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We prove a strong convergence theorem by a shrinking projection method for the class of T
mappings. Using this theorem, we get a new result. We also describe a shrinking projectionmethod
for a nonexpansive mapping on Hilbert spaces, which is the same as that of Takahashi et al. (2008).

1. Introduction

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let C be a nonempty
closed convex subset of H. Recall that a mapping T : H → H is said to be nonexpansive if
‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ H. The set of fixed points of T is Fix(T) := {x ∈ H : Tx = x}.

T : H → H is said to be quasi-nonexpansive if Fix(T) is nonempty and ‖Tx − p‖ ≤
‖x − p‖ for all x ∈ H and p ∈ Fix(T).

Given x, y ∈ H, let

H
(
x, y

)
:=

{
z ∈ H :

〈
z − y, x − y

〉 ≤ 0
}

(1.1)

be the half-space generated by (x, y). A mapping T : H → H is said to be the class T (or a
cutter) if T ∈ T = {T : H → H | dom(T) = H and Fix(T) ⊂ H(x, Tx), for all x ∈ H}.

Remark 1.1. The class T is fundamental because it contains several types of operators
commonly found in various areas of applied mathematics and in particular in approximation
and optimization theory (see [1] for details).
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Combettes [2], Bauschke, and Combettes [1] studied properties of the class T

mappings and presented several algorithms. They introduced an abstract Haugazeaumethod
in [1] as follows: starting x0 ∈ H,

xn+1 = PH(x0,xn)∩H(xn,Tnxn)x0. (1.2)

Using Lemma 1.2 given below and the fact that a nonexpansive mapping is quasi-
nonexpansive, one can easily obtain hybrid methods introduced by Nakajo and Takahashi
[3] for a nonexpansive mapping.

Recently, Takahashi et al. [4] proposed a shrinking projection method for nonexpan-
sive mappings Tn : C → C. Let x0 ∈ H, C1 = C, x1 = PC1x0, and

yn = αn + (1 − αn)Tnxn,

Cn+1 =
{
z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},

xn+1 = PCn+1x0, n = 1, 2, . . . ,

(1.3)

where 0 ≤ αn ≤ a < 1, PK denotes the metric projection from H onto a closed convex subset
K of H.

Inspired by Bauschke and Combettes [1] and Takahashi et al. [4], we present a
shrinking projection method for the class of T mappings. Furthermore, we obtain a shrinking
projection method for a nonexpansive mapping on Hilbert spaces, which is the same as
presented by Takahashi et al. [4].

We will use the following notations:

(1) ⇀ for weak convergence and → for strong convergence;

(2) ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit of {xn}.
We need some facts and tools in a real Hilbert space H which are listed below.

Lemma 1.2 (see [1]). Let H be a Hilbert space. Let I be the identity operator ofH.

(i) If dom T = H, then 2T − I is quasi-nonexpansive if and only if T ∈ T.

(ii) If T ∈ T, then λI + (1 − λ)T ∈ T, for all λ ∈ [0, 1].

Definition 1.3. Let Tn ∈ T for each n. The sequence {Tn} is called to be coherent if, for every
bounded sequence {vn} inH, there holds

∞∑

n=0
‖vn+1 − vn‖2 < ∞,

∞∑

n=0
‖vn − Tnvn‖2 < ∞,

=⇒ ωw(vn) ⊂
∞⋂

n=0

Fix(Tn). (1.4)

Definition 1.4. T is called demiclosed at y ∈ H if Tx = y whenever {xn} ⊂ H, xn ⇀ x and
Txn → y.

Next lemma shows that nonexpansive mappings are demeiclosed at 0.
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Lemma 1.5 (Goebel and Kirk [5]). Let C be a closed convex subset of a real Hilbert space H, and
let T : C → C be a nonexpansive mapping such that Fix(T)/= ∅. If a sequence {xn} in C is such that
xn ⇀ z and xn − Txn → 0, then z = Tz.

Lemma 1.6 (see [6]). LetK be a closed convex subset ofH. Let {xn} be a sequence inH and u ∈ H.
Let q = PKu. If xn is such that ωw(xn) ⊂ K and satisfies the condition

‖xn − u‖ ≤ ‖u − q‖, ∀n, (1.5)

then xn → q.

Lemma 1.7 (Goebel and Kirk [5]). LetK be a closed convex subset of real Hilbert spaceH, and let
PK be the (metric or nearest point) projection from H onto K (i.e., for x ∈ H, PKx is the only point
in K such that ‖x − PKx‖ = inf{‖x − z‖ : z ∈ K}). Given x ∈ H and z ∈ K, then z = PKx if and
only if there holds the relation

〈
x − z, y − z

〉 ≤ 0, ∀y ∈ K. (1.6)

2. Main Results

In this section, we will introduce a shrinking projection method for the class of T mappings
and prove strong convergence theorem.

Theorem 2.1. Let Tn ∈ T for each n such thatF :=
⋂∞

n=1 Fix(Tn)/= ∅. Suppose that the sequence {Tn}
is coherent. Let x0 ∈ H. For C1 = H and x1 = x0, define a sequence {xn} as follows:

xn+1 = PCn+1x0, n = 1, 2, . . . ,

Cn+1 = {z ∈ Cn : 〈z − Tnxn, xn − Tnxn〉 ≤ 0}.
(2.1)

Then, {xn} converges strongly to PFx0.

Proof. We first show by induction that F ⊂ Cn for all n ∈ N.F ⊂ C1 is obvious. Suppose
F ⊂ Ck for some k ∈ N. Note that, by the definition of Tk ∈ T, we always have F ⊂ Fix(Tk) ⊂
H(xk, Tkxk), that is,

〈z − Tkxk, xk − Tkxk〉 ≤ 0, ∀z ∈ F. (2.2)

From the definition of Ck+1 and F ⊂ Ck, we obtain F ⊂ Ck+1. This implies that

F ⊂ Cn, ∀n ∈ N. (2.3)

It is obvious thatC1 = H is closed and convex. So, from the definition,Cn is closed and convex
for all n ∈ N. So we get that {xn} is well defined.

Since xn is the projection of x0 onto Cn which contains F, we have

‖x0 − xn‖ ≤ ‖x0 − y‖, ∀y ∈ Cn. (2.4)
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Taking y = PFx0 ∈ F, we get

‖x0 − xn‖ ≤ ‖x0 − PFx0‖. (2.5)

The last inequality ensures that {‖x0 −xn‖} is bounded. From xn = PCnx0 and xn+1 = PCn+1x0 ∈
Cn+1 ⊂ Cn, using Lemma 1.7, we get

〈xn+1 − xn, x0 − xn〉 ≤ 0. (2.6)

It follows that

‖x0 − xn+1‖2 = ‖(x0 − xn) − (xn+1 − xn)‖2

= ‖x0 − xn‖2 − 2〈x0 − xn, xn+1 − xn〉 + ‖xn+1 − xn‖2

≥ ‖x0 − xn‖2 + ‖xn+1 − xn‖2

≥ ‖x0 − xn‖2.

(2.7)

Thus {‖xn − x0‖} is increasing. Since {‖xn − x0‖} is bounded, limn→∞‖xn − x0‖ exists. From
(2.7), it follows that

‖xn+1 − xn‖2 ≤ ‖x0 − xn+1‖2 − ‖x0 − xn‖2, (2.8)

and
∑∞

n=1 ‖xn+1 − xn‖2 < ∞. On the other hand, by xn+1 = PCn+1x0 ∈ Cn+1, we have

〈xn+1 − Tnxn, xn − Tnxn〉 ≤ 0. (2.9)

Hence,

‖xn+1 − xn‖2 = ‖(xn+1 − Tnxn) − (xn − Tnxn)‖2

= ‖xn+1 − Tnxn‖2 − 2〈xn+1 − Tnxn, xn − Tnxn〉 + ‖xn − Tnxn‖2

≥ ‖xn+1 − Tnxn‖2 + ‖xn − Tnxn‖2.

(2.10)

We therefore get
∑∞

n=1 ‖xn − Tnxn‖2 < ∞. Since the sequence {Tn} is coherent, we have
ωw(xn) ⊂ F. From Lemma 1.6 and (2.5), the result holds.

Remark 2.2. We take C1 = H so that F ⊂ C1 is satisfied.
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Theorem 2.3. Let Tn ∈ T for each n such thatF :=
⋂∞

n=1 Fix(Tn)/= ∅. Suppose that the sequence {Tn}
is coherent. Let x0 ∈ H. For C1 = H and x1 = x0, define a sequence {xn} as follows:

yn = αnxn + (1 − αn)Tnxn,

Cn+1 =
{
z ∈ Cn :

〈
z − yn, xn − yn

〉 ≤ 0
}
,

xn+1 = PCn+1x0, n = 1, 2, . . . ,

(2.11)

where 0 ≤ αn ≤ a < 1. Then, {xn} converges strongly to PFx0.

Proof. Set Sn = αnI + (1 − αn)Tn. By Lemma 1.2(ii), we have that Sn ∈ T. From ‖xn − Snxn‖ =
(1 − αn)‖xn − Tnxn‖, it follows that (1 − a)‖xn − Tnxn‖ ≤ ‖xn − Snxn‖ ≤ ‖xn − Tnxn‖ which
implies that the sequence {Sn} is coherent. It is obvious that Fix(Sn) = Fix(Tn), for all n ∈ N.
Hence F =

⋂∞
n=1 Fix(Sn) =

⋂∞
n=1 Fix(Tn). Using Theorem 2.1, we get the desired result.

3. Deduced Results

In this section, using Theorem 2.3, we obtain some new strong convergence results for the
class of T mappings, a quasi-nonexpansive mapping and a nonexpansive mapping in a
Hilbert space.

Theorem 3.1. Let T ∈ T such that Fix(T)/= ∅ and satisfying that I−T is demiclosed at 0. Let x0 ∈ H.
For C1 = H and x1 = x0, define a sequence {xn} as follows:

yn = αnxn + (1 − αn)Txn,

Cn+1 =
{
z ∈ Cn : 〈z − yn, xn − yn〉 ≤ 0

}
,

xn+1 = PCn+1x0, n = 1, 2, . . . ,

(3.1)

where 0 ≤ αn ≤ a < 1. Then, {xn} converges strongly to PFix(T)x0.

Proof. Let Tn = T in (2.11) for all n ∈ N. Following the proof of Theorem 2.1, we can easily
get (2.5) and

∑∞
n=1 ‖xn − Txn‖2 < ∞. By (2.5), we obtain that {xn} is bounded and ωw(xn) is

nonempty. For any x̂ ∈ ωw(xn), there exists a subsequence {xnj} of the sequence {xn} such
that xnj ⇀ x̂. From

∑∞
n=1 ‖xn − Txn‖2 < ∞, it follows that ‖xn − Txn‖ → 0. Since I − T is

demiclosed at 0, we get x̂ ∈ Fix(T). Thus ωw(xn) ⊂ Fix(T) which together with Lemma 1.6
and (2.5) implies that xn → PFix(T)x0.

Theorem 3.2. Let H be a Hilbert space. Let S be a quasi-nonexpansive mapping on H such that
Fix(S)/= ∅ and satisfying that I − S is demiclosed at 0. Let x0 ∈ H. For C1 = H and x1 = x0, define a
sequence {xn} as follows:

un = αnxn + (1 − αn)Sxn,

Cn+1 = {z ∈ Cn : ‖z − un‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n = 1, 2, . . . ,

(3.2)

where 0 ≤ αn ≤ a < 1. Then, {xn} converges strongly to PFix(S)x0.
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Proof. By Lemma 1.2(i), (S + I)/2 ∈ T. Substitute T in (3.1) by (S + I)/2. Then yn = ((1 +
αn)/2)xn + ((1 − αn)/2)Sxn. Set un = 2yn − xn = αnxn + (1 − αn)Sxn, then yn = (un + xn)/2. So,
we have

Cn+1 =
{
z ∈ Cn :

〈
z − yn, xn − yn

〉 ≤ 0
}

= {z ∈ Cn : 〈2z − (xn + un), xn − un〉 ≤ 0}
= {z ∈ Cn : ‖z − un‖ ≤ ‖xn − z‖}.

(3.3)

Since I − S is demiclosed at 0, I − (S + I)/2 = (I − S)/2 is demiclosed at 0. So we can obtain
the result by using Theorem 3.1.

Since a nonexpansive mapping is quasi-nonexpansive, using Lemma 1.5 and
Theorem 3.2, we have following corollary.

Corollary 3.3. Let H be a Hilbert space. Let S be a nonexpansive mapping H such that Fix(S)/= ∅.
Let x0 ∈ H. For C1 = H and x1 = x0, define a sequence {xn} as follows:

un = αnxn + (1 − αn)Sxn,

Cn+1 = {z ∈ Cn : ‖z − un‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n = 1, 2, . . . ,

(3.4)

where 0 ≤ αn ≤ a < 1. Then, {xn} converges strongly to PFix(S)x0.

Remark 3.4. Corollary 3.3 is a special case of Theorem 4.1 in [4] when C1 = H.

Acknowledgments

The authors would like to express their thanks to the referee for the valuable comments and
suggestions for improving this paper. This paper is supported by Research Funds of Civil
Aviation University of China Grant (08QD10X) and Fundamental Research Funds for the
Central Universities Grant (ZXH2009D021).

References

[1] H. H. Bauschke and P. L. Combettes, “A weak-to-strong convergence principle for Fejér-monotone
methods in Hilbert spaces,” Mathematics of Operations Research, vol. 26, no. 2, pp. 248–264, 2001.
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