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As a well-known numerical method, the extragradient method solves numerically the variational
inequality VI(C,A) of finding u ∈ C such that 〈Au, v−u〉 ≥ 0, for all v ∈ C. In this paper,we devote
to solve the following hierarchical variational inequality HVI(C,A, f) Find x̃ ∈ VI(C,A) such that
〈(I − f)x̃, x − x̃〉 ≥ 0, for all x ∈ VI(C,A). We first suggest and analyze an implicit extragradient
method for solving the hierarchical variational inequality HVI(C,A, f). It is shown that the net
defined by the suggested implicit extragradient method converges strongly to the unique solution
of HVI(C,A, f) in Hilbert spaces. As a special case, we obtain the minimum norm solution of the
variational inequality VI(C,A).

1. Introduction

The variational inequality problem is to find u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (1.1)

The set of solutions of the variational inequality problem is denoted by VI(C,A). It is well
known that the variational inequality theory has emerged as an important tool in studying a
wide class of obstacle, unilateral, and equilibrium problems; which arise in several branches
of pure and applied sciences in a unified and general framework. Several numerical methods
have been developed for solving variational inequalities and related optimization problems,
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see [1–24] and the references therein. In particular, Korpelevich’s extragradient method
which was introduced by Korpelevič [4] in 1976 generates a sequence {xn} via the recursion

yn = PC[xn − λAxn],

xn+1 = PC

[

xn − λAyn

]

, n ≥ 0,
(1.2)

where PC is the metric projection from Rn onto C, A : C → H is a monotone operator, and λ
is a constant. Korpelevich [4] proved that the sequence {xn} converges strongly to a solution
of VI(C,A). Note that the setting of the space is Euclid space Rn.

Recently, hierarchical fixed point problems and hierarchical minimization problems
have attracted many authors’ attention due to their link with some convex programming
problems. See [25–32]. Motivated and inspired by these results in the literature, in this paper
we are devoted to solve the following hierarchical variational inequality HVI(C,A, f):

Find z ∈ VI(C,A) such that
〈(

I − f
)

z, x∗ − z
〉 ≥ 0, ∀x∗ ∈ VI(C,A). (1.3)

For this purpose, in this paper, we first suggest and analyze an implicit extragradientmethod.
It is shown that the net defined by this implicit extragradient method converges strongly
to the unique solution of HVI(C,A, f) in Hilbert spaces. As a special case, we obtain the
minimum norm solution of the variational inequality VI(C,A).

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let C be a closed
convex subset ofH . Recall that a mappingA : C → H is called α-inverse strongly monotone
if there exists a positive real number α such that

〈Au −Av, u − v〉 ≥ α‖Au −Av‖2, ∀u, v ∈ C. (2.1)

Amapping f : C → H is said to be ρ-contraction if there exists a constant ρ ∈ [0, 1) such that

∥

∥f(x) − f
(

y
)∥

∥ ≤ ρ
∥

∥x − y
∥

∥ ∀x, y ∈ C. (2.2)

It is well known that, for any u ∈ H , there exists a unique u0 ∈ C such that

‖u − u0‖ = inf{‖u − x‖ : x ∈ C}. (2.3)

We denote u0 by PCu, where PC is called the metric projection of H onto C. The metric
projection PC of H onto C has the following basic properties:

(i) ‖PCx − PCy‖ ≤ ‖x − y‖ for all x, y ∈ H ;

(ii) 〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2 for every x, y ∈ H ;

(iii) 〈x − PCx, y − PCx〉 ≤ 0 for all x ∈ H , y ∈ C;

(iv) ‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2 for all x ∈ H , y ∈ C.
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Such properties of PC will be crucial in the proof of our main results. Let A be a monotone
mapping of C into H . In the context of the variational inequality problem, it is easy to see
from property (iii) that

x∗ ∈ VI(C,A) ⇐⇒ x∗ = PC

(

x∗ − μAx∗), ∀μ > 0. (2.4)

We need the following lemmas for proving our main result.

Lemma 2.1 (see [13]). Let C be a nonempty closed convex subset of a real Hilbert space H . Let the
mappingA : C → H be α-inverse strongly monotone, and let λ > 0 be a constant. Then, one has

∥

∥(I − λA)x − (I − λA)y
∥

∥

2 ≤ ∥

∥x − y
∥

∥

2 + λ(λ − 2α)
∥

∥Ax −Ay
∥

∥

2
, ∀x, y ∈ C. (2.5)

In particular, if 0 ≤ λ ≤ 2α, then I − λA is nonexpansive.

Lemma 2.2 (see [32]). Let C be a nonempty closed convex subset of a real Hilbert space H . Assume
that the mapping F : C → H is monotone and weakly continuous along segments, that is, F(x +
ty) → F(x) weakly as t → 0. Then, the variational inequality

x∗ ∈ C, 〈Fx∗, x − x∗〉 ≥ 0, ∀x ∈ C (2.6)

is equivalent to the dual variational inequality

x∗ ∈ C, 〈Fx, x − x∗〉 ≥ 0, ∀x ∈ C. (2.7)

3. Main Result

In this section, we will introduce our implicit extragradient algorithm and show its strong
convergence to the unique solution of HVI(C,A, f).

Algorithm 1. Let C be a closed convex subset of a real Hilbert space H . Let A : C → H be an
α-inverse strongly monotone mapping. Let f : C → H be a (nonself) contraction with coefficient
ρ ∈ [0, 1). For any t ∈ (0, 1), define a net {xt} as follows:

yt = PC

[

tf(xt) + (1 − t)(xt − λAxt)
]

,
xt = PC

[

yt − λAyt

]

, t ∈ (0, 1),
(3.1)

where λ ∈ [a, b] ⊂ (0, 2α) is a constant.
Note the fact that f is a possible nonself mapping. Hence, if we take f = 0, then (3.1)

reduces to

yt = PC[(1 − t)(xt − λAxt)],
xt = PC

[

yt − λAyt

]

, t ∈ (0, 1),
(3.2)
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Remark 3.1. We notice that the net {xt} defined by (3.1) is well defined. In fact, we can define
a self-mappingWt : C → C as follows:

Wtx := PC[I − λA]PC

[

tf(x) + (1 − t)(I − λA)x
]

, ∀x ∈ C. (3.3)

From Lemma 2.1, we know that if λ ∈ (0, 2α), the mapping I − λA is nonexpansive.
For any x, y ∈ C, we have

∥

∥Wtx −Wty
∥

∥ =
∥

∥PC[I − λA]PC

[

tf(x) + (1 − t)(I − λA)x
]

−PC[I − λA]PC

[

tf
(

y
)

+ (1 − t)(I − λA)y
]∥

∥

≤ ∥

∥tf(x) − tf
(

y
)

+ (1 − t)(I − λA)x − (1 − t)(I − λA)y
∥

∥

≤ t
∥

∥f(x) − f
(

y
)∥

∥ + (1 − t)
∥

∥(I − λA)x − (I − λA)y
∥

∥

≤ tρ
∥

∥x − y
∥

∥ + (1 − t)
∥

∥x − y
∥

∥

=
[

1 − (

1 − ρ
)

t
]∥

∥x − y
∥

∥.

(3.4)

This shows that the mapping Wt is a contraction. By Banach contractive mapping principle,
we immediately deduce that the net (3.1) is well defined.

Theorem 3.2. Suppose the solution set Ω ofHVI(C,A, f) is nonempty. Then the net {xt} generated
by the implicit extragradient method (3.1) converges in norm, as t → 0+, to the unique solution z of
the hierarchical variational inequalityHVI(C,A, f). In particular, if one takes that f = 0, then the net
{xt} defined by (3.2) converges in norm, as t → 0+, to the minimum-norm solution of the variational
inequality VI(C,A).

Proof. Take that x∗ ∈ Ω. Since x∗ ∈ VI(C,A), using the relation (2.4), we have x∗ = PC[x∗ −
μAx∗], for all μ > 0. In particular, if we take μ = λ(1 − t), we obtain

x∗ = PC[x∗ − λ(1 − t)Ax∗] = PC[tx∗ + (1 − t)(x∗ − λAx∗)], ∀t ∈ (0, 1). (3.5)

From (3.1), we have

∥

∥yt − x∗∥
∥ =

∥

∥PC

[

tf(xt) + (1 − t)(xt − λAxt)
] − PC[tx∗ + (1 − t)(x∗ − λAx∗)]

∥

∥

≤ ∥

∥t
(

f(xt) − x∗) + (1 − t)[(xt − λAxt) − (x∗ − λAx∗)]
∥

∥

≤ t
∥

∥f(xt) − f(x∗)
∥

∥ + t
∥

∥f(x∗) − x∗∥
∥ + (1 − t)‖(I − λA)xt − (I − λA)x∗‖

≤ tρ‖xt − x∗‖ + t
∥

∥f(x∗) − x∗∥
∥ + (1 − t)‖xt − x∗‖

=
[

1 − (

1 − ρ
)

t
]‖xt − x∗‖ + t

∥

∥f(x∗) − x∗∥
∥.

(3.6)
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Noting that I − λA is nonexpansive, thus,

‖xt − x∗‖ =
∥

∥PC

[

yt − λAyt

] − PC[x∗ − λAx∗]
∥

∥

≤ ∥

∥

(

yt − λAyt

) − (x∗ − λAx∗)
∥

∥

≤ ∥

∥yt − x∗∥
∥

≤ [

1 − (

1 − ρ
)

t
]‖xt − x∗‖ + t

∥

∥f(x∗) − x∗∥
∥.

(3.7)

That is,

‖xt − x∗‖ ≤ 1
1 − ρ

∥

∥f(x∗) − x∗∥
∥. (3.8)

Therefore, {xt} is bounded and so are {f(xt)}, {yt}. Since A is α-inverse strongly monotone,
it is 1/α-Lipschitz continuous. Consequently, {Axt} and {Ayt} are also bounded.

From (3.6),(2.5), and the convexity of the norm, we deduce

‖xt − x∗‖2 ≤ ∥

∥t
(

f(xt) − x∗) + (1 − t)[(xt − λAxt) − (x∗ − λAx∗)]
∥

∥

2

≤ t
∥

∥f(xt) − x∗∥
∥

2 + (1 − t)‖(I − λA)xt − (I − λA)x∗‖2

≤ t
∥

∥f(xt) − x∗∥
∥

2 + (1 − t)
[

‖xt − x∗‖2 + λ(λ − 2α)‖Axt −Ax∗‖2
]

≤ t
∥

∥f(xt) − x∗∥
∥

2 + ‖xt − x∗‖2 + (1 − t)a(b − 2α)‖Axt −Ax∗‖2.

(3.9)

Therefore, we have

(1 − t)a(2α − b)‖Axt −Ax∗‖2 ≤ t
∥

∥f(xt) − x∗∥
∥

2
. (3.10)

Hence

lim
t→ 0

‖Axt −Ax∗‖ = 0. (3.11)
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By the property (ii) of the metric projection PC, we have

∥

∥yt − x∗∥
∥

2 =
∥

∥PC

[

tf(xt) + (1 − t)(xt − λAxt)
] − PC(x∗ − λAx∗)

∥

∥

2

≤ 〈

tf(xt) + (1 − t)(xt − λAxt) − (x∗ − λAx∗), yt − x∗〉

=
1
2

{

∥

∥(xt − λAxt) − (x∗ − λAx∗) − t
(

I − λA − f
)

xt

∥

∥

2 +
∥

∥yt − x∗∥
∥

2

−∥∥(xt − λAxt) − (x∗ − λAx∗) − (

yt − x∗) − t
(

I − λA − f
)

xt

∥

∥

2
}

≤ 1
2

{

‖(xt − λAxt) − (x∗ − λAx∗)‖2 + tM +
∥

∥yt − x∗∥
∥

2

−∥∥(xt − yt

) − λ(Axt −Ax∗) − t
(

I − λA − f
)

xt

∥

∥

2
}

≤ 1
2

{

‖xt − x∗‖2 + tM +
∥

∥yt − x∗∥
∥

2 − ∥

∥xt − yt

∥

∥

2

+ 2λ
〈

xt − yt, Axt −Ax∗〉 + 2t
〈(

I − λA − f
)

xt, xt − yt

〉

−∥∥λ(Axt −Ax∗) + t
(

I − λA − f
)

xt

∥

∥

2
}

≤ 1
2

{

‖xt − x∗‖2 + tM +
∥

∥yt − x∗∥
∥

2 − ∥

∥xt − yt

∥

∥

2

+2λ
∥

∥xt − yt

∥

∥‖Axt −Ax∗‖ + 2t
∥

∥

(

I − λA − f
)

xt

∥

∥

∥

∥xt − yt

∥

∥

}

,

(3.12)

where M > 0 is some appropriate constant. It follows that

∥

∥yt − x∗∥
∥

2 ≤ ‖xt − x∗‖2 + tM − ∥

∥xt − yt

∥

∥

2 + 2λ
∥

∥xt − yt

∥

∥‖Axt −Ax∗‖
+ 2t

∥

∥

(

I − λA − f
)

xt

∥

∥

∥

∥xt − yt

∥

∥,
(3.13)

and hence (by (3.7))

‖xt − x∗‖2 ≤ ∥

∥yt − x∗∥
∥

2

≤ ‖xt − x∗‖2 + tM − ∥

∥xt − yt

∥

∥

2 + 2λ
∥

∥xt − yt

∥

∥‖Axt −Ax∗‖
+ 2t

∥

∥

(

I − λA − f
)

xt

∥

∥

∥

∥xt − yt

∥

∥,

(3.14)

which implies that

∥

∥xt − yt

∥

∥

2 ≤ tM + 2λ
∥

∥xt − yt

∥

∥‖Axt −Ax∗‖ + 2t
∥

∥

(

I − λA − f
)

xt

∥

∥

∥

∥xt − yt

∥

∥. (3.15)

Since ‖Axt −Ax∗‖ → 0, we derive

lim
t→ 0+

∥

∥xt − yt

∥

∥ = 0. (3.16)
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Next, we show that the net {xt} is relatively norm-compact as t → 0+. Assume that {tn} ⊂
(0, 1) is such that tn → 0+ as n → ∞. Put xn := xtn and yn := ytn .

By the property (ii) of metric projection PC, we have

∥

∥yt − x∗∥
∥

2 =
∥

∥PC

[

tf(xt) + (1 − t)(xt − λAxt)
] − PC[tx∗ + (1 − t)(x∗ − λAx∗)]

∥

∥

2

≤ 〈

t
(

f(xt) − x∗) + (1 − t)[(xt − λAxt) − (x∗ − λAx∗)], yt − x∗〉

≤ t
〈

x∗ − f(xt), x∗ − yt

〉

+ (1 − t)‖(xt − λAxt) − (x∗ − λAx∗)‖∥∥yt − z0
∥

∥

≤ t〈x∗ − f(x∗), x∗ − yt〉 + t〈f(x∗) − f(xt), x∗ − yt〉 + (1 − t)‖xt − x∗‖∥∥yt − x∗∥
∥

≤ t
〈

x∗ − f(x∗), x∗ − yt

〉

+ t
∥

∥f(x∗) − f(xt)
∥

∥

∥

∥x∗ − yt

∥

∥ + (1 − t)
∥

∥yt − x∗∥
∥

2

≤ t
〈

x∗ − f(x∗), x∗ − yt

〉

+ tρ
∥

∥x∗ − yt

∥

∥

2 + (1 − t)
∥

∥yt − x∗∥
∥

2

=
[

1 − (

1 − ρ
)

t
]∥

∥yt − x∗∥
∥

2 + t
〈

x∗ − f(x∗), x∗ − yt

〉

.

(3.17)

Hence

∥

∥yt − x∗∥
∥

2 ≤ 1
1 − ρ

〈

x∗ − f(x∗), x∗ − yt

〉

. (3.18)

Therefore,

‖xt − x∗‖2 ≤ ∥

∥yt − x∗∥
∥

2 ≤ 1
1 − ρ

〈

x∗ − f(x∗), x∗ − yt

〉

. (3.19)

In particular,

‖xn − x∗‖2 ≤ 1
1 − ρ

〈

x∗ − f(x∗), x∗ − yn

〉

. (3.20)

Since {xn} is bounded, without loss of generality, wemay assume that {xn} converges weakly
to a point z ∈ C. Since ‖xt − yt‖ → 0, we have ‖xn − yn‖ → 0. Hence, {yn} also converges
weakly to the same point z.

Next we show that z ∈ VI(C,A). We define a mapping T by

Tv =

⎧

⎨

⎩

Av +NCv, v ∈ C,

∅, v /∈C.
(3.21)

Then T is maximal monotone (see [33]). Let (v,w) ∈ G(T). Since w −Av ∈ NCv and yn ∈ C,
we have 〈v−yn,w−Av〉 ≥ 0. On the other hand, from yn = PC[tnf(xn) + (1− tn)(xn −λAxn)],
we have

〈

v − yn, yn −
[

tnf(xn) + (1 − tn)(xn − λAxn)
]〉 ≥ 0, (3.22)
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that is,

〈

v − yn,
yn − xn

λ
+Axn +

tn
λ

(

I − λA − f
)

xn

〉

≥ 0. (3.23)

Therefore, we have

〈v − yni , w〉 ≥ 〈

v − yni , Av
〉

≥ 〈

v − yni , Av
〉 −

〈

v − yni ,
yni − xni

λ
+Axni +

tni

λ

(

I − λA − f
)

xni

〉

=
〈

v − yni , Av −Axni −
yni − xni

λ
− tni

λ

(

I − λA − f
)

xni

〉

=
〈

v − yni , Av −Ayni

〉

+
〈

v − yni , Ayni −Axni

〉

−
〈

v − yni ,
yni − xni

λ
+
tni

λ

(

I − λA − f
)

xni

〉

≥ 〈

v − yni , Ayni −Axni

〉 −
〈

v − yni ,
yni − xni

λ
+
tni

λ

(

I − λA − f
)

xni

〉

.

(3.24)

Noting that tni → 0, ‖yni −xni‖ → 0, andA is Lipschitz continuous, we obtain 〈v − z,w〉 ≥ 0.
Since T is maximal monotone, we have z ∈ T−1(0) and hence z ∈ VI(C,A).

Therefore we can substitute x∗ for z in (3.20) to get

‖xn − z‖2 ≤ 1
1 − ρ

〈

z − f(z), z − yn

〉

. (3.25)

Consequently, the weak convergence of {xn} and {yn} to z actually implies that xn → z
strongly. This has proved the relative norm-compactness of the net {xt} as t → 0+.

Now we return to (3.20) and take the limit as n → ∞ to get

‖z − x∗‖2 ≤ 1
1 − ρ

〈

x∗ − f(x∗), x∗ − z
〉

, x∗ ∈ VI(C,A). (3.26)

In particular, z solves the following VI

z ∈ VI(C,A),
〈(

I − f
)

x∗, x∗ − z
〉 ≥ 0, x∗ ∈ VI(C,A), (3.27)

or the equivalent dual VI (see Lemma 2.2)

z ∈ VI(C,A),
〈(

I − f
)

z, x∗ − z
〉 ≥ 0, x∗ ∈ VI(C,A). (3.28)

Therefore, z = (PVI(C,A)f)z. That is, z is the unique solution in VI(C,A) of the contraction
PVI(C,A)f . Clearly this is sufficient to conclude that the entire net {xt} converges in norm to z
as t → 0+.
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Finally, if we take that f = 0, then VI (3.28) is reduced to

z ∈ VI(C,A), 〈(z, x∗ − z)〉 ≥ 0, x∗ ∈ VI(C,A). (3.29)

Equivalently,

‖z‖2 ≤ 〈z, x∗〉, x∗ ∈ VI(C,A). (3.30)

This clearly implies that

‖z‖ ≤ ‖x∗‖, x∗ ∈ VI(C,A). (3.31)

Therefore, z is the minimum-norm solution of VI(C,A). This completes the proof.

Remark 3.3. (1) Note that our Implicit Extragradient Algorithms (3.1) and (3.2) have strong
convergence in an infinite dimensional Hilbert space.

(2) In many problems, it is needed to find a solution with minimum norm; see [34–38].
Our Algorithm (3.2) solves the minimum norm solution of VI(C,A).
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