequence {ni} of {n} such that

ϕ(û, uni) < ϕ(û, uni+1), (3.23)

for all i ∈ �. Then, by Lemma 2.8, there exists a nondecreasing sequence {mk} ⊂ � such that
mk → ∞,

ϕ(û, umk) ≤ ϕ(û, umk+1), ϕ(û, uk) ≤ ϕ(û, umk+1) (3.24)

for all k ∈ �. From (3.7) and γn → 0, we have

βmkϕ(xmk , umk) + βmk

(
1 − βmk

)
g
(∥∥Jxmk − JSymk

∥
∥)

≤ (
ϕ(û, umk) − ϕ(û, umk+1)

) − γmkϕ(û, umk) + 2γmk〈zmk − û, Ju − Jû〉
≤ − γmkϕ(û, umk) + 2γmk〈zmk − û, Ju − Jû〉 −→ 0.

(3.25)

Using the same proof of Case 1, we also obtain

lim sup
k→∞

〈zmk − û, Ju − Jû〉 ≤ 0. (3.26)

From (3.8), we have

ϕ(û, umk+1) ≤
(
1 − γmk

)
ϕ(û, umk) + 2γmk〈zmk − û, Ju − Jû〉. (3.27)
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Since ϕ(û, umk) ≤ ϕ(û, umk+1), we have

γmkϕ(û, umk) ≤ ϕ(û, umk) − ϕ(û, umk+1) + 2γmk〈zmk − û, Ju − Jû〉
≤ 2γmk

〈
ymk − û, Ju − Jû

〉
.

(3.28)

In particular, since γmk > 0, we get

ϕ(û, umk) ≤ 2〈zmk − û, Ju − Jû〉. (3.29)

It follows from (3.26) that ϕ(û, umk) → 0. This together with (3.27) gives

ϕ(û, umk+1) −→ 0. (3.30)

But ϕ(û, uk) ≤ ϕ(û, umk+1) for all k ∈ �, we conclude that uk → û, and xk → û.
From two cases, we can conclude that {un} and {xn} converge strongly to û and the

proof is finished.

Applying Theorem 3.1 and [28, Theorem 3.2], we have the following result.

Theorem 3.2. Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth
Banach space E, F : C × C → � a bifunction satisfying conditions (A1)–(A4), and {Ti : C → E}∞i=1
a sequence of relatively nonexpansive mappings such that

⋂∞
i=1 F(Ti)∩EP(F)/=�. Let {un} and {xn}

be sequences generated by (3.1), where S : C → E is defined by

Sx = J−1
( ∞∑

i=1

αiJTix

)

for each x ∈ C. (3.31)

Then, {un} and {xn} converge strongly toΠ⋂∞
i=1 F(Ti)∩EP(F)u.

Setting F ≡ 0 and rn ≡ 1 in Theorem 3.1, we have the following result.

Corollary 3.3. LetC be a nonempty closed convex subset of a uniformly convex and uniformly smooth
Banach space E and S : C → E a relatively nonexpansive mapping. Let {un} and {xn} be sequences
generated by u ∈ C, u1 ∈ E and

xn = ΠCun,

yn = ΠCJ
−1(αnJu + (1 − αn)Jxn),

un+1 = J−1
(
βnJxn +

(
1 − βn

)
JSyn

)
,

(3.32)

for all n ∈ �, where {αn} ⊂ (0, 1) satisfying limn→∞αn = 0 and
∑∞

n=1 αn = ∞, {βn} ⊂ [a, b] ⊂ (0, 1).
Then, {un} and {xn} converge strongly toΠF(S)u.
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Letting S : C → C in Corollary 3.3, we have the following result.

Corollary 3.4. LetC be a nonempty closed convex subset of a uniformly convex and uniformly smooth
Banach space E and S : C → C a relatively nonexpansive mapping. Let {xn} be a sequence in C
defined by u ∈ C, x1 ∈ C and

yn = ΠCJ
−1(αnJu + (1 − αn)Jxn),

xn+1 = J−1
(
βnJxn +

(
1 − βn

)
JSyn

)
,

(3.33)

for all n ∈ �, where {αn} ⊂ (0, 1) satisfying limn→∞αn = 0 and
∑∞

n=1 αn = ∞, {βn} ⊂ [a, b] ⊂ (0, 1).
Then {xn} converges strongly toΠF(S)u.

Let S be the identity mapping in Theorem 3.1, we also have the following result.

Corollary 3.5. LetC be a nonempty closed convex subset of a uniformly convex and uniformly smooth
Banach spaceE and F : C×C → � a bifunction satisfying conditions (A1)–(A4) such thatEP(F)/=�.
Let {un} and {xn} be sequences generated by u ∈ C, u1 ∈ E and

F
(
xn, y

)
+

1
rn

〈
y − xn, Jxn − Jun

〉 ≥ 0, ∀y ∈ C,

yn = ΠCJ
−1(αnJu + (1 − αn)Jxn),

un+1 = J−1
(
βnJxn +

(
1 − βn

)
Jyn

)
,

(3.34)

for all n ∈ �, where {αn} ⊂ (0, 1) satisfying limn→∞αn = 0 and
∑∞

n=1 αn = ∞, {βn} ⊂ [a, b] ⊂ (0, 1),
and {rn} ⊂ [c,∞) ⊂ (0,∞). Then, {un} and {xn} converge strongly to ΠEP(F)u.

4. Deduced Theorems in Hilbert Spaces

In Hilbert spaces, every nonexpansive mappings are relatively nonexpansive, and J is the
identity operator. We obtain the following result.

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H , F : C × C → �

a bifunction satisfying conditions (A1)–(A4), and S : C → H a nonexpansive mapping such that
F(S) ∩ EP(F)/=�. Let {xn} be a sequence in C defined by u ∈ C, x1 ∈ H and

xn+1 = βnTrnxn +
(
1 − βn

)
S(αnu + (1 − αn)Trnxn), (4.1)

for all n ∈ �, where Trn is the resolvent of F, {αn} ⊂ (0, 1) satisfying limn→∞αn = 0 and∑∞
n=1 αn = ∞, {βn} ⊂ [a, b] ⊂ (0, 1), and {rn} ⊂ [c,∞) ⊂ (0,∞). Then, {xn} converges strongly to

PF(S)∩EP(F)u.

Remark 4.2. In Theorem 4.1, we have the same conclusion if the mapping S : C → H is only
quasinonexpansive (i.e., F(S)/=� and ‖p−Sx‖ ≤ ‖p−x‖ for all x ∈ C and p ∈ F(S)) such that
I − T is demiclosed at zero.
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Letting F ≡ 0 in Theorem 4.1, we have the following result.

Corollary 4.3. Let C be a nonempty closed convex subset of a Hilbert space H and S : C → H a
nonexpansive mapping such that F(S)/=�. Let {xn} be a sequence in C defined by u ∈ C, x1 ∈ H
and

xn+1 = βnPCxn +
(
1 − βn

)
S(αnu + (1 − αn)PCxn), (4.2)

for all n ∈ �, where {αn} ⊂ (0, 1) satisfying limn→∞αn = 0,
∑∞

n=1 αn = ∞, and {βn} ⊂ [a, b] ⊂
(0, 1). Then, {xn} converges strongly to PF(S)u.

Let S be the identity mapping in Theorem 4.1, we have the following result.

Corollary 4.4. Let C be a nonempty closed convex subset of a Hilbert spaceH and F : C ×C → � a
bifunction satisfying conditions (A1)–(A4). Let {xn} be a sequence in H defined by u, x1 ∈ H and

xn+1 = γnu +
(
1 − γn

)
Trnxn, (4.3)

for all n ∈ �, where Trn is the resolvent of F, {γn} ⊂ (0, 1) satisfying limn→∞γn = 0,
∑∞

n=1 γn = ∞,
and {rn} ⊂ [c,∞) ⊂ (0,∞). Then {xn} converges strongly toΠEP(F)u.

Proof. We may assume without loss of generality that γn < 1/2 for all n ∈ �. Setting αn = 2γn
and βn = 1/2 for all n ∈ �, we get

xn+1 =
1
2
Trnxn +

1
2
I(αnu + (1 − αn)Trnxn), (4.4)

limn→∞αn = 0, and
∑∞

n=1 αn = ∞. Applying Theorem 4.1, {xn} converges strongly to PEP(F)u.

Remark 4.5. Corollary 4.4 improves and extends [29, Corollary 5.3]. More precisely, the
conditions limn→∞(γn+1/γn) = 1 and

∑∞
n=1 |rn+1 − rn| < ∞ are removed.

Applying Corollary 4.4 and [30, Theorem 8], we have the following result.

Corollary 4.6. Let C be a nonempty closed convex subset of a Hilbert space H , F : C × C → � a
bifunction satisfying conditions (A1)–(A4), and f : C → C a contraction of H into itself. Let {xn}
be a sequence in H defined by u, x1 ∈ H and

xn+1 = γnf(xn) +
(
1 − γn

)
Trnxn, (4.5)

for all n ∈ �, where Trn is the resolvent of F, {γn} ⊂ (0, 1) satisfying limn→∞γn = 0 and
∑∞

n=1 γn = ∞
and {rn} ⊂ [c,∞) ⊂ (0,∞). Then, {xn} converges strongly to z = PEP(F)f(z).

Remark 4.7. Corollary 4.6 improves and extends [16, Corollary 3.4]. More precisely, the
conditions

∑∞
n=1 |γn+1 − γn| < ∞ and

∑∞
n=1 |rn+1 − rn| < ∞ are removed.
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