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By using the projection methods, we suggest and analyze the iterative schemes for finding
the approximation solvability of a system of general variational inequalities involving different
nonlinear operators in the framework of Hilbert spaces. Moreover, such solutions are also fixed
points of a Lipschitz mapping. Some interesting cases and examples of applying the main results
are discussed and showed. The results presented in this paper are more general and include many
previously known results as special cases.

1. Introduction

The originally variational inequality problem, introduced by Stampacchia [1], in the early
sixties, has had a great impact and influence in the development of almost all branches
of pure and applied sciences and has witnessed an explosive growth in theoretical
advances, algorithmic development. As a result of interaction between different branches
of mathematical and engineering sciences, we now have a variety of techniques to suggest
and analyze various algorithms for solving (generalized) variational inequalities and related
optimization. It is well known that the variational inequality problems are equivalent to
the fixed point problems. This alternative equivalent formulation is very important from
the numerical analysis point of view and has played a significant part in several numerical
methods for solving variational inequalities and complementarity; see [2, 3]. In particular,
the solution of the variational inequalities can be computed using the iterative projection
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methods. It is also worth noting that the projection methods have been applied widely
to problems arising especially from complementarity, convex quadratic programming, and
variational problems.

On the other hand, in 1985, Pang [4] studied the variational inequality problem
on the product sets, by decomposing the original variational inequality into a system of
variational inequalities, and discussed the convergence of method of decomposition for
system of variational inequalities. Moreover, he showed that a variety of equilibriummodels,
for example, the traffic equilibrium problem, the spatial equilibrium problem, the Nash
equilibrium problem, and the general equilibrium programming problem, can be uniformly
modelled as a variational inequality defined on the product sets. Later, it was noticed that
variational inequality over product sets and the system of variational inequalities both
are equivalent; see [4–7] for applications. Since then many authors, see, for example, [8–
11], studied the existence theory of various classes of system of variational inequalities by
exploiting fixed point theorems and minimax theorems. Recently, Verma [12] introduced
a new system of nonlinear strongly monotone variational inequalities and studied the
approximate solvability of this system based on a system of projection methods. Additional
research on the approximate solvability of a system of nonlinear variational inequalities is
according to Chang et al. [13], Cho et al. [14], Nie et al. [15], Noor [16], Petrot [17], Suantai
and Petrot [18], Verma [19, 20], and others.

Motivated by the research works going on this field, in this paper, the methods
for finding the common solutions of a system of general variational inequalities involving
different nonlinear operators and fixed point problem are considered, via the projection
method, in the framework of Hilbert spaces. Since the problems of a system of general
variational inequalities and fixed point are both important, the results presented in this paper
are useful and can be viewed as an improvement and extension of the previously known
results appearing in the literature, which mainly improves the results of Chang et al. [13] and
also extends the results of Huang and Noor [21], Verma [20] to some extent.

2. Preliminaries

Let C be a closed convex subset of real HilbertH, whose inner product and norm are denoted
by 〈·, ·〉 and ‖ · ‖, respectively.

We begin with some basic definitions and well-known results.

Definition 2.1. A nonlinear mapping S : H → H is said to be a κ-Lipschitzian mapping if there
exists a positive constant κ such that

‖Sx − Sy‖ ≤ κ‖x − y‖, ∀x, y ∈ H. (2.1)

In the case κ = 1, the mapping S is known as a nonexpansive mapping. If S is a mapping,
we will denote by F(S) the set of fixed points of S, that is, F(S) = {x ∈ H : Sx = x}.

Let C be a nonempty closed convex subset ofH. It is well known that, for each z ∈ H,
there exists a unique nearest point in C, denoted by PCz, such that

‖z − PCz‖ ≤ ‖z − y‖, ∀y ∈ C. (2.2)
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Such a mapping PC is called the metric projection of H onto C. We know that PC is
nonexpansive. Furthermore, for all z ∈ H and u ∈ C,

u = PCz ⇐⇒ 〈u − z,w − u〉 ≥ 0, ∀w ∈ C. (2.3)

For the nonlinear operators T, g : H → H, the general variational inequality problem
(write GVI(T, g, C)) is to find u ∈ H such that g(u) ∈ C and

〈Tu, g(v) − g(u)〉 ≥ 0, ∀g(v) ∈ C. (2.4)

The inequality of the type (2.4) was introduced by Noor [22]. It has been shown that a large
class of unrelated odd-order and nonsymmetric obstacle, unilateral, contact, free, moving,
and equilibrium problems arising in regional, ecology, physical, mathematical, engineering,
and physical sciences can be studied in the unified framework of the problem (2.4); see [22–
24] and the references therein. We remark that, if the operator g is the identity operator,
the problem (2.4) is nothing but the originally variational inequality problem, which was
originally introduced and studied by Stampacchia [1].

Applying (2.3), one can obtain the following result.

Lemma 2.2. Let C be a closed convex set in H such that C ⊂ g(H). Then u ∈ H is a solution of the
problem (2.4) if and only if g(u) = PC[g(u) − ρTu], where ρ > 0 is a constant.

It is clear, in view of Lemma 2.2, that the variational inequalities and the fixed point
problems are equivalent. This alternative equivalent formulation is suggest in the study of
the variational inequalities and related optimization problems.

Let Ti, gi : H → H be nonlinear operator, and let ri be a fixed positive real number,
for each i = 1, 2, 3. Set Ξ = {T1, T2, T3} and Λ = {g1, g2, g3}. The system of general variational
inequalities involving three different nonlinear operators generated by r1, r2, and r3 is defined as
follows.

Find (x∗, y∗, z∗) ∈ H ×H ×H such that

〈r1T1y∗ + g1(x∗) − g1
(
y∗), g1(x) − g1(x∗)〉 ≥ 0, ∀g1(x) ∈ C,

〈r2T2z∗ + g2
(
y∗) − g2(z∗), g2(x) − g2

(
y∗)〉 ≥ 0, ∀g2(x) ∈ C,

〈
r3T3x

∗ + g3(z∗) − g3(x∗), g3(x) − g3(z∗)
〉 ≥ 0, ∀g3(x) ∈ C.

(2.5)

We denote by SGVID(Ξ,Λ, C) the set of all solutions (x∗, y∗, z∗) of the problem (2.5).
By using (2.3), we see that the problem (2.5) is equivalent to the following projection

problem:

g1(x∗) = PC

[
g1
(
y∗) − r1T1y

∗],

g2
(
y∗) = PC

[
g2(z∗) − r2T2z

∗],

g3(z∗) = PC

[
g3(x∗) − r3T3x

∗],

(2.6)

provided C ⊂ gi(H) for each i = 1, 2, 3.
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We now discuss several special cases of the problem (2.5).

(i) If g1 = g2 = g3 = g, then the system (2.5) reduces to the problem of finding
(x∗, y∗, z∗) ∈ H ×H ×H such that

〈r1T1y∗ + g(x∗) − g
(
y∗), g(x) − g(x∗)〉 ≥ 0, ∀g(x) ∈ C,

〈r2T2z∗ + g
(
y∗) − g(z∗), g(x) − g

(
y∗)〉 ≥ 0, ∀g(x) ∈ C,

〈r3T3x∗ + g(z∗) − g(x∗), g(x) − g(z∗)〉 ≥ 0, ∀g(x) ∈ C.

(2.7)

We denote by SGVID(Ξ, g, C) the set of all solutions (x∗, y∗, z∗) of the problem (2.7).

(ii) If T1 = T2 = T3 = T , then the system (2.7) reduces to the following system of general
variational inequalities , (write SGVI(T, g, C), for shot): find x∗, y∗, z∗ ∈ H such that

〈r1Ty∗ + g(x∗) − g
(
y∗), g(x) − g(x∗)〉 ≥ 0, ∀g(x) ∈ C,

〈r2Tz∗ + g
(
y∗) − g(z∗), g(x) − g

(
y∗)〉 ≥ 0, ∀g(x) ∈ C,

〈r3Tx∗ + g(z∗) − g(x∗), g(x) − g(z∗)〉 ≥ 0, ∀g(x) ∈ C.

(2.8)

(iii) If g = I (:= the identity operator), then, from the problem (2.7), we have the
following system of variational inequalities involving three different nonlinear operators
(write SVID(Ξ, C), for shot): find (x∗, y∗, z∗) ∈ H ×H ×H such that

〈r1T1y∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈r2T2z∗ + y∗ − z∗, x − y∗〉 ≥ 0, ∀x ∈ C,

〈r3T3x∗ + z∗ − x∗, x − z∗〉 ≥ 0, ∀x ∈ C.

(2.9)

(iv) If T1 = T2 = T3 = T , then, from the problem (2.9), we have the following system of
variational inequalities (write SVI(T,C), for shot): find (x∗, y∗, z∗) ∈ H ×H ×H such
that

〈r1Ty∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈r2Tz∗ + y∗ − z∗, x − y∗〉 ≥ 0, ∀x ∈ C,

〈r3Tx∗ + z∗ − x∗, x − z∗〉 ≥ 0, ∀x ∈ C.

(2.10)

(v) If r3 = 0, then the problem (2.10) reduces to the following problem: find (x∗, y∗) ∈
H ×H such that

〈r1Ty∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈r2Tx∗ + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ C.
(2.11)

The problem (2.10) has been introduced and studied by Verma [20].
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(vi) If r2 = 0, then the problem (2.11) reduces to the following problem: find x∗ ∈ H
such that

〈Tx∗, x − x∗〉 ≥ 0, ∀x ∈ C, (2.12)

which is, in fact, the originally variational inequality problem, introduced by
Stampacchia [1].

This shows that, roughly speaking, for suitable and appropriate choice of the operators
and spaces, one can obtain several classes of variational inequalities and related optimization
problems. Consequently, the class of system of general variational inequalities involving
three different nonlinear operators problems is more general and has had a great impact and
influence in the development of several branches of pure, applied, and engineering sciences.
For the recent applications, numerical methods, and formulations of variational inequalities,
see [1–27] and the references therein.

Now we recall the definition of a class of mappings.

Definition 2.3. The mapping T : H → H is said to be ν-strongly monotone if there exists a
constant ν > 0 such that

〈
Tx − Ty, x − y

〉 ≥ ν‖x − y‖2, ∀x, y ∈ H. (2.13)

In order to prove our main result, the next lemma is very useful.

Lemma 2.4 (see [28]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − λn)an + bn + cn, ∀n ≥ n0, (2.14)

where n0 is a nonnegative integer, {λn} is a sequence in (0, 1) with Σ∞
n=1λn = ∞, bn = ◦(λn), and

Σ∞
n=1cn < ∞, then limn→∞an = 0.

Denotation. Let Ω ⊂ H × H × H. In what follows, we will put the symbol Ω1 := {x ∈ H :
(x, y, z) ∈ Ω}.

3. Main Results

We begin with some observations which are related to the problem (2.5).

Remark 3.1. If (x∗, y∗, z∗) ∈ SGVID(Ξ,Λ, C), by (2.6), we see that

x∗ = x∗ − g1(x∗) + PC

[
g1
(
y∗) − r1T1y

∗], (3.1)

provided C ⊂ g1(H). Consequently, if S is a Lipschitz mapping such that x∗ ∈ F(S), then it
follows that

x∗ = S(x∗) = S
(
x∗ − g1(x∗) + PC

[
g1
(
y∗) − r1T1y

∗]). (3.2)
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The formulation (3.2) is used to suggest the following iterative method for finding
common elements of two different sets, which are the solutions set of the problem (2.5) and
the set of fixed points of a Lipschitz mapping. Of course, since we hope to use the formulation
(3.2) as an initial idea for constructing the iterative algorithm, hence, from now on, we will
assume that gi : H → H satisfies a condition C ⊂ gi(H) for each i = 1, 2, 3. Now, in view of
the formulations (2.6) and (3.2), we suggest the following algorithm.

Algorithm 1. Let r1, r2, and r3 be fixed positive real numbers. For arbitrary chosen initial x0 ∈
H, compute the sequences {xn}, {yn}, and {zn} such that

g3(zn) = PC

[
g3(xn) − r3T3xn

]
,

g2
(
yn

)
= PC

[
g2(zn) − r2T2zn

]
,

xn+1 = (1 − αn)xn + αnS
(
xn − g1(xn) + PC

[
g1
(
yn

) − r1T1yn

])
,

(3.3)

where {αn} is a sequence in (0, 1) and S : H → H is a mapping.

In what follows, if T : H → H is a ν-strongly monotone and μ-Lipschitz continuous
mapping, then we define a function ΦT : [0,+∞) → (−∞,+∞), associated with such a
mapping T , by

ΦT (r) =
√
1 − 2rν + r2μ2, ∀r ∈ [0,+∞). (3.4)

We now state and prove the main results of this paper.

Theorem 3.2. Let C be a closed convex subset of a real Hilbert space H. Let Ti : H → H be
νi-strongly monotone and μi-Lipschitz mapping, and let gi : H → H be λi-strongly monotone
and δi-Lipschitz mapping for i = 1, 2, 3. Let S : H → H be a τ-Lipschitz mapping such that
(SGVID(Ξ,Λ, C))1 ∩ F(S)/= ∅. Put

pi =
√
1 + δ2

i − 2λi (3.5)

for each i = 1, 2, 3. If

(i) pi ∈ [0, (μi −
√
μ2
i − ν2i )/2μi) ∪ [(μi +

√
μ2
i − ν2i )/2μi, 1), for each i = 1, 2, 3,

(ii) |ri − νi/μ
2
i | <

√
ν2i − μ2

i (4pi)(1 − pi)/μ2
i , for each i = 1, 2, 3,

(iii) τ
∏3

i=1((ΦTi(ri) + pi)/(1 − pi)) < 1,

(iv)
∑∞

n=0 αn = ∞,

then the sequences {xn}, {yn}, and {zn} generated by Algorithm 1 converge strongly to x∗, y∗, and
z∗, respectively, such that (x∗, y∗, z∗) ∈ SGVID(Ξ,Λ, C) and x∗ ∈ F(S).
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Proof. Let (x∗, y∗, z∗) ∈ SGVID(Ξ,Λ, C) be such that x∗ ∈ F(S). By (2.6) and (3.2), we have

g3(z∗) = PC

[
g3(x∗) − r3T3x

∗],

g2
(
y∗) = PC

[
g2(z∗) − r2T2z

∗],

x∗ = (1 − αn)x∗ + αnS
{
x∗ − g1(x∗) + PC

[
g1
(
y∗) − r1T1y

∗]}.

(3.6)

Consequently, by (3.3), we obtain

‖xn+1 − x∗‖ = ‖(1 − αn)xn + αnS
(
xn − g1(xn) + PC

[
g1
(
yn

) − r1T1yn

]) − x∗‖
≤ (1 − αn)‖xn − x∗‖ + αn

∥
∥S
(
xn − g1(xn) + PC

[
g1
(
yn

) − r1T1yn

])

−S(x∗ − g1(x∗) + PC

[
g1
(
y∗) − r1T1y

∗])∥∥

≤ (1 − αn)‖xn − x∗‖
+ αnτ

{‖xn − x∗ − [g1(xn) − g1(x∗)
]‖ + ∥∥yn − y∗ − [g1

(
yn

) − g1
(
y∗)]∥∥

+
∥∥yn − y∗ − r1

[
T1yn − T1y

∗]∥∥}.

(3.7)

By the assumption that T1 is ν1-strongly monotone and μ1-Lipschitz mapping, we obtain

∥∥yn − y∗ − r1[T1yn − T1y
∗]
∥∥2 = ‖yn − y∗‖2 − 2r1〈yn − y∗, T1yn − T1y

∗〉 + r21‖T1yn − T1y
∗‖2

≤ ‖yn − y∗‖2 − 2r1ν1‖yn − y∗‖2 + r21μ
2
1‖yn − y∗‖2

=
(
1 − 2r1ν1 + r21μ

2
1

)
‖yn − y∗‖2

= (ΦT1(r1))
2‖yn − y∗‖2.

(3.8)

Notice that

‖yn − y∗‖ =
∥∥yn − y∗ − [g2

(
yn

) − g2
(
y∗)] +

[
g2
(
yn

) − g2
(
y∗)]∥∥

≤ ∥∥yn − y∗ − [g2
(
yn

) − g2
(
y∗)]‖ + ‖g2

(
yn

) − g2
(
y∗)∥∥.

(3.9)

Now we consider,

∥∥yn − y∗ − [g2(yn) − g2(y∗)]
∥∥2 = ‖yn − y∗‖2 − 2〈yn − y∗, g2yn − g2y

∗〉 + ‖g2yn − g2y
∗‖2

≤ ‖yn − y∗‖2 − 2
{
λ2‖yn − y∗‖2

}
+ δ2

2‖yn − y∗‖2

=
(
1 − 2λ2 + δ2

2

)
‖yn − y∗‖2

=
(
p2
)2‖yn − y∗‖2,

(3.10)
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since g2 is λ2-strongly monotone and δ2-Lipschitz mapping. And

‖g2
(
yn

) − g2
(
y∗)‖ =

∥
∥PC

[
g2(zn) − r2T2zn

] − PC

[
g2(z∗) − r2T2z

∗]∥∥

≤ ∥∥g2(zn) − g2(z∗) − r2[T2zn − T2z
∗]
∥
∥

≤ ∥∥zn − z∗ − [g2(zn) − g2(z∗)
]∥∥ + ‖zn − z∗ − r2[T2zn − T2z

∗]‖.
(3.11)

By the assumptions of T2 and g2, using the same lines as obtained in (3.8) and (3.10), we
know that

‖zn − z∗ − r2[T2zn − T2z
∗]‖2 ≤ (ΦT2(r2))

2‖zn − z∗‖2, (3.12)

∥
∥zn − z∗ − [g2(zn) − g2(z∗)]

∥
∥2 ≤ (p2

)2‖zn − z∗‖2, (3.13)

respectively.
Substituting (3.12) and (3.13) into (3.11), we have

‖g2
(
yn

) − g2
(
y∗)‖ ≤ (ΦT2(r2) + p2

)‖zn − z∗‖. (3.14)

Combining (3.9), (3.10), and (3.14) yields that

‖yn − y∗‖ ≤ p2‖yn − y∗‖ + (ΦT2(r2) + p2
)‖zn − z∗‖. (3.15)

Observe that,

‖zn − z∗‖ =
∥∥zn − z∗ − [g3(zn) − g3(z∗)

]
+
[
g3(zn) − g3(z∗)

]∥∥

≤ ∥∥zn − z∗ − [g3(zn) − g3(z∗)
]∥∥ +

∥∥g3(zn) − g3(z∗)
∥∥,

(3.16)

∥∥g3(zn) − g3(z∗)
∥∥ ≤ ∥∥xn − x∗ − [g3(xn) − g3(x∗)

]∥∥ + ‖xn − x∗ − r3[T3xn − T3x
∗]‖. (3.17)

Using the assumptions of T3 and g3, we know that

‖xn − x∗ − r3[T3xn − T3x
∗]‖2 ≤ (ΦT3(r3))

2‖xn − x∗‖2, (3.18)

∥∥xn − x∗ − [g3(xn) − g3(x∗)]
∥∥2 ≤ (p3

)2‖xn − x∗‖2, (3.19)
∥∥zn − z∗ − [g3(zn) − g3(z∗)

]∥∥ ≤ p3‖zn − z∗‖, (3.20)

respectively. Substituting (3.18) and (3.19) into (3.17), we have

‖g3(zn) − g3(z∗)‖ ≤ (ΦT3(r3) + p3
)‖xn − x∗‖. (3.21)

Combining (3.16), (3.20), and (3.21) yields that

‖zn − z∗‖ ≤ p3‖zn − z∗‖ + (ΦT3(r3) + p3
)‖xn − x∗‖. (3.22)
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This implies that

‖zn − z∗‖ ≤
(
ΦT3(r3) + p3

)

1 − p3
‖xn − x∗‖. (3.23)

Substituting (3.23) into (3.15), we have

‖yn − y∗‖ ≤ p2‖yn − y∗‖ + (ΦT2(r2) + p2
)
(
ΦT3(r3) + p3

)

1 − p3
‖xn − x∗‖, (3.24)

that is,

‖yn − y∗‖ ≤
(
ΦT2(r2) + p2

)(
ΦT3(r3) + p3

)

(
1 − p2

)(
1 − p3

) ‖xn − x∗‖. (3.25)

By (3.8) and (3.25), we obtain

∥∥yn − y∗ − r1
[
T1yn − T1y

∗]∥∥ ≤ ΦT1(r1)
(
ΦT2(r2) + p2

)(
ΦT3(r3) + p3

)

(
1 − p2

)(
1 − p3

) ‖xn − x∗‖. (3.26)

On the other hand, since g1 is λ1-strongly monotone and δ1-Lipschitz mapping, we can show
that

‖xn − x∗ − [g1(xn) − g1(x∗)
]‖ ≤ p1‖xn − x∗‖, (3.27)

‖yn − y∗ − [g1
(
yn

) − g1
(
y∗)]‖ ≤ p1‖yn − y∗‖. (3.28)

Substituting (3.25) into (3.28) yields that

∥∥yn − y∗ − [g1
(
yn

) − g1
(
y∗)]∥∥ ≤ p1

(
ΦT2(r2) + p2

)(
ΦT3(r3) + p3

)

(
1 − p2

)(
1 − p3

) ‖xn − x∗‖. (3.29)

Writing

♦ =

(
ΦT2(r2) + p2

)(
ΦT3(r3) + p3

)

(
1 − p2

)(
1 − p3

) (3.30)

and substituting (3.26), (3.27), and (3.29) into (3.7), we will get

‖xn+1 − x∗‖ ≤ (1 − αn

(
1 − τ

(
p1 + p1♦ + ΦT1(r1)♦

)))‖xn − x∗‖. (3.31)
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Table 1

μi νi

⎡

⎢
⎣0,

μi −
√
μ2
i − ν2i

2μi

⎞

⎟
⎠ ∪

⎡

⎢
⎣
μi +

√
μ2
i − ν2i

2μi
, 1

⎞

⎟
⎠

⎛

⎜
⎝

νi −
√
ν2i − μ2

i (4pi)(1 − pi)

μ2
i

,
νi +

√
ν2i − μ2

i (4pi)(1 − pi)

μ2
i

⎞

⎟
⎠

T1
1
2

1
2

[0, 1) (0, 4) =: R1

T2
1
4

1
4

[0, 1) (0, 8) =: R2

T3
1
2

1
4

[

0,
2 − √

3
4

)

∪
[
2 +

√
3

4
, 1

) (
7 − √

22
7

,
7 +

√
22

7

)

=: R3

Notice that, by conditions (i) and (ii), we have

3∏

i=1

(
ΦTi(ri) + pi

1 − pi

)
< 1. (3.32)

This implies that

♦ <
1 − p1

ΦT1(r1) + p1
, (3.33)

that is,

Δ =: p1 + p1♦ + ΦT1(r1)♦ < 1. (3.34)

Put

an = ‖xn − x∗‖,
λn = αn(1 − τΔ).

(3.35)

By condition (iii), in view of (3.32) and (3.34), we see that τΔ ∈ (0, 1); this implies
λn ∈ (0, 1). Meanwhile, from condition (iv), we also have

∑∞
n=0 λn = ∞. Hence, all conditions

of Lemma 2.4 are satisfied, and we can conclude that xn → x∗ as n → ∞. Consequently,
from (3.23) and (3.25), we know that zn → z∗ and yn → y∗ as n → ∞, respectively. This
completes the proof.

Example 3.3. Let H = [0, 1] and C = [0, 1/2]. For i = 1, 2, 3, let Ti, gi : H → H be mappings
which are defined by T1(x) = x/2, T2(x) = x/4, T3(x) = x2/4, g1(x) = x, and g2(x) = g3(x) =
(27/28)x. Then, one can show that p1 = 0 and p2 = p3 = 1/28. Consequently, we have Table 1.

It follows that the condition (i) of Theorem 3.2 is satisfied. Moreover, if for each i =
1, 2, 3 the real number ri belongs to Ri, then we can check that

∏3
i=1((ΦTi(ri)+pi)/(1−pi)) < 1.
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Now let γ ∈ (1,∞) be a fixed positive real number and α ∈ (0, 1/γ
∏3

i=1((ΦTi(ri)+pi)/(1−pi))).
If S : H → H is a mapping which is defined by

S(x) = αxγ , ∀x ∈ H. (3.36)

Then we know that the conditions (ii) and (iii) of Theorem 3.2 are satisfied. In fact, we have
(0, 0, 0) ∈ SGVID(Ξ,Λ, C) and 0 ∈ F(S).

Applying our Theorem 3.2, the following results are obtained immediately.

Corollary 3.4. Let C be a closed convex subset of a real Hilbert space H. Let Ti : H → H be
νi-strongly monotone and μi-Lipschitz mapping, and let g : H → H be λ-strongly monotone
and δ-Lipschitz mapping for i = 1, 2, 3. Let S : H → H be a τ-Lipschitz mapping such that
(SGVID(Ξ, g, C))1 ∩ F(S)/= ∅. Let r1, r2, and r3 be positive real numbers that generate the problem
(2.7). For arbitrary chosen initial x0 ∈ H, compute the sequences {xn}, {yn}, and {zn} such that

g(zn) = PC

[
g(xn) − r3T3xn

]
,

g
(
yn

)
= PC

[
g(zn) − r2T2zn

]
,

xn+1 = (1 − αn)xn + αnS
(
xn − g(xn) + PC

[
g
(
yn

) − r1T1yn

])
.

(3.37)

Put p =
√
1 + δ2 − 2λ. If the following control conditions are satisfied:

(i) p ∈ [0, (μi −
√
μ2
i − ν2i )/2μi) ∪ [(μi +

√
μ2
i − ν2i )/2μi, 1), for each i = 1, 2, 3,

(ii) |ri − νi/μ
2
i | <

√
ν2i − μ2

i (4p)(1 − p)/μ2
i , for each i = 1, 2, 3,

(iii) τ
∏3

i=1((ΦTi(ri) + p)/(1 − p)) < 1,

(iv)
∑∞

n=0 αn = ∞,

then the sequences {xn}, {yn}, and {zn} generated by (3.37) converge strongly to x∗, y∗, and z∗,
respectively, such that (x∗, y∗, z∗) ∈ SGVID(Ξ, g, C) and x∗ ∈ F(S).

Corollary 3.5. Let C be a closed convex subset of a real Hilbert space H. Let T : H → H be ν-
strongly monotone and μ-Lipschitz continuous mapping, and let g : H → H be λ-strongly monotone
and δ-Lipschitz mapping. Let S : H → H be a τ-Lipschitz mapping such that (SGVI(T, g, C))1 ∩
F(S)/= ∅. Let r1, r2, and r3 be positive real numbers that generate the problem (2.8). For arbitrary
chosen initial x0 ∈ H, compute the sequences {xn}, {yn}, and {zn} such that

g(zn) = PC

[
g(xn) − r3Txn

]
,

g
(
yn

)
= PC

[
g(zn) − r2Tzn

]
,

xn+1 = (1 − αn)xn + αnS
(
xn − g(xn) + PC

[
g
(
yn

) − r1Tyn

])
.

(3.38)

If the following control conditions are satisfied:

(i) p ∈ [0, (μ −
√
μ2 − ν2)/2μ) ∪ [(μ +

√
μ2 − ν2)/2μ, 1), where p =

√
1 + δ2 − 2λ,
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(ii) |r − ν/μ2| <
√
ν2 − μ2(4p)(1 − p)/μ2, where r = max{r1, r2, r3},

(iii) τ
∏3

i=1((ΦT (ri) + p)/(1 − p)) < 1,

(iv)
∑∞

n=0 αn = ∞,

then the sequences {xn}, {yn}, and {zn} generated by (3.38) converge strongly to x∗, y∗, and z∗,
respectively, such that (x∗, y∗, z∗) ∈ SGVI(T, g, C) and x∗ ∈ F(S).

Corollary 3.6. Let C be a closed convex subset of a real Hilbert space H. Let Ti : H → H be
νi-strongly monotone and μi-Lipschitz continuous mapping for i = 1, 2, 3. Let S : C → C be a τ-
Lipschitz mapping such that (SVID(Ξ, C))1∩F(S)/= ∅. Let r1, r2, and r3 be positive real numbers that
generate the problem (2.9). For arbitrary chosen initial x0 ∈ H, compute the sequences {xn}, {yn},
and {zn} such that

zn = PC[xn − r3T3xn],

yn = PC[zn − r2T2zn],

xn+1 = (1 − αn)xn + αnSPC

[
yn − r1T1yn

]
.

(3.39)

If the following control conditions are satisfied:

(i) ri ∈ (0, 2νi/μ2
i ), for each i = 1, 2, 3,

(ii) τ
∏3

i=1ΦT (ri) < 1,

(iii)
∑∞

n=0 αn = ∞,

then the sequences {xn}, {yn}, and {zn} generated by (3.39) converge strongly to x∗, y∗, and z∗,
respectively, such that (x∗, y∗, z∗) ∈ SVID(Ξ, C) and x∗ ∈ F(S).

Proof. Since the identity mapping is 1-strongly monotone and 1-Lipschitz mapping, it follows
that the number p, defined in Corollary 3.4, is identically zero. Hence, the required result can
be obtained immediately.

Corollary 3.7. Let C be a closed convex subset of a real Hilbert space H. Let T : H → H be ν-
strongly monotone and μ-Lipschitz mapping. Let S : C → C be a τ-Lipschitz mapping such that
(SVI(T,C))1 ∩ F(S)/= ∅. Let r1, r2, and r3 be positive real numbers that generate the problem (2.10).
For arbitrary chosen initial x0 ∈ H, compute the sequences {xn}, {yn}, and {zn} such that

zn = PC[xn − r3Txn],

yn = PC[zn − r2Tzn],

xn+1 = (1 − αn)xn + αnSPC

[
yn − r1Tyn

]
.

(3.40)

If the following control conditions are satisfied:

(i) ri ∈ (0, 2ν/μ2), for each i = 1, 2, 3,

(ii) τ
∏3

i=1ΦT (ri) < 1,

(iii)
∑∞

n=0 αn = ∞,



Fixed Point Theory and Applications 13

then the sequences {xn}, {yn}, and {zn} generated by (3.40) converge strongly to x∗, y∗, and z∗,
respectively, such that (x∗, y∗, z∗) ∈ SVI(T,C) and x∗ ∈ F(S).

Remark 3.8. Corollary 3.9 mainly improves and extends the results of Verma [20].

Corollary 3.9. Let C be a closed convex subset of a real Hilbert space H. Let T : H → H be
ν-strongly monotone and μ-Lipschitz mapping, and let g : H → H be δ-strongly monotone and λ-
Lipschitz mapping. Let S : H → H be a τ-Lipschitz mapping such thatGVI(T, g, C)∩F(S)/= ∅. Put
r = ν/μ2 be a fixed positive real number. For arbitrary chosen initial x0 ∈ H, compute the sequence
{xn} such that

g(zn) = PC

[
g(xn) − rTxn

]
,

g
(
yn

)
= PC

[
g(zn) − rTzn

]
,

xn+1 = (1 − αn)xn + αnS
(
g(xn) − xn + PC

[
g
(
yn

) − rTyn

])
.

(3.41)

If the following control conditions are satisfied:

(i) p ∈ [0, (μ −
√
μ2 − ν2)/2μ) ∪ [(μ +

√
μ2 − ν2)/2μ, 1), where p =

√
1 + δ2 − 2λ,

(ii) τ ∈ (0, μ(1 − p)/(μp +
√
μ2 − ν2)),

(iii)
∑∞

n=0 αn = ∞,

then the sequences {xn} generated by (3.41) converges strongly to x∗, such that x∗ ∈
GVI(T,C)

⋂
F(S).

Proof. Notice that ΦT (0) = 1 and ΦT (ν/μ2) =
√
μ2 − ν2/μ. Consequently, condition (ii)

implies that

τ

(
p + ΦT

(
ν/μ2)

1 − p

)

< 1. (3.42)

Moreover, by setting r2 = r3 = 0, we see that the problem SGVI(T, g, C) is reduced to
the problem GVI(T, g, C). Using these observations, one can easily see that the required
conclusion is followed immediately from the Corollary 3.5.

Remark 3.10. Corollary 3.9 extends the results in [24] in some extent.

In light of Corollaries 3.6 and 3.9, we obtain the following result immediately.

Corollary 3.11. Let C be a closed convex subset of a real Hilbert space H. Let T : H → H be
ν-strongly monotone and μ-Lipschitz mapping. Let S : C → C be a τ-Lipschitz mapping such that
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VI(T,C)∩F(S)/= ∅. Let r = ν/μ2 be a fixed positive real number. For arbitrary chosen initial x0 ∈ H,
compute the sequence {xn} such that

zn = PC[xn − rTxn],

yn = PC[zn − rTzn],

xn+1 = (1 − αn)xn + αnSPC

[
yn − rTyn

]
.

(3.43)

If the following control conditions are satisfied:

(i) τ ∈ (0, μ/
√
μ2 − ν2),

(ii)
∑∞

n=0 αn = ∞.

then the sequences {xn} generated by (3.43) converges strongly to x∗, such that x∗ ∈ VI(T,C)∩F(S).

Remark 3.12. Corollary 3.11 extends and improves the main result announced by Noor and
Huang [26], from a class nonexpansive mappings to a class of any Lipschitzian mappings.

Remark 3.13. The choice r = ν/μ2 is a possible sharp for applying Corollaries 3.9 and 3.11 to
a wide class of Lipschitz mappings. Indeed, notice that

ΦT

(
ν

μ2

)
=

√
μ2 − ν2

μ
= inf

r∈[0,∞)
{ΦT (r)}. (3.44)

Since both Corollaries 3.9 and 3.11 are special cases of Corollary 3.5, thus, based on condition
(iii) of Corollary 3.5, our remark is asserted.

Now we show an application of Theorem 3.2. Recall that a mapping Q : H → H is
said to be asymptotically strict pseudocontraction if there exists a constant λ ∈ [0, 1) satisfying

‖Qnx −Qny‖2 ≤ (1 + γn
)‖x − y‖2 + λ‖(I −Qn)x − (I −Qn)y‖2 (3.45)

for all x, y ∈ H and all integer n ≥ 1, where γn ≥ 0 for all n ≥ 1 such that γn → 0 as n → ∞.
In this case, we also say Q is an asymptotically λ-strict pseudocontraction.

Lemma 3.14 (see [29]). LetQ : H → H be an asymptotically λ-strict pseudocontraction. Then, for
each n ≥ 1, Qn satisfies the Lipschitz condition

‖Qnx −Qny‖ ≤ Ln‖x − y‖, ∀x, y ∈ H, (3.46)

where Ln = (λ +
√
1 + γn(1 − λ))/(1 − λ).

For each i = 1, 2, 3, let Ti : H → H be a νi-strongly monotone and μi-Lipschitz
mapping, and let gi : H → H be a δi-strongly monotone and λi-Lipschitz mapping. Put

ξ =
3∏

i=1

(
ΦTi(ri) + pi

1 − pi

)
, (3.47)
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where pi is defined as in Theorem 3.2, for each i = 1, 2, 3, and r1, r2, r3 are positive real numbers
that generate the problem (2.5). Notice that, if ξ ∈ (0, (1−λ)/(1+λ)), then there exists a natural
number j such that Lj < 1/ξ, since Ln ↓ ((1 + λ)/(1 − λ)) as n → ∞. Using this observation,
we can apply Theorem 3.2 to obtain the following result.

Example 3.15. LetH be a real Hilbert space. For each i = 1, 2, 3, let Ti : H → H be a νi-strongly
monotone and μi-Lipschitz mapping, and let gi : H → H be a δi-strongly monotone and λi-
Lipschitz mapping. Assume that the problem (2.5) is generated by the positive real numbers
r1, r2, and r3 such that the conditions (i) and (ii) in Theorem 3.2 are satisfied. LetQ : H → H
be an asymptotically λ-strict pseudocontraction satisfying ξ ∈ (0, (1−λ)/(1+λ)), and let j ∈ N

be a natural number such that Lj < 1/ξ, where Lj is defined as in Lemma 3.14. Let {xn}, {yn},
and {zn} be three sequences generated by Algorithm 1 with S =: Qj .

If (SQVID(Ξ,Λ, C))1 ∩ F(Q)/= ∅ and
∑∞

n=0 αn = ∞, then the sequences {xn}, {yn}, and
{zn} converge strongly to x∗, y∗, and z∗, respectively, such that (x∗, y∗, z∗) ∈ SGVID(Ξ,Λ, C)
and x∗ ∈ F(Q). Indeed, let (x∗, y∗, z∗) ∈ SQVID(Ξ,Λ, C) be such that x∗ ∈ F(Q). It follows
that x∗ ∈ F(Qn) for all n ∈ N. Using this one together with the fact that ξLj < 1, as an
application of Theorem 3.2, we know that {xn}, {yn}, and {zn} converge strongly to x∗, y∗,
and z∗, respectively.

Remark 3.16. If λ = 0, then Q is fallen to a class of mappings as asymptotically nonexpansive
mapping. Hence, Example 3.15 can be viewed as an extension of the main result announced
by Cho and Qin [25] in some aspects.

Remark 3.17. Recall that a mapping T : H → H is said to be

(i) μ-cocoercive if there exists a constant μ > 0 such that

〈Tx − Ty, x − y〉 ≥ μ‖Tx − Ty‖2, ∀x, y ∈ H, (3.48)

(ii) relaxed μ-cocoercive if there exists a constant μ > 0 such that

〈Tx − Ty, x − y〉 ≥ (−μ)‖Tx − Ty‖2, ∀x, y ∈ H, (3.49)

(iii) relaxed (μ, ν)-cocoercive if there exist constants μ, ν > 0 such that

〈Tx − Ty, x − y〉 ≥ (−μ)‖Tx − Ty‖2 + ν‖x − y‖2, ∀x, y ∈ H. (3.50)

Obviously, the class of the relaxed (μ, ν)-cocoercive mappings is the most general one,
of course, larger than the class of strongly monotone mappings. However, it is worth noting
that, if the mapping T is relaxed (μ, ν)-cocoercive and τ-Lipschitz mapping such that ν−μτ2 >
0, T must be a (ν − μτ2)-strongly monotone. Hence, the results that appeared in this paper
can be also applied to a class of the relaxed cocoercive mappings. In conclusion, for a suitable
and appropriate choice of the mappings T, g and parameters r, our results include many
important known results given by many authors as special cases.
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