
Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2011, Article ID 604046, 11 pages
doi:10.1155/2011/604046

Research Article
Existence of Positive Solutions for
Nonlocal Fourth-Order Boundary Value Problem
with Variable Parameter

Xiaoling Han, Hongliang Gao, and Jia Xu

Department of Mathematics, Northwest Normal University, Lanzhou 730070, China

Correspondence should be addressed to Xiaoling Han, hanxiaoling@nwnu.edu.cn

Received 26 November 2010; Accepted 14 January 2011

Academic Editor: M. Furi

Copyright q 2011 Xiaoling Han et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

By using the Krasnoselskii’s fixed point theorem and operator spectral theorem, the existence of
positive solutions for the nonlocal fourth-order boundary value problem with variable parameter
u(4)(t) + B(t)u′′(t) = λf(t, u(t), u′′(t)), 0 < t < 1, u(0) = u(1) =

∫1
0 p(s)u(s)ds, u

′′(0) = u′′(1) =
∫1
0 q(s)u

′′(s)ds is considered, where p, q ∈ L1[0, 1], λ > 0 is a parameter, and B ∈ C[0, 1], f ∈
C([0, 1] × [0,∞) × (−∞, 0], [0,∞)).

1. Introduction

The existence of positive solutions for nonlinear fourth-order multipoint boundary value
problems has been studied by many authors using nonlinear alternatives of Leray-Schauder,
the fixed point theory, and the method of upper and lower solutions (see, e.g., [1–15] and
references therein). The multipoint boundary value problem is in fact a special case of the
boundary value problem with integral boundary conditions.

Recently, Bai [16] studied the existence of positive solutions of nonlocal fourth-order
boundary value problem

u(4)(t) + βu′′(t) = λf
(
t, u(t), u′′(t)

)
, 0 < t < 1,

u(0) = u(1) =
∫1

0
p(s)u(s)ds,

u′′(0) = u′′(1) =
∫1

0
q(s)u′′(s)ds.

(1.1)
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under the assumption:

(A1) λ > 0 and 0 < β < π2,

(A2) f ∈ C([0, 1]×[0,∞)×(−∞, 0], [0,∞)), p, q ∈ L1[0, 1], p(s) ≥ 0, q(s) ≥ 0,
∫1
0 p(s)ds < 1,

∫1
0 q(s) sin

√
βsds +

∫1
0 q(s) sin

√
β(1 − s)ds < sin

√
β.

In this paper, we study the above generalizing form with variable parameters BVP

u(4)(t) + B(t)u′′(t) = λf
(
t, u(t), u′′(t)

)
, 0 < t < 1,

u(0) = u(1) =
∫1

0
p(s)u(s)ds,

u′′(0) = u′′(1) =
∫1

0
q(s)u′′(s)ds,

(1.2)

where B ∈ C[0, 1], λ > 0 is a parameter.
Obviously, BVP(1.1) can be regarded as the special case of BVP(1.2) with B(t) = β.

Since the parameters B(t) is variable, we cannot expect to transform directly BVP(1.2) into
an integral equation as in [16]. We will apply the cone fixed point theory, combining with
the operator spectra theorem to establish the existence of positive solutions of BVP(1.2). Our
results generalize the main result in [16].

Let β = inft∈[0,1]B(t), and we assume that the following conditions hold throughout the
paper:

(H1) B ∈ C[0, 1] and 0 < β < π2,

(H2) f ∈ C([0, 1] × [0,∞) × (−∞, 0], [0,∞)), p, q ∈ L1[0, 1], p(s) ≥ 0, q(s) ≥ 0 and
∫1
0 p(s)ds < 1,

∫1
0 q(s) sin

√
βsds +

∫1
0 q(s) sin

√
β(1 − s)ds < sin

√
β.

2. The Preliminary Lemmas

Set λ1 = 0, −π2 < λ2 = −β < 0 and

δ1 = 1 −
∫1

0
p(s)ds, δ2 = sin

√
β −
∫1

0
q(s) sin

√
βsds −

∫1

0
q(s) sin

√
β(1 − s)ds. (2.1)

By (H1), (H2), we get δi /= 0, i = 1, 2. Denote by K1(t, s) the Green’s function of the problem

−u′′(t) + λ1u(t) = 0, 0 < t < 1,

u(0) = u(1) =
∫1

0
p(s)u(s)ds

(2.2)
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and K2(t, s) the Green’s function of the problem

−u′′(t) + λ2u(t) = 0, 0 < t < 1,

u(0) = u(1) =
∫1

0
q(s)u(s)ds.

(2.3)

Then, carefully calculation yield

K1(t, s) = G1(t, s) + ρ1

∫1

0
G1(s, x)p(x)dx,

K2(t, s) = G2(t, s) + ρ2(t)
∫1

0
G2(s, x)q(x)dx,

G1(t, s) =

⎧
⎨

⎩

t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1,

G2(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin
√
βt sin

√
β(1 − s)

√
β sin

√
β

, 0 ≤ t ≤ s ≤ 1,

sin
√
βs sin

√
β(1 − t)

√
β sin

√
β

, 0 ≤ s ≤ t ≤ 1,

ρ1 =
1
δ1

, ρ2(t) =
sin
√
βt + sin

√
β(1 − t)

δ2
.

(2.4)

Lemma 2.1 (see [16]). Suppose that (A1), (A2) hold. Then, for any h ∈ C[0, 1], u solves the problem

u(4)(t) + βu′′(t) = h(t), 0 < t < 1,

u(0) = u(1) =
∫1

0
p(s)u(s)ds,

u′′(0) = u′′(1) =
∫1

0
q(s)u′′(s)ds,

(2.5)

if and only if u(t) =
∫1
0

∫1
0 K1(t, s)K2(s, τ)h(τ)dτds.

Let Y = C[0, 1], Y+ = {u ∈ Y : u(t) ≥ 0, t ∈ [0, 1]}, and ‖u‖0 = max0≤t≤1|u(t)|, for u ∈ Y .
X = {u ∈ C2[0, 1] : u(0) = u(1) =

∫1
0 p(s)u(s)ds, u

′′(0) = u′′(1) =
∫1
0 q(s)u

′′(s)ds}, ‖u‖1 = ‖u′′‖0,
‖u‖2 = ‖u‖0 + ‖u‖1, for u ∈ X.

It is easy to show that ‖u‖1, ‖u‖2 are norms on X.
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Lemma 2.2 (see [16]). ‖ · ‖1 ≤ ‖ · ‖2 ≤ (1 + δ1)‖ · ‖1 and (X, ‖ · ‖2) is a Banach space.

Lemma 2.3 (see [5]). Assume that (A1), (A2) hold. Then,

(i) Ki(t, s) ≥ 0, for t, s ∈ [0, 1], i = 1, 2;Ki(t, s) > 0, for t, s ∈ (0, 1), i = 1, 2,

(ii) Gi(t, s) ≥ biGi(t, t)Gi(s, s), Gi(t, s) ≤ CiGi(s, s) for t, s ∈ [0, 1], i = 1, 2,

where C1 = 1, b1 = 1; C2 = 1/ sin
√
β, b2 =

√
β sin

√
β.

Denote

di = min
1/4≤t≤3/4

biGi(t, t) (i = 1, 2),

ξ =
min1/4≤t≤3/4ρ2(t)
max1/4≤t≤3/4ρ2(t)

,

Di = max
t∈[0,1]

∫1

0
Ki(t, s)ds (i = 1, 2).

(2.6)

Computations yield the following results.

Lemma 2.4 (see [3]). D1
i = maxt∈[0,1]

∫1
0 Gi(t, s)ds > 0 (i = 1, 2)

(i) when λi > 0,D1
i = (1/λi)(1 − 1/ cos(ωi/2)),

(ii) when λi = 0,D1
i = 1/8,

(iii) when −π2 < λi < 0,D1
i = (1/λi)(1 − 1/ cos(ωi/2)).

Lemma 2.5 (see [16]). Suppose that (A1), (A2) hold and ρ2(t), di, ξ are given as above. Then,

(i) maxt∈[0,1]ρ2(t) = ρ2(1/2),

(ii) 0 < di < 1, 0 < ξ < 1.

By Lemmas 2.4 and 2.5, D2 = maxt∈[0,1]
∫1
0 K2(1/2, s)ds.

Take θ = min{d1, d2ξ/C2}, by Lemma 2.5, 0 < θ < 1.
Define

(Th)(t) =
∫1

0

∫1

0
K1(t, s)K2(s, τ)h(τ)dτ ds, t ∈ [0, 1],

(Ah)(t) = (Th)′′(t) = −
∫1

0
K2(t, τ)h(τ)dτ, t ∈ [0, 1].

(2.7)

Lemma 2.6. T : Y → (X, ‖ · ‖2) is completely continuous, and ‖T‖ ≤ D2.

Proof. It is similar to Lemma 6 of [3], so we omit it.
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Lemma 2.7 (see [17]). Let E be a Banach space, P ⊆ E a cone, and Ω1, Ω2 be two bounded open sets
of E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Suppose that A : P ∩ (Ω2 \ Ω1) → P is a completely continuous
operator such that either

(i) ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or

(ii) ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2

holds. Then, A has a fixed point in P ∩ (Ω2 \Ω1).

3. The Main Results

Suppose that K1, K2, G2, ρ2, C2, θ, and D2, are defined as in Section 2, we introduce some
notations as follows:

A =
∫1

0

∫1

0
K1(s, s)K2(s, τ)dτ ds, B =

∫1

0

[

G2(s, s) + ρ2

(
1
2

)∫1

0
G2(s, x)q(x)dx

]

ds,

K = sup
t∈[0,1]

[
B(t) − β

]
, L = D2K, η0 =

1 − L

A + C2B
, η1 =

1

θ
∫3/4
1/4 K2(1/2, τ)dτ

,

f0 = lim sup
|u|+|v|→ 0

max
t∈[0,1]

f(t, u, v)
|u| + |v| , f

0
= lim inf

|u|+|v|→ 0
min

t∈[1/4,3/4]
f(t, u, v)
|u| + |v| ,

f∞ = lim sup
|u|+|v|→+∞

max
t∈[0,1]

f(t, u, v)
|u| + |v| , f

∞
= lim inf

|u|+|v|→+∞
min

t∈[1/4,3/4]
f(t, u, v)
|u| + |v| .

(3.1)

Theorem 3.1. Assume that (H1), (H2) hold and L = D2K < 1. Then BVP(1.2) has at least one
positive solution if one of the following cases holds:

(i) f 0 < (1/λ)η0, f∞
> (1/λ)η1,

(ii) f
0
> (1/λ)η1, f∞ < (1/λ)η0.

Proof. For any h ∈ Y , consider the following BVP:

u(4)(t) + B(t)u′′(t) = h(t), 0 < t < 1,

u(0) = u(1) =
∫1

0
p(s)u(s)ds,

u′′(0) = u′′(1) =
∫1

0
q(s)u′′(s)ds.

(3.2)
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It is easy to see that the above question is equivalent to the following question:

u(4)(t) + βu′′(t) = −(B(t) − β
)
u′′(t) + h(t), 0 < t < 1,

u(0) = u(1) =
∫1

0
p(s)u(s)ds,

u′′(0) = u′′(1) =
∫1

0
q(s)u′′(s)ds.

(3.3)

For any v ∈ X, let Gv = −(B(t) − β)v′′. Obviously, the operator G : X → Y is linear.
By Lemma 2.2, for all v ∈ X, t ∈ [0, 1], |(Gv)(t)| ≤ (B(t) − β)‖v‖1 ≤ K‖v‖1 ≤ K‖v‖2. Hence
‖Gv‖0 ≤ K‖v‖2, and so ‖G‖ ≤ K. On the other hand, u ∈ C2[0, 1] ∩ C4(0, 1) is a solution of
(3.3) if and only if u ∈ X satisfies u = T(Gu + h), that is,

u ∈ X, (I − TG)u = Th. (3.4)

Owing to G : X → Y and T : Y → X, the operator I − TGmapsX into X. From ‖T‖ ≤ D2 (by
Lemma 2.6) together with ‖G‖ ≤ K and condition L < 1, applying operator spectral theorem,
we have that the (I−TG)−1 exists and is bounded. LetH = (I−TG)−1T , then (3.4) is equivalent
to u = Hh. By the Neumann expansion formula,H can be expressed by

H =
(
I + TG + · · · + (TG)n + · · ·)T = T + (TG)T + · · · + (TG)nT + · · ·. (3.5)

The complete continuity of T with the continuity of (I − TG)−1 yields that the operator H :
Y → X is completely continuous. For all h ∈ Y+, let u = Th, then u ∈ X ∩ Y+, and u′′ < 0.
So, we have (Gu)(t) = −(B(t) − β)u′′(t) ≥ 0, t ∈ [0, 1]. Hence,

∀h ∈ Y+, (GTh)(t) ≥ 0, t ∈ [0, 1], (3.6)

and so (TG)(Th)(t) = T(GTh)(t) ≥ 0, t ∈ [0, 1].
Assume that for all h ∈ Y+, (TG)k(Th)(t) ≥ 0, t ∈ [0, 1], let h1 = GTh, by (3.6) we have

h1 ∈ Y+, and so (TG)k+1(Th)(t) = (TG)k(TGTh)(t) = (TG)k(Th1)(t) ≥ 0, t ∈ [0, 1]. Thus by
induction, it follows that (TG)n(Th)(t) ≥ 0, for all n ≥ 1, h ∈ Y+, t ∈ [0, 1]. By (3.5), for all
h ∈ Y+, we have

(Hh)(t) = (Th)(t) + (TG)(Th)(t) + · · · + (TG)n(Th)(t) + · · · ≥ (Th)(t), t ∈ [0, 1],

(Hh)′′(t) = (Ah)(t) + (AG)(Th)(t) + · · · +
(
AG(TG)n−1

)
(Th)(t) + · · ·

≤ (Ah)(t) = (Th)′′(t) ≤ 0, t ∈ [0, 1],

(3.7)

and soH : Y+ → Y+ ∩X.
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On the other hand, for all h ∈ Y+, we have

(Hh)(t) ≤ (Th)(t) + |TG|(Th)(t) + · · · + |TG|n(Th)(t) + · · ·

≤ (1 + L + · · · + Ln + · · ·)(Th)(t)

=
1

1 − L
(Th)(t) t ∈ [0, 1],

(3.8)

∣∣(Hh)′′(t)
∣∣ ≤ |(Ah)(t)| + |(AG)(Th)(t)| + · · · +

∣∣
∣
(
AG(TG)n−1

)
(Th)(t)

∣∣
∣ + · · ·

≤ |(Ah)(t)| + L|(Ah)(t)| + · · · + Ln|(Ah)(t)| + · · ·

= (1 + L + · · · + Ln + · · ·)|(Ah)(t)|

=
1

1 − L

∣∣(Th)′′(t)
∣∣ t ∈ [0, 1],

(3.9)

‖Hh‖0 ≥ ‖Th‖0, ‖Hh‖0 ≤
1

1 − L
‖Th‖0,

‖Hh‖1 ≥ ‖Th‖1, ‖Hh‖1 ≤
1

1 − L
‖Th‖1.

(3.10)

For any u ∈ Y+, define Fu = λf(t, u, u′′). By (H1) and (H2), we have that F : Y+ → Y+ is
continuous. It is easy to see that u ∈ C2[0, 1] ∩ C4(0, 1) being a positive solution of BVP(1.2)
is equivalent to u ∈ Y+ being a nonzero solution equation as follows:

u = HFu. (3.11)

Let Q = HF. Obviously, Q : Y+ → Y+ is completely continuous. We next show that the
operator Q has a nonzero fixed point in Y+. Let

P =
{
u ∈ X : u ≥ 0, u′′ ≤ 0, min

1/4≤t≤3/4
u(t) ≥ (1 − L)d1‖u‖0, max

1/4≤t≤3/4
u′′(t) ≤ −(1 − L)

d2ξ

C2

∥∥u′′∥∥
0

}
.

(3.12)

It is easy to know that P is a cone in X, P ⊂ Y+. Now, we show QP ⊂ P .
For h ∈ Y+, by (2.7), there is Th ≥ 0, (Th)′′ ≤ 0. Hence, by (3.7), Qu ≥ 0, (Qu)′′ ≤ 0, u ∈

P . By proof of Lemma 2.5 in [16],

min
1/4≤t≤3/4

(Th)(t) ≥ d1‖Th‖0, max
1/4≤t≤3/4

(Th)′′(t) ≤ −d2ξ

C2

∥
∥(Th)′′

∥
∥
0. (3.13)
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By (3.7) and (3.10),

min
1/4≤t≤3/4

(Qu)(t) ≥ min
1/4≤t≤3/4

(TFu)(t) ≥ d1‖TFu‖0 ≥ (1 − L)d1‖Qu‖0,

max
1/4≤t≤3/4

(Qu)′′(t) ≤ max
1/4≤t≤3/4

(TFu)′′(t) ≤ −d2ξ

C2

∥∥(TFu)′′
∥∥
0 ≤ −(1 − L)

d2ξ

C2

∥∥(Qu)′′
∥∥
0.

(3.14)

Thus QP ⊂ P .
(i) Since f 0 < (1/λ)η0, by the definition of f0, there exists r1 > 0 such that

max
0≤t≤1,|u(t)|+|u′′(t)|≤r1

f
(
t, u(t), u′′(t)

) ≤ r1
λ
η0. (3.15)

Let Ωr1 = {u ∈ P : ‖u‖2 < r1}, one has

f
(
t, u(t), u′′(t)

) ≤ r1
λ
η0, u ∈ ∂Ωr1 , t ∈ [0, 1]. (3.16)

So, by (3.10), we get

‖Qu‖0 = ‖HFu‖0 ≤
1

1 − L
‖TFu‖0

=
λ

1 − L

∥∥∥
∥∥

∫1

0

∫1

0
K1(t, s)K2(s, τ)f

(
τ, u(τ), u′′(τ)

)
dτ ds

∥∥∥
∥∥
0

≤ r1η0

1 − L

∫1

0

∫1

0
K1(s, s)K2(s, τ)dτ ds ≤ Aη0r1

1 − L
,

‖Qu‖1 = ‖HFu‖1 ≤
1

1 − L
‖TFu‖1

≤ λC2
1

1 − L

∫1

0

[

G2(τ, τ) + ρ2

(
1
2

)∫1

0
G2(τ, x)q(x)dx

]

f
(
τ, u(τ), u′′(τ)

)
dτ

≤ C2Bη0r1
1 − L

.

(3.17)

Hence, for u ∈ ∂Ωr1 ,

‖Qu‖2 = ‖HFu‖2 ≤
1

1 − L
‖TFu‖2 ≤

(A + BC2)η0r1
1 − L

= r1 = ‖u‖2. (3.18)
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On the other hand, since f
∞
> (1/λ)η1, there exists r ′2 > r1 > 0 such that

min
1/4≤t≤3/4,θ(|u(t)|+|u′′(t)|)≥r ′2

f(t, u(t), u′′(t))
|u(t)| + |u′′(t)| ≥ 1

λ
η1. (3.19)

Choose r2 > (1/θ)r ′2, let Ωr2 = {u ∈ P : ‖u‖2 < r2}. For u ∈ ∂Ωr2 , t ∈ [1/4, 3/4], there is
r ′2 ≤ θr2 ≤ |u(t)| + |u′′(t)| ≤ r2. Thus,

f
(
t, u(t), u′′(t)

) ≥ θr2
λ

η1, u ∈ ∂Ωr2 , t ∈
[
1
4
,
3
4

]
.

∣∣
∣∣(TFu)

′′
(
1
2

)∣∣
∣∣ = λ

∫1

0
K2

(
1
2
, τ

)
f
(
τ, u(τ), u′′(τ)

)
dτ

≥ λ

∫3/4

1/4
K2

(
1
2
, τ

)
f
(
τ, u(τ), u′′(τ)

)
dτ ≥ η1θr2

∫3/4

1/4
K2

(
1
2
, τ

)
dτ = r2.

(3.20)

Hence, for u ∈ Ωr2 ,

‖Qu‖2 ≥ ‖TFu‖2 ≥
∣∣∣
∣(TFu)

′′
(
1
2

)∣∣∣
∣ ≥ r2 = ‖u‖2. (3.21)

By the use of the Krasnoselskii’s fixed point theorem, we know there exists u0 ∈ Ω2 \Ω1 such
that Qu0 = u0, namely, u0 is a solution of (1.2) and satisfied u0 ≥ 0, u′′

0 ≤ 0, r1 ≤ ‖u0‖2 ≤ r2.
(ii) The proof is similar to (i), so we omit it.

Corollary 3.2. Assume that (H1), (H2) hold, and L < 1. Then that (1.2) has at least two positive
solution, if f satisfy

(i) f 0 < (1/λ)η0, f∞ < (1/λ)η0,

(ii) There exists R0 > 0 such that f(t, u, v) ≥ (θR0/λ)η1, for t ∈ [1/4, 3/4], |u| + |v| ≥ θR0.

Proof. By the proof of Theorem 3.1, we know that (1) from the condition f0 < (1/λ)η0, there
exists Ωr1 = {u ∈ P : ‖u‖2 < r1}, such that ‖Qu‖2 ≤ ‖u‖2, u ∈ ∂Ωr1 , (2) from the condition
f∞ < (1/λ)η0, there exists Ωr2 = {u ∈ P : ‖u‖2 < r2}, r2 > r1, such that ‖Qu‖2 ≤ ‖u‖2, u ∈ ∂Ωr2 ,
(3) from the condition (ii), there exists Ωr3 = {u ∈ P : ‖u‖2 < r3}, r2 > r3 > r1, such that
‖Qu‖2 ≥ ‖u‖2, u ∈ ∂Ωr3 . By the use of Krasnoselskii’s fixed point theorem, it is easy to know
that (1.2) has at least two positive solutions.

Corollary 3.3. Assume (H1), (H2) hold, and L < 1. Then problem (1.2) has at least two positive
solution, if f satisfy

(i) f
0
> (1/λ)η1, f∞

> (1/λ)η1,

(ii) There exists R0 > 0 such that f(t, u, v) ≤ (θR0/λ)η0, for t ∈ [0, 1], |u| + |v| ≤ R0.

Proof. The proof is similar to Corollary 3.2, so we omit it.
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Example 3.4. Consider the following boundary value problem

u(4)(t) +

(
π2

4
+ t

)

u′′(t) = π2[18
(
u(t) − u′′(t)

) − 17.9 sin
(
u(t) − u′′(t)

)]
, 0 < t < 1,

u(0) = u(1) =
∫1

0
su(s)ds,

u′′(0) = u′′(1) = 0.

(3.22)

In this problem, we know that B(t) = π2/4 + t, p(t) = t,q(t) = 0, λ = π2, then we can get
C1 = 1, C2 = 1, ρ1 = 1, ρ2 =

√
2, β = π2/4, K = 1,D2 = 4(

√
2 − 1)/π2. Further more, we obtain

A = (48 − 13π2)/π3, B = 2/π2, then η0 = (1 − L)π3/(48 − 11π), η1 = 4π2/
√
2 cos(π/8) − 1, so

f0 = 0.1 <
1
π2

η0 ≈ 0.19, f
∞
= 18 >

1
π2

η1 ≈ 13.3. (3.23)

Thus, B(t), p(t), q(t), and f satisfy the conditions of Theorem 3.1, and there exists at least a
positive solution of the above problem.
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