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The existence of common fixed points is established for the mappings where T is asymptotically
f -pseudo-contraction on a nonempty subset of a Banach space. As applications, the invariant
best simultaneous approximation and strong convergence results are proved. Presented results
are generalizations of very recent fixed point and approximation theorems of Khan and Akbar
(2009), Chen and Li (2007), Pathak and Hussain (2008), and several others.

1. Introduction and Preliminaries

We first review needed definitions. Let M be a subset of a normed space (X, ‖ · ‖). The set
PM(u) = {x ∈ M : ‖x − u‖ = dist(u,M)} is called the set of best approximants to u ∈ X out of
M, where dist(u,M) = inf{‖y − u‖ : y ∈ M}. Suppose that A and G are bounded subsets of
X. Then, we write

rG(A) = inf
g∈G

sup
a∈A

‖a − g‖,

centG(A) =

{
g0 ∈ G : sup

a∈A
‖a − g0‖ = rG(A)

}
.

(1.1)

The number rG(A) is called the Chebyshev radius of A w.r.t. G, and an element y0 ∈ centG(A)
is called a best simultaneous approximation ofAw.r.t. G. IfA = {u}, then rG(A) = dist(u,G) and
centG(A) is the set of all best approximations, PG(u), of u from G. We also refer the reader
to Milman [1], and Vijayraju [2] for further details. We denote by � and cl(M) (w cl(M)),
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the set of positive integers and the closure (weak closure) of a set M in X, respectively. Let
f, T : M → M be mappings. The set of fixed points of T is denoted by F(T). A point x ∈ M
is a coincidence point (common fixed point) of f and T if fx = Tx (x = fx = Tx). The pair
{f, T} is called

(1) commuting [3] if Tfx = fTx for all x ∈ M,

(2) compatible (see [3, 4]) if limn‖Tfxn − fTxn‖ = 0 whenever {xn} is a sequence such
that limnTxn = limnfxn = t for some t inM,

(3) weakly compatible if they commute at their coincidence points; that is, if fTx = Tfx
whenever fx = Tx,

(4) Banach operator pair, if the set F(f) is T-invariant, namely T(F(f)) ⊆ F(f).
Obviously, commuting pair (T, f) is a Banach operator pair but converse is not true
in general, see [5, 6]. If (T, f) is a Banach operator pair, then (f, T) need not be a
Banach operator pair (see, e.g., [5, 7, 8]).

The setM is called q-starshapedwith q ∈ M, if the segment [q, x] = {(1 − k)q + kx : 0 ≤
k ≤ 1} joining q to x is contained in M for all x ∈ M. The map f defined on a q-starshaped
set M is called affine if

f
(
(1 − k)q + kx

)
= (1 − k)fq + kfx, ∀x ∈ M. (1.2)

Suppose that M is q-starshaped with q ∈ F(f) and is both T- and f-invariant. Then, T and f
are called,

(5) R-subweakly commuting on M (see [9]) if for all x ∈ M, there exists a real number
R > 0 such that ‖fTx − Tfx‖ ≤ Rdist(fx, [q, Tx]),

(6) uniformly R-subweakly commuting onM \ {q} (see [10]) if there exists a real number
R > 0 such that ‖fTnx − Tnfx‖ ≤ Rdist(fx, [q, Tnx]), for all x ∈ M \ {q} and n ∈ �.
The map T : M → X is said to be demiclosed at 0 if, for every sequence {xn} in M
converging weakly to x and {Txn} converges to 0 ∈ X, then 0 = Tx.

The classical Banach contraction principle has numerous generalizations, extensions
and applications. While considering Lipschitzian mappings, a natural question arises
whether it is possible to weaken contraction assumption a little bit in Banach contraction
principle and still obtain the existence of a fixed point. In this direction the work of Edelstein
[11], Jungck [3], Park [12–18] and Suzuki [19] is worth to mention.

Schu [20] introduced the concept of asymptotically pseudocontraction and proved the
existence and convergence of fixed points for this class of maps (see also [21]). Recently, Chen
and Li [5] introduced the class of Banach operator pairs, as a new class of noncommuting
maps and it has been further studied by Hussain [6], Ćirić et al. [7], Khan and Akbar
[22, 23] and Pathak and Hussain [8]. More recently, Zhou [24] established a demiclosedness
principle for a uniformly L-Lipschitzian asymptotically pseudocontraction map and as an
application obtained a fixed point result for asymptotically pseudocontraction in the setup
of a Hilbert space. In this paper, we are able to join the concepts of uniformly f-Lipschitzian,
asymptotically f-pseudocontraction and Banach operator pair to get the result of Zhou [24] in
the setting of a Banach space. As a consequence, the common fixed point and approximation
results of Al-Thagafi [25], Beg et al. [10], Chidume et al. [26], Chen and Li [5], Cho et al. [27],
Khan and Akbar [22, 23], Pathak and Hussain [8], Schu [28] and Vijayraju [2] are extended
to the class of asymptotically f-pseudocontraction maps.
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2. Main Results

Let X be a real Banach space and M be a subset of X. Let f, g T : M → M be mappings.
Then T is called

(a) an (f, g)-contraction if there exists 0 ≤ k < 1 such that ‖Tx − Ty‖ ≤ k‖fx − gy‖ for
any x, y ∈ M; if k = 1, then T is called f-nonexpansive,

(b) asymptotically (f, g)-nonexpansive [2] if there exists a sequence {kn} of real numbers
with kn ≥ 1 and limn→∞kn = 1 such that

∥∥Tnx − Tny
∥∥ ≤ kn

∥∥fx − gy
∥∥ (2.1)

for all x, y ∈ M and for each n ∈ �; if g = id, then T is called f-asymptotically
nonexpansive map,

(c) pseudocontraction if and only if for each x, y ∈ M, there exists j(x − y) ∈ J(x − y)
such that

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥∥x − y
∥∥2
, (2.2)

where J : X → 2X
∗
is the normalized duality mapping defined by

J(u) =
{
j ∈ X∗ :

〈
u, j

〉
= ‖u‖2,

∥∥j∥∥ = ‖u‖
}
; (2.3)

(d) strongly pseudocontraction if and only if for each x, y ∈ M, there exists k ∈ (0, 1) and
j(x − y) ∈ J(x − y) such that

〈
Tx − Ty, j

(
x − y

)〉 ≤ k
∥∥x − y

∥∥2; (2.4)

(e) asymptotically (f, g)-pseudocontractive if and only if for each n ∈ � and x, y ∈ M,
there exists j(x − y) ∈ J(x − y) and a constant kn ≥ 1 with limn→∞kn = 1 such that

〈
Tnx − Tny, j

(
x − y

)〉 ≤ kn
∥∥fx − gy

∥∥2
. (2.5)

If g = id in (2.5), then T is called asymptotically f-pseudocontractive [20, 24, 27],

(f) uniformly (f, g)-Lipschitzian if there exists some L > 0 such that

∥∥Tnx − Tny
∥∥ ≤ L

∥∥fx − gy
∥∥, (2.6)

for all x, y ∈ M and for each n ∈ �; if g = id, then T is called uniformly f-Lipschitzian
[20, 24, 29].

The map T is called uniformly asymptotically regular [2, 10] onM, if for each η > 0, there
exists N(η) = N such that ‖Tnx − Tn+1x‖ < η for all n ≥ N and all x ∈ M.



4 Fixed Point Theory and Applications

The class of asymptotically pseudocontraction contains properly the class of asymp-
totically nonexpansive mappings and every asymptotically nonexpansive mapping is a
uniformly L-Lipschitzian [2, 24]. For further details, we refer to [21, 24, 27, 29, 30].

In 1974, Deimling [30] proved the following fixed point theorem.

Theorem D. Let T be self-map of a closed convex subset K of a real Banach space X. Assume that T
is continuous strongly pseudocontractive mapping. Then, T has a unique fixed point.

The following result extends and improves Theorem 3.4 of Beg et al. [10], Theorem
2.10 in [22], Theorems 2.2 of [25] and Theorem 4 in [31].

Theorem 2.1. Let f, T be self-maps of a subset M of a real Banach space X. Assume that F(f)
is closed (resp., weakly closed) and convex, T is uniformly f-Lipschitzian and asymptotically f-
pseudocontractive which is also uniformly asymptotically regular on M. If cl(T(M)) is compact
(resp., w cl(T(M)) is weakly compact and id − T is demiclosed at 0) and T(F(f)) ⊆ F(f), then
F(T) ∩ F(f)/= ∅.

Proof. For each n ≥ 1, define a self-map Tn on F(f) by

Tnx =
(
1 − μn

)
q + μnT

nx, (2.7)

where μn = λn/kn and {λn} is a sequence of numbers in (0, 1) such that limn→∞λn = 1
and q ∈ F(f). Since Tn(F(f)) ⊂ F(f) and F(f) is convex with q ∈ F(f), it follows that Tn
maps F(f) into F(f). As F(f) is convex and cl T(F(f)) ⊆ F(f) (resp. w cl T(F(f)) ⊆ F(f)),
so cl Tn(F(f)) ⊆ F(f)) (resp. w cl Tn(F(f)) ⊆ F(f)) for each n ≥ 1. Since Tn is a strongly
pseudocontractive on F(f), by Theorem D, for each n ≥ 1, there exists xn ∈ F(f) such that
xn = fxn = Tnxn. As T(F(f)) is bounded, so ‖xn −Tnxn‖ = (1−μn)‖Tnxn − q‖ → 0 as n → ∞.
Now,

‖xn − Txn‖ = ‖xn − Tnxn‖ +
∥∥∥Tnxn − Tn+1xn

∥∥∥ +
∥∥∥Tn+1xn − Txn

∥∥∥
≤ ‖xn − Tnxn‖ +

∥∥∥Tnxn − Tn+1xn

∥∥∥ + L
∥∥fTnxn − fxn

∥∥. (2.8)

Since for each n ≥ 1, Tn(F(f)) ⊆ F(f) and xn ∈ F(f), therefore Tnxn ∈ F(f). Thus fTnxn =
Tnxn. Also T is uniformly asymptotically regular, we have from (2.8)

‖xn − Txn‖ ≤ ‖xn − Tnxn‖ +
∥∥∥Tnxn − Tn+1xn

∥∥∥ + L‖Tnxn − xn‖ −→ 0, (2.9)

as n → ∞. Thus xn − Txn → 0 as n → ∞. As cl T(M) is compact, so there exists a
subsequence {Txm} of {Txn} such that Txm → z ∈ cl(T(M)) as m → ∞. Since {Txm} is
a sequence in T(F(f)) and clT(F(f)) ⊆ F(f), therefore z ∈ F(f). Moreover,

‖Txm − Tz‖ ≤ L‖fxm − fz‖ = L‖xm − z‖ ≤ L‖xm − Txm‖ + L‖Txm − z‖. (2.10)

Taking the limit as m → ∞, we get z = Tz. Thus, M ∩ F(T) ∩ F(f)/= ∅ proves the first case.
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Since a weakly closed set is closed, by Theorem D, for each n ≥ 1, there exists xn ∈
F(f) such that xn = fxn = Tnxn. The weak compactness of w cl(T(M)) implies that there
is a subsequence {Txm} of {Txn} converging weakly to y ∈ w cl(T(M)) as m → ∞. Since
{Txm} is a sequence in T(F(f)) and w cl T(F(f)) ⊆ F(f), so y ∈ F(f). Moreover, we have,
xm −Txm → 0 asm → ∞. If id−T is demiclosed at 0, then y = Ty. Thus,M∩F(T)∩F(f)/= ∅.

Remark 2.2. By comparing Theorem 3.4 of Beg et al. [10] with the first case of Theorem 2.1,
their assumptions “M is closed and q-starshaped, fM = M, T(M \ {q}) ⊂ f(M) \ {q},
f, T are continuous, f is linear, q ∈ F(f), cl T(M \ {q}) is compact, T is asymptotically
f-nonexpansive and T and f are uniformly R-subweakly commuting on M” are replaced
with “M is nonempty set, F(f) is closed, convex, T(F(f)) ⊆ F(f), cl T(M) is compact, T is
uniformly f-Lipschitzian and asymptotically f-pseudocontractive”.

If M is weakly closed and f is weakly continuous, then F(f) is weakly closed and
hence closed, thus we obtain the following.

Corollary 2.3. Let f, T be self-maps of a weakly closed subsetM of a Banach spaceX. Assume that f
is weakly continuous, F(f) is nonempty and convex, T is uniformly f-Lipschitzian and asymptotically
f-pseudocontractive which is also uniformly asymptotically regular on M. If cl(T(M)) is compact
(resp. w cl(T(M)) is weakly compact and id − T is demiclosed at 0) and (T, f) is a Banach operator
pair, then F(T) ∩ F(f)/= ∅.

Amapping f onM is called pointwise asymptotically nonexpansive [32, 33] if there exists
a sequence {αn} of functions such that

∥∥fnx − fny
∥∥ ≤ αn(x)

∥∥x − y
∥∥ (2.11)

for all x, y ∈ M and for each n ∈ � where αn → 1 pointwise onM.
An asymptotically nonexpansive mapping is pointwise asymptotically nonexpansive.

A pointwise asymptotically nonexpansive map f defined on a closed bounded convex subset
of a uniformly convex Banach space has a fixed point and F(f) is closed and convex [32, 33].
Thus we obtain the following.

Corollary 2.4. Let f be a pointwise asymptotically nonexpansive self-map of a closed bounded convex
subset M of a uniformly convex Banach space X. Assume that T is a self-map of M which is
uniformly f-Lipschitzian, asymptotically f-pseudocontractive and uniformly asymptotically regular.
If cl(T(M)) is compact (resp. w cl(T(M)) is weakly compact and id − T is demiclosed at 0) and
T(F(f)) ⊆ F(f), then F(T) ∩ F(f)/= ∅.

Corollary 2.5 (see [24, Theorem 3.3]). Let T be self-map of a closed bounded and convex subsetM of
a real Hilbert spaceX. Assume that T is uniformly Lipschitzian and asymptotically pseudocontractive
which is also uniformly asymptotically regular on M. Then, F(T)/= ∅.

Corollary 2.6. Let X be a Banach space and T and f be self-maps of X. If u ∈ X, D ⊆ PM(u),
D0 := D ∩ F(f) is closed (resp. weakly closed) and convex, cl(T(D)) is compact (resp.w cl(T(D)) is
weakly compact and id − T is demiclosed at 0), T is uniformly f-Lipschitzian and asymptotically
f-pseudocontractive which is also uniformly asymptotically regular on D, and T(D0) ⊆ D0,
thenPM(u) ∩ F(T) ∩ F(f)/= ∅.
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Remark 2.7. Corollary 2.6 extends Theorems 4.1 and 4.2 of Chen and Li [5] to a more general
class of asymptotically f-pseudocontractions.

Theorem 2.1 can be extended to uniformly (f, g)-Lipschitzian and asymptotically
(f, g)-pseudocontractive map which extends Theorem 2.10 of [22] to asymptotically (f, g)-
pseudocontractions.

Theorem 2.8. Let f, g, T be self-maps of a subsetM of a Banach spaceX. Assume that F(f)∩F(g)
is closed (resp. weakly closed) and convex, T is uniformly (f, g)-Lipschitzian and asymptotically
(f, g)-pseudocontractive which is also uniformly asymptotically regular on M. If cl(T(M)) is
compact (resp. w cl(T(M)) is weakly compact and id − T is demiclosed at 0) and T(F(f) ∩ F(g)) ⊆
F(f) ∩ F(g), then F(T) ∩ F(f) ∩ F(g)/= ∅.

Proof. For each n ≥ 1, define a self-map Tn on F(f) ∩ F(g) by

Tnx =
(
1 − μn

)
q + μnT

nx, (2.12)

where μn = λn/kn and {λn} is a sequence of numbers in (0, 1) such that limn→∞λn = 1 and
q ∈ F(f) ∩ F(g). Since Tn(F(f) ∩ F(g)) ⊂ F(f) ∩ F(g) and F(f) ∩ F(g) is convex with q ∈
F(f)∩F(g), it follows that Tn maps F(f)∩F(g) into F(f)∩F(g). As F(f)∩F(g) is convex and
cl T(F(f)∩F(g)) ⊆ F(f)∩F(g) (resp.w cl T(F(f)∩F(g)) ⊆ F(f)∩F(g)), so cl Tn(F(f)∩F(g)) ⊆
F(f) ∩ F(g)) (resp. w cl Tn(F(f) ∩ F(g)) ⊆ F(f) ∩ F(g)) for each n ≥ 1. Further, since Tn is
a strongly pseudocontractive on F(f) ∩ F(g), by Theorem D, for each n ≥ 1, there exists
xn ∈ F(f) ∩ F(g) such that xn = fxn = gxn = Tnxn. Rest of the proof is similar to that of
Theorem 2.1.

Corollary 2.9. Let f, g, T be self-maps of a subsetM of a Banach spaceX. Assume that F(f)∩F(g)
is closed (resp. weakly closed) and convex, T is uniformly (f, g)-Lipschitzian and asymptotically
(f, g)-pseudocontractive which is also uniformly asymptotically regular on M. If cl(T(M)) is
compact (resp.w cl(T(M)) is weakly compact and id − T is demiclosed at 0) and (T, f) and (T, g) are
Banach operator pairs, then F(T) ∩ F(f) ∩ F(g)/= ∅.

Corollary 2.10. Let X be a Banach space and T , f , and g be self-maps of X. If y1, y2 ∈ X, D ⊆
centK({y1, y2}), where centK(A) is the set of best simultaneous approximations ofAw.r.tK. Assume
that D0 := D ∩ F(f) ∩ F(g) is closed (resp. weakly closed) and convex, cl(T(D)) is compact (resp.
w cl(T(D)) is weakly compact and id − T is demiclosed at 0), T is uniformly (f, g)-Lipschitzian and
asymptotically (f, g)-pseudocontractive which is also uniformly asymptotically regular on D, and
T(D0) ⊆ D0, then centK({y1, y2} ∩ F(T) ∩ F(f) ∩ F(g)/= ∅.

Remark 2.11. (1) Theorem 2.2 and 2.7 of Khan and Akbar [23] are particular cases of
Corollary 2.10.

(2) By comparing Theorem 2.2 of Khan and Akbar [23] with the first case of
Corollary 2.10, their assumptions “centK({y1, y2}) is nonempty, compact, starshaped with
respect to an element q ∈ F(f) ∩ F(g), centK({y1, y2}) is invariant under T , f and g, (T, f)
and (T, g) are Banach operator pairs on centK({y1, y2}), F(f) and F(g) are q-starshaped with
q ∈ F(f) ∩ F(g), f and g are continuous and T is asymptotically (f, g)-nonexpansive on
D,” are replaced with “D ⊆ centK({y1, y2}), D0 := D ∩ F(f) ∩ F(g) is closed and convex,
T(D0) ⊆ D0, cl(T(D)) is compact and T is uniformly (f, g)-Lipschitzian and asymptotically
(f, g)-pseudocontractive on D.”
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(3) By comparing Theorem 2.7 of Khan and Akbar [23] with the second case of
Corollary 2.10, their assumptions “centK({y1, y2}) is nonempty, weakly compact, starshaped
with respect to an element q ∈ F(f) ∩ F(g), centK({y1, y2}) is invariant under T , f and g,
(T, f) and (T, g) are Banach operator pairs on centK({y1, y2}), F(f) and F(g) are q-starshaped
with q ∈ F(f) ∩ F(g), f and g are continuous under weak and strong topologies, f − T
is demiclosed at 0 and T is asymptotically (f, g)-nonexpansive on D,” are replaced with
“D ⊆ centK({y1, y2}), D0 := D ∩ F(f) ∩ F(g) is weakly closed and convex, T(D0) ⊆ D0,
w cl(T(D)) is weakly compact and id − T is demiclosed at 0 and T is uniformly (f, g)-
Lipschitzian and asymptotically (f, g)-pseudocontractive on D.”

We denote by �0 the class of closed convex subsets of X containing 0. For M ∈ �0, we
define Mu= {x ∈ M : ‖x‖ ≤ 2‖u‖}. It is clear that PM(u) ⊂ Mu ∈ �0 (see [9, 25]).

Theorem 2.12. Let f, g, T be self-maps of a Banach space X. If u ∈ X and M ∈ �0 such that
T(Mu) ⊆ M, cl(T(Mu)) is compact (resp.w cl(T(Mu)) is weakly compact) and ‖Tx−u‖ ≤ ‖x−u‖
for all x ∈ Mu, then PM(u) is nonempty, closed and convex with T(PM(u)) ⊆ PM(u). If, in addition,
D ⊆ PM(u), D0 := D ∩ F(f) ∩ F(g) is closed (resp. weakly closed) and convex, cl(T(D)) is compact
(resp.w cl(T(D)) is weakly compact and id−T is demiclosed at 0), T is uniformly (f, g)-Lipschitzian
and asymptotically (f, g)-pseudocontractive which is also uniformly asymptotically regular onD, and
T(D0) ⊆ D0, then PM(u) ∩ F(T) ∩ F(f) ∩ F(g)/= ∅.

Proof. We may assume that u /∈ M. If x ∈ M \Mu, then ‖x‖ > 2‖u‖. Note that

‖x − u‖ ≥ ‖x‖ − ‖u‖ > ‖u‖ ≥ dist(u,M). (2.13)

Thus, dist(u,Mu) = dist(u,M) ≤ ‖u‖. If cl(T(Mu)) is compact, then by the continuity
of norm, we get ‖z − u‖ = dist(u, cl(T(Mu))) for some z ∈ cl(T(Mu)).

If we assume that w cl(T(Mu)) is weakly compact, using Lemma 5.5 in [34, page 192],
we can show the existence of a z ∈ w cl(T(Mu)) such that dist(u,w cl(T(Mu))) = ‖z − u‖.

Thus, in both cases, we have

dist(u,Mu) ≤ dist(u, clT(Mu)) ≤ dist(u, T(Mu)) ≤ ‖Tx − u‖ ≤ ‖x − u‖, (2.14)

for all x ∈ Mu. Hence ‖z−u‖ = dist(u,M) and so PM(u) is nonempty, closed and convex with
T(PM(u)) ⊆ PM(u). The compactness of cl(T(Mu)) (resp. weak compactness ofw cl(T(Mu)))
implies that cl(T(D)) is compact (resp. w cl(T(D)) is weakly compact). The result now
follows from Theorem 2.8.

Remark 2.13. Theorem 2.12 extends Theorems 4.1 and 4.2 in [25], Theorem 8 in [31], and
Theorem 2.15 in [22].

Definition 2.14. Let M be a nonempty closed subset of a Banach space X, I, T : M → M be
mappings and C = {x ∈ M : h(x) = minz∈Mh(z)}. Then I and T are said to satisfy property
(S) [10, 27] if the following holds: for any bounded sequence {xn} inM, limn→∞‖xn−Txn‖ = 0
implies C ∩ F(I) ∩ F(T)/= ∅.

The normal structure coefficient N(X) of a Banach space X is defined [10, 26]
by N(X) = inf{diam(M)/rC(M) : M is nonempty bounded convex subset of X with
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diam(M) > 0}, where rC(M) = infx∈M{supy∈M‖x−y‖} is the Chebyshev radius ofM relative
to itself and diam(M) = supx,y∈M‖x − y‖ is diameter of M. The space X is said to have the
uniform normal structure if N(X) > 1. A Banach limit LIM is a bounded linear functional
on l∞ such that lim infn→∞tn ≤ LIMtn ≤ lim supn→∞tn and LIMtn = LIMtn+1 for all bounded
sequences {tn} in l∞. Let {xn} be bounded sequence in X. Then we can define the real-valued
continuous convex function f on X by f(z) = LIM‖xn − z‖2 for all z ∈ X.

The following lemmas are well known.

Lemma 2.15 (see [10, 27]). Let X be a Banach space with uniformly Gâteaux differentiable norm
and u ∈ X. Let {xn} be bounded sequence inX. Then f(u) = infz∈Xf(z) if and only if LIM〈z, J(xn−
u)〉 = 0 for all z ∈ X, where J : X → X∗ is the normalized duality mapping and 〈·, ·〉 denotes the
generalized duality pairing.

Lemma 2.16 (see [10, 26]). LetM be a convex subset of a smooth Banach spaceX,D be a nonempty
subset of M and P be a retraction from M onto D. Then P is sunny and nonexpansive if and only if
〈x − Px, J(z − Px)〉 ≤ 0 for all x ∈ M and z ∈ D.

Now, we are ready to prove strong convergence to nearest common fixed points of
asymptotically f-pseudocontraction mappings.

Theorem 2.17. Let M be a subset of a reflexive real Banach space X with uniformly Gâteaux
differentiable norm. Let f and T be self-maps on M such that F(f) is closed and convex, T
is continuous, uniformly asymptotically regular, uniformly f-Lipschitzian and asymptotically f-
pseudocontractive with a sequence {kn}. Let {λn} be sequence of real numbers in (0, 1) such that
limn→∞λn = 1 and limn→∞(kn − 1)/(kn − λn) = 0. If T(F(f)) ⊂ F(f), then we have the following.

(A) For each n ≥ 1, there is exactly one xn in M such that

fxn = xn =
(
1 − μn

)
q + μnT

nxn (2.15)

(B) If {xn} is bounded and f and T satisfy property (S), then {xn} converges strongly to
Pq ∈ F(T) ∩ F(f), where P is the sunny nonexpansive retraction fromM onto F(T).

Proof. Part (A) follows from the proof of Theorem 2.1.
(B) As in Theorem 2.1, we get limn→∞‖xn − Txn‖ = 0. Since {xn} is bounded, we can

define a function h : M → R+ by h(z) = LIM‖xn − z‖2 for all z ∈ M. Since h is continuous
and convex, h(z) → ∞ as ‖z‖ → ∞ andX is reflexive, h(z0) = minz∈Mh(z) for some z0 ∈ M.
Clearly, the set C = {x ∈ M : h(x) = minz∈Mh(z)} is nonempty. Since {xn} is bounded and f
and T satisfy property (S), it follows thatC∩F(f)∩F(T)/= ∅. Suppose that v ∈ C∩F(f)∩F(T),
then by Lemma 2.15, we have

LIM〈x − v, J(xn − v)〉 ≤ 0 ∀x ∈ M. (2.16)

In particular, we have

LIM
〈
q − v, J(xn − v)

〉 ≤ 0. (2.17)
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From (2.8), we have

xn − Tnxn =
(
1 − μn

)
q − Tnxn =

1 − μn

μn

(
q − xn

)
. (2.18)

Now, for any v ∈ C ∩ F(f) ∩ F(T), we have

〈xn − Tnxn, J(xn − v)〉 = 〈xn − v + Tnv − Tnxn, J(xn − v)〉

≥ −(kn − 1)‖xn − v‖2

≥ −(kn − 1)K2

(2.19)

for some K > 0. It follows from (2.18) that

〈
xn − q, J(xn − v)

〉 ≤ kn − 1
kn − λn

K2. (2.20)

Hence we have

LIM
〈
xn − q, J(xn − v)

〉 ≤ 0. (2.21)

This together with (2.17) implies that LIM〈xn − v, J(xn − v)〉 = LIM‖xn − v‖2 = 0.
Thus there is a subsequence {xm} of {xn}which converges strongly to v. Suppose that

there is another subsequence {xj} of {xn} which converges strongly to y (say). Since T is
continuous and limn→∞‖xn − Txn‖ = 0, y is a fixed point of T . It follows from (2.21) that

〈
v − q, J

(
v − y

)〉 ≤ 0,
〈
y − q, J

(
y − v

)〉 ≤ 0. (2.22)

Adding these two inequalities, we get

〈
v − y, J

(
v − y

)〉
=
∥∥v − y

∥∥2 ≤ 0 and thus v = y. (2.23)

Consequently, {xn} converges strongly to v ∈ F(f) ∩ F(T). We can define now a
mapping P fromM onto F(T) by limn→∞xn = Pq. From (2.21), we have 〈q−Pq, J(v−Pq)〉 ≤ 0
for all q ∈ M and v ∈ F(T). Thus by Lemma 2.16, P is the sunny nonexpansive retraction on
M. Notice that xn = fxn and limn→∞xn = Pq, so by the same argument as in the proof of
Theorem 2.1 we obtain, Pq ∈ F(f).

Remark 2.18. Theorem 2.17 extends Theorem 1 in [27]. Notice that the conditions of the
continuity and linearity of f are not needed in Theorem 3.6 of Beg et al. [10]; moreover,
we have obtained the conclusion for more general class of uniformly f-Lipschitzian and
asymptotically f-pseudocontractive map T without any type of commutativity of f and T .
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Corollary 2.19 (see [26, Theorem 3.1]). Let M be a closed convex bounded subset of a real Banach
space X with uniformly Gâteaux differentiable norm possessing uniform normal structure. Let T :
M → M be an asymptotically nonexpansive mappingwith a sequence {kn}. Let u ∈ M be fixed, {λn}
be sequence of real numbers in (0, 1) such that limn→∞λn = 1 and limn→∞(kn − 1)/(kn − λn) = 0.
Then,

(A) for each n ≥ 1, there is unique xn in M such that

xn =
(
1 − μn

)
u + μnT

nxn, (2.24)

(B) if limn→∞‖xn − Txn‖ = 0, then {xn} converges strongly to a fixed point of T .

Remark 2.20. (1) Theorem 2.17 improves and extends the results of Beg et al. [10], Cho et al.
[27], and Schu [20, 28] to more general class of Banach operators.

(2) It would be interesting to prove similar results in Modular Function Spaces (cf.
[29]).

(3) Let X = � with the usual norm and M = [0, 1]. A mapping T is defined by Tx =
x, for x ∈ [0, 1/2] and Tx = 0, for x ∈ (1/2, 1] and f(x) = x on M. Clearly, T is not f-
nonexpansive [21] (e.g., ‖T(3/4) − T(1/2)‖ = 1/2 and ‖f(3/4) − f(1/2)‖ = 1/4). But, T is a
f-pseudocontractive mapping.
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[7] L. Ćirić, N. Hussain, F. Akbar, and J. S. Ume, “Common fixed points for Banach operator pairs from
the set of best approximations,” Bulletin of the Belgian Mathematical Society, vol. 16, no. 2, pp. 319–336,
2009.

[8] H. K. Pathak and N. Hussain, “Common fixed points for Banach operator pairs with applications,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 9, pp. 2788–2802, 2008.

[9] N. Hussain and G. Jungck, “Common fixed point and invariant approximation results for noncom-
muting generalized(f, g)-nonexpansive maps,” Journal of Mathematical Analysis and Applications, vol.
321, no. 2, pp. 851–861, 2006.

[10] I. Beg, D. R. Sahu, and S. D. Diwan, “Approximation of fixed points of uniformly R-subweakly
commuting mappings,” Journal of Mathematical Analysis and Applications, vol. 324, no. 2, pp. 1105–
1114, 2006.

[11] M. Edelstein, “On fixed and periodic points under contractive mappings,” Journal of the London
Mathematical Society Second Series, vol. 37, pp. 74–79, 1962.

[12] S. Park, “A generalization of a theorem of Janos and Edelstein,” Proceedings of the American
Mathematical Society, vol. 66, no. 2, pp. 344–346, 1977.

[13] S. Park, “Fixed points of f -contractive maps,” The Rocky Mountain Journal of Mathematics, vol. 8, no. 4,
pp. 743–750, 1978.



Fixed Point Theory and Applications 11

[14] S. Park, “On f -nonexpansive maps,” Journal of the Korean Mathematical Society, vol. 16, no. 1, pp. 29–38,
1979-1980.

[15] S. Park, “On general contractive-type conditions,” Journal of the Korean Mathematical Society, vol. 17,
no. 1, pp. 131–140, 1980/81.

[16] S. Park, “Some general theorems on common fixed points,” Kobe Journal of Mathematics, vol. 4, no. 2,
pp. 141–145, 1988.

[17] S. Park, “Best approximations and fixed points of nonexpansive maps in Hilbert spaces,” Numerical
Functional Analysis and Optimization., vol. 18, no. 5-6, pp. 649–657, 1997.

[18] S. Park, “A unified fixed point theory in generalized convex spaces,” Acta Mathematica Sinica, English
Series, vol. 23, no. 8, pp. 1509–1526, 2007.

[19] T. Suzuki, “A generalized Banach contraction principle that characterizes metric completeness,”
Proceedings of the American Mathematical Society, vol. 136, no. 5, pp. 1861–1869, 2008.

[20] J. Schu, “Iterative construction of fixed points of asymptotically nonexpansive mappings,” Journal of
Mathematical Analysis and Applications, vol. 158, no. 2, pp. 407–413, 1991.

[21] Y. Song, “Iterative convergence to Cesàro means for continuous pseudocontractive mappings,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 7-8, pp. 2792–2800, 2009.

[22] A. R. Khan and F. Akbar, “Best simultaneous approximations, asymptotically nonexpansive
mappings and variational inequalities in Banach spaces,” Journal of Mathematical Analysis and
Applications, vol. 354, no. 2, pp. 469–477, 2009.

[23] A. R. Khan and F. Akbar, “Common fixed points from best simultaneous approximations,” Taiwanese
Journal of Mathematics, vol. 13, no. 5, pp. 1379–1386, 2009.

[24] H. Zhou, “Demiclosedness principle with applications for asymptotically pseudo-contractions in
Hilbert spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 9, pp. 3140–3145, 2009.

[25] M. A. Al-Thagafi, “Common fixed points and best approximation,” Journal of Approximation Theory,
vol. 85, no. 3, pp. 318–323, 1996.

[26] C. E. Chidume, J. Li, and A. Udomene, “Convergence of paths and approximation of fixed points
of asymptotically nonexpansive mappings,” Proceedings of the American Mathematical Society, vol. 133,
no. 2, pp. 473–480, 2005.

[27] Y. J. Cho, D. R. Sahu, and J. S. Jung, “Approximation of fixed points of asymptotically
pseudocontractive mappings in Banach spaces,” Southwest Journal of Pure and Applied Mathematics,
no. 2, pp. 49–59, 2003.

[28] J. Schu, “Approximation of fixed points of asymptotically nonexpansive mappings,” Proceedings of the
American Mathematical Society, vol. 112, no. 1, pp. 143–151, 1991.

[29] M. A. Khamsi and W. M. Kozlowski, “On asymptotic pointwise contractions in modular function
spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 9, pp. 2957–2967, 2010.

[30] K. Deimling, “Zeros of accretive operators,”Manuscripta Mathematica, vol. 13, pp. 365–374, 1974.
[31] L. Habiniak, “Fixed point theorems and invariant approximations,” Journal of Approximation Theory,

vol. 56, no. 3, pp. 241–244, 1989.
[32] N. Hussain and M. A. Khamsi, “On asymptotic pointwise contractions in metric spaces,” Nonlinear

Analysis: Theory, Methods & Applications, vol. 71, no. 10, pp. 4423–4429, 2009.
[33] W. A. Kirk and H.-K. Xu, “Asymptotic pointwise contractions,” Nonlinear Analysis: Theory, Methods &

Applications, vol. 69, no. 12, pp. 4706–4712, 2008.
[34] S. Singh, B. Watson, and P. Srivastava, Fixed Point Theory and Best Approximation: The KKM-Map

Principle, vol. 424 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1997.


