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The purpose of this paper is to introduce and consider new hybrid proximal-type algorithms for
finding a common element of the set EP of solutions of a generalized equilibrium problem, the
set F(S) of fixed points of a relatively nonexpansive mapping S, and the set T−10 of zeros of a
maximal monotone operator T in a uniformly smooth and uniformly convex Banach space. Strong
convergence theorems for these hybrid proximal-type algorithms are established; that is, under
appropriate conditions, the sequences generated by these various algorithms converge strongly to
the same point in EP ∩ F(S) ∩ T−10. These new results represent the improvement, generalization,
and development of the previously known ones in the literature.

1. Introduction

Let E be a real Banach space with the dual E∗ and C be a nonempty closed convex subset of
E. We denote by N and R the sets of positive integers and real numbers, respectively. Also,
we denote by J the normalized duality mapping from E to 2E

∗
defined by

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing. Recall that if E is smooth, then J is
single valued and if E is uniformly smooth, then J is uniformly norm-to-norm continuous
on bounded subsets of E. We will still denote by J the single valued duality mapping. Let
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f : C × C → R be a bifunction and A : C → E∗ be a nonlinear mapping. We consider the
following generalized equilibrium problem:

find u ∈ C such that f
(
u, y

)
+
〈
Au, y − u

〉 ≥ 0, ∀y ∈ C. (1.2)

The set of such u ∈ C is denoted by EP, that is,

EP =
{
u ∈ C : f

(
u, y

)
+
〈
Au, y − u

〉 ≥ 0, ∀y ∈ C
}
. (1.3)

Whenever E = H a Hilbert space, problem (1.2) was introduced and studied by S. Takahashi
and W. Takahashi [1]. Similar problems have been studied extensively recently. See, for
example, [2–11]. In the case of A ≡ 0,EP is denoted by EP(f). In the case of f ≡ 0, EP is
also denoted by VI(C,A). The problem (1.2) is very general in the sense that it includes, as
special cases, optimization problems, variational inequalities, minimax problems, the Nash
equilibrium problem in noncooperative games and others; see, for example, [12–14]. A
mapping S : C → E is called nonexpansive if ‖Sx − Sy‖ ≤ ‖x − y‖ for all x, y ∈ C. Denote by
F(S) the set of fixed points of S, that is, F(S) = {x ∈ C : Sx = x}. A mapping A : C → E∗ is
called α-inverse-strongly monotone, if there exists an α > 0 such that

〈
Ax −Ay, x − y

〉 ≥ α
∥∥Ax −Ay

∥∥2
, ∀x, y ∈ C. (1.4)

It is easy to see that if A : C → E∗ is an α-inverse-strongly monotone mapping, then it is
1/α-Lipschitzian.

Let E be a real Banach space with the dual E∗. A multivalued operator T : E → 2E
∗

with domain D(T) = {z ∈ E : Tz/= ∅} is called monotone if 〈x1 − x2, y1 − y2〉 ≥ 0 for each
xi ∈ D(T) and yi ∈ Txi, i = 1, 2. A monotone operator T is called maximal if its graph
G(T) = {(x, y) : y ∈ Tx} is not properly contained in the graph of any other monotone
operator. A method for solving the inclusion 0 ∈ Tx is the proximal point algorithm. Denote
by I the identity operator on E = H a Hilbert space. The proximal point algorithm generates,
for any initial point x0 = x ∈ H, a sequence {xn} inH, by the iterative scheme

xn+1 = (I + rnT)−1xn, n = 0, 1, 2, . . . , (1.5)

where {rn} is a sequence in the interval (0,∞). Note that this iteration is equivalent to

0 ∈ Txn+1 +
1
rn
(xn+1 − xn), n = 0, 1, 2, . . . . (1.6)

This algorithm was first introduced by Martinet [12] and generally studied by Rockafellar
[15] in the framework of a Hilbert space. Later many authors studied its convergence in a
Hilbert space or a Banach space. See, for instance, [16–21] and the references therein.

Let E be a reflexive, strictly convex, and smooth Banach space with the dual E∗ and C
be a nonempty closed convex subset of E. Let T : E → 2E

∗
be a maximal monotone operator

with domain D(T) = C and S : C → C be a relatively nonexpansive mapping. Let A : C →
X∗ be an α-inverse-strongly monotone mapping and f : C×C → R be a bifunction satisfying
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(A1)–(A4): (A1) f(x, x) = 0, ∀x ∈ C; (A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0,
∀x, y ∈ C; (A3) limsupt↓0f(x + t(z − x), y) ≤ f(x, y), ∀x, y, z ∈ C; (A4) the function y �→
f(x, y) is convex and lower semicontinuous. The purpose of this paper is to introduce and
investigate two new hybrid proximal-type Algorithms 1.1 and 1.2 for finding an element of
EP ∩ F(S) ∩ T−10.

Algorithm 1.1.

x0 ∈ C arbitrarily chosen,

0 = vn +
1
rn
(Jx̃n − Jxn), vn ∈ Tx̃n,

zn = J−1
(
βnJx̃n +

(
1 − βn

)
JSx̃n

)
,

yn = J−1(αnJx̃n + (1 − αn)JSzn),

un ∈ C such that

f
(
un, y

)
+
〈
Aun, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Hn =
{
v ∈ C : φ(v, un) ≤ αnφ(v, x̃n) + (1 − αn)φ(v, zn), 〈v − x̃n, vn〉 ≤ 0

}
,

Wn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, . . . ,

(1.7)

where {rn}∞n=0 is a sequence in (0,∞) and {αn}∞n=0, {βn}∞n=0 are sequences in [0, 1].

Algorithm 1.2.

x0 ∈ C arbitrarily chosen,

0 = vn +
1
rn
(Jx̃n − Jxn), vn ∈ Tx̃n,

yn = J−1(αnJx0 + (1 − αn)JSx̃n),

un ∈ C such that

f
(
un, y

)
+
〈
Aun, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Hn =
{
v ∈ C : φ(v, un) ≤ αnφ(v, x0) + (1 − αn)φ(v, x̃n), 〈v − x̃n, vn〉 ≤ 0

}
,

Wn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, . . . ,

(1.8)

where {rn}∞n=0 is a sequence in (0,∞) and {αn}∞n=0 is a sequence in [0, 1].
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In this paper, strong convergence results on these two hybrid proximal-type
algorithms are established; that is, under appropriate conditions, the sequence {xn} generated
by Algorithm 1.1 and the sequence {xn} generated by Algorithm 1.2, converge strongly to the
same pointΠEP∩F(S)∩ T−10x0. These new results represent the improvement, generalization and
development of the previously known ones in the literature including Solodov and Svaiter
[22], Kamimura and Takahashi [23], Qin and Su [24], and Ceng et al. [25].

Throughout this paper the symbol ⇀ stands for weak convergence and → stands for
strong convergence.

2. Preliminaries

Let E be a real Banach space with the dual E∗. We denote by J the normalized duality
mapping from E to 2E

∗
defined by

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ X, (2.1)

where 〈·, ·〉 denotes the generalized duality pairing. A Banach space E is called strictly convex
if ‖(x + y)/2‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x /=y. It is said to be uniformly
convex if xn − yn → 0 for any two sequences {xn}, {yn} ⊂ E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞‖(xn + yn)/2‖ = 1. Let U = {x ∈ E : ‖x‖ = 1} be a unit sphere of E, then the Banach
space E is called smooth if

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)

exists for each x, y ∈ U. If E is smooth, then J is single valued. We still denote the single
valued duality mapping by J .

It is also said to be uniformly smooth if the limit is attained uniformly for x, y ∈ U.
Recall also that if E is uniformly smooth, then J is uniformly norm-to-norm continuous on
bounded subsets of E. A Banach space E is said to have the Kadec-Klee property if for any
sequence {xn} ⊂ E, whenever xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, we have xn → x. It is known that
if E is uniformly convex, then E has the Kadec-Klee property; see [26, 27] for more details.

Let C be a nonempty closed convex subset of a real Hilbert space H and PC : H → C
be the metric projection ofH onto C, then PC is nonexpansive. This fact actually characterizes
Hilbert spaces and hence, it is not available in more general Banach spaces. Nevertheless,
Alber [28] recently introduced a generalized projection operator ΠC in a Banach space E
which is an analogue of the metric projection in Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional defined as
in [28, 29] by

φ
(
x, y

)
= ‖x‖2 − 2〈x, Jy〉 + ∥∥y∥∥2

, ∀x, y ∈ E. (2.3)

It is clear that in a Hilbert space H, (2.3) reduces to φ(x, y) = ‖x − y‖2, for all x, y ∈ H.
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The generalized projectionΠC : E → C is a mapping that assigns to an arbitrary point
x ∈ E the minimum point of the functional φ(y, x); that is, ΠCx = x, where x is the solution
to the minimization problem

φ(x, x) = min
y∈C

φ
(
y, x

)
. (2.4)

The existence and uniqueness of the operatorΠC follows from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J (see, e.g., [30]). In a Hilbert space H, ΠC =
PC. From [28], in uniformly smooth and uniformly convex Banach spaces, we have

(‖x‖ − ∥∥y∥∥)2 ≤ φ
(
x, y

) ≤ (‖x‖ + ∥∥y∥∥)2, ∀x, y ∈ E. (2.5)

Let C be a nonempty closed convex subset of E, and let S be a mapping from C into itself.
A point p ∈ C is called an asymptotically fixed point of S [31] if C contains a sequence {xn}
which converges weakly to p such that Sxn − xn → 0. The set of asymptotical fixed points of
S will be denoted by F̂(S). A mapping S from C into itself is called relatively nonexpansive
[32–34] if F̂(S) = F(S) and φ(p, Sx) ≤ φ(p, x) for all x ∈ C and p ∈ F(S).

We remark that if E is a reflexive, strictly convex and smooth Banach space, then for
any x, y ∈ E, φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0 then
x = y. From (2.5), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖y‖2. From the
definition of J , we have Jx = Jy. Therefore, we have x = y; see [26, 27] for more details.

We need the following lemmas for the proof of our main results.

Lemma 2.1 (see [23]). Let E be a smooth and uniformly convex Banach space and let {xn} and {yn}
be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded, then xn − yn → 0.

Lemma 2.2 (see [23, 28]). Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E, let x ∈ E and let z ∈ C, then

z = ΠCx ⇐⇒ 〈
y − z, Jx − Jz

〉 ≤ 0, ∀y ∈ C. (2.6)

Lemma 2.3 (see [23, 28]). Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E, then

φ
(
x,ΠCy

)
+ φ

(
ΠCy, y

) ≤ φ
(
x, y

)
, ∀x ∈ C, y ∈ E. (2.7)

Lemma 2.4 (see [35]). Let C be a nonempty closed convex subset of a reflexive, strictly convex and
smooth Banach space E, and let S : C → C be a relatively nonexpansive mapping, then F(S) is closed
and convex.

The following result is according to Blum and Oettli [36].
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Lemma 2.5 (see [36]). Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and let r > 0
and x ∈ E, then, there exists z ∈ C such that

f
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.8)

Motivated by Combettes and Hirstoaga [37] in a Hilbert space, Takahashi and
Zembayashi [38] established the following lemma.

Lemma 2.6 (see [38]). Let C be a nonempty closed convex subset of a uniformly smooth, strictly
convex and reflexive Banach space E, and let f be a bifunction from C ×C to R satisfying (A1)–(A4).
For r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Tr(x) =
{
z ∈ C : f

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
(2.9)

for all x ∈ E, then, the following hold:

(i) Tr is single valued;

(ii) Tr is a firmly nonexpansive-type mapping, that is, for all x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
; (2.10)

(iii) F(Tr) = F̂(Tr) = EP(f);

(iv) EP(f) is closed and convex.

Using Lemma 2.6, one has the following result.

Lemma 2.7 (see [38]). Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and let r > 0,
then, for x ∈ E and q ∈ F(Tr),

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x

)
. (2.11)

Utilizing Lemmas 2.5, 2.6 and 2.7 as above, Chang [39] derived the following result.

Proposition 2.8 (see [39, Lemma 2.5]). Let E be a smooth, strictly convex and reflexive Banach
space and C be a nonempty closed convex subset of E. Let A : C → E∗ be an α-inverse-strongly
monotone mapping, let f be a bifunction from C × C to R satisfying (A1)–(A4), and let r > 0, then
there hold the following:
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(I) for x ∈ E, there exists u ∈ C such that

f
(
u, y

)
+
〈
Au, y − u

〉
+
1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C; (2.12)

(II) if E is additionally uniformly smooth and Kr : E → C is defined as

Kr(x) =
{
u ∈ C : f

(
u, y

)
+
〈
Au, y − u

〉
+
1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C

}
, ∀x ∈ E,

(2.13)

then the mapping Kr has the following properties:

(i) Kr is single valued,

(ii) Kr is a firmly nonexpansive-type mapping, that is,

〈
Krx −Kry, JKrx − JKry

〉 ≤ 〈
Krx −Kry, Jx − Jy

〉
, ∀x, y ∈ E, (2.14)

(iii) F(Kr) = F̂(Kr) = EP,

(iv) EP is a closed convex subset of C,

(v) φ(p,Krx) + φ(Krx, x) ≤ φ(p, x), for all p ∈ F(Kr).

Proof. Define a bifunction F : C × C → R as follows:

F
(
x, y

)
= f

(
x, y

)
+
〈
Ax, y − x

〉
, ∀x, y ∈ C. (2.15)

Then it is easy to verify that F satisfies the conditions (A1)–(A4). Therefore, The conclusions
(I) and (II) of Proposition 2.8 follow immediately from Lemmas 2.5, 2.6 and 2.7.

Lemma 2.9 (see [13, 14]). Let E be a reflexive, strictly convex and smooth Banach space, and let
T : E → 2E

∗
be a maximal monotone operator with T−10/= ∅, then,

φ(z, Jrx) + φ(Jrx, x) ≤ φ(z, x), ∀r > 0, z ∈ T−10, x ∈ E. (2.16)

3. Main Results

Throughout this section, unless otherwise stated, we assume that T : E → 2E
∗
is a maximal

monotone operator with domainD(T) = C, S : C → C is a relatively nonexpansive mapping,
A : C → E∗ is an α-inverse-strongly monotone mapping and f : C × C → R is a bifunction
satisfying (A1)–(A4), where C is a nonempty closed convex subset of a reflexive, strictly
convex, and smooth Banach space E. In this section, we study the following algorithm.
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Algorithm 3.1.

x0 ∈ C arbitrarily chosen,

0 = vn +
1
rn
(Jx̃n − Jxn), vn ∈ Tx̃n,

zn = J−1
(
βnJx̃n +

(
1 − βn

)
JSx̃n

)
,

yn = J−1(αnJx̃n + (1 − αn)JSzn),

un ∈ C such that

f
(
un, y

)
+
〈
Aun, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Hn =
{
v ∈ C : φ(v, un) ≤ αnφ(v, x̃n) + (1 − αn)φ(v, zn), 〈v − x̃n, vn〉 ≤ 0

}
,

Wn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, . . . ,

(3.1)

where {rn}∞n=0 is a sequence in (0,∞) and {αn}∞n=0, {βn}∞n=0 are sequences in [0, 1].

First we investigate the condition under which the Algorithm 3.1 is well defined.
Rockafellar [40] proved the following result.

Lemma 3.2 (Rockafellar [40]). Let E be a reflexive, strictly convex, and smooth Banach space and
let T : E → 2E

∗
be a multivalued operator, then there hold the following:

(i) T−10 is closed and convex if T is maximal monotone such that T−10/= ∅;
(ii) T is maximal monotone if and only if T is monotone with R(J + rT) = E∗ for all r > 0.

Utilizing this result, we can show the following lemma.

Lemma 3.3. Let E be a reflexive, strictly convex, and smooth Banach space. If EP∩ F(S)∩ T−10/= ∅,
then the sequence {xn} generated by Algorithm 3.1 is well defined.

Proof. For each n ≥ 0, define two sets Cn and Dn as follows:

Cn =
{
v ∈ C : φ(v, un) ≤ αnφ(v, x̃n) + (1 − αn)φ(v, zn)

}
,

Dn = {v ∈ C : 〈v − x̃n, vn〉 ≤ 0}.
(3.2)

It is obvious that Cn is closed and Dn,Wn are closed convex sets for each n ≥ 0. Let us show
that Cn is convex. For v1, v2 ∈ Cn and t ∈ (0, 1), put v = tv1 + (1 − t)v2. It is sufficient to show
that v ∈ Cn. Indeed, observe that

φ(v, un) ≤ αnφ(v, x̃n) + (1 − αn)φ(v, zn) (3.3)
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is equivalent to

2αn〈v, Jx̃n〉 + 2(1 − αn)〈v, Jzn〉 − 2〈v, Jun〉 ≤ αn‖x̃n‖2 + (1 − αn)‖zn‖2 − ‖un‖2. (3.4)

Note that there hold the following:

φ(v, un) = ‖v‖2 − 2〈v, Jun〉 + ‖un‖2,

φ(v, x̃n) = ‖v‖2 − 2〈v, Jx̃n〉 + ‖x̃n‖2,

φ(v, zn) = ‖v‖2 − 2〈v, Jzn〉 + ‖zn‖2,

(3.5)

Thus we have

2αn〈v, Jx̃n〉 + 2(1 − αn)〈v, Jzn〉 − 2〈v, Jun〉
= 2αn〈tv1 + (1 − t)v2, Jx̃n〉 + 2(1 − αn)〈tv1 + (1 − t)v2, Jzn〉
− 2〈tv1 + (1 − t)v2, Jun〉

= 2tαn〈v1, Jx̃n〉 + 2(1 − t)αn〈v2, Jx̃n〉 + 2(1 − αn)t〈v1, Jzn〉
+ 2(1 − αn)(1 − t)〈v2, Jzn〉 − 2t〈v1, Jun〉 − 2(1 − t)〈v2, Jun〉

≤ αn‖x̃n‖2 + (1 − αn)‖zn‖2 − ‖un‖2.

(3.6)

This implies that v ∈ Cn. Therefore, Cn is convex and hence Hn = Cn ∩ Dn is closed and
convex.

On the other hand, let w ∈ EP ∩ F(S) ∩ T−10 be arbitrarily chosen, then w ∈ EP, w ∈
F(S) and w ∈ T−10. From Algorithm 3.1, it follows that

φ(w,un) = φ
(
w,Krnyn

) ≤ φ
(
w,yn

)

= φ
(
w, J−1(αnJx̃n + (1 − αn)JSzn)

)

= ‖w‖2 − 2〈w,αnJx̃n + (1 − αn)JSzn〉 + ‖αnJx̃n + (1 − αn)JSzn‖2

≤ ‖w‖2 − 2αn〈w, Jx̃n〉 − 2(1 − αn)〈w, JSzn〉 + αn‖x̃n‖2 + (1 − αn)‖Szn‖2

≤ αnφ(w, x̃n) + (1 − αn)φ(w,Szn)

≤ αnφ(w, x̃n) + (1 − αn)φ(w, zn).

(3.7)

Sow ∈ Cn for all n ≥ 0. Now, from Lemma 3.2 it follows that there exists (x̃0, v0) ∈ E×E∗ such
that 0 = v0+(1/r0)(Jx̃0−Jx0) and v0 ∈ Tx̃0. Since T is monotone, it follows that 〈x̃0−w,v0〉 ≥ 0,
which implies that w ∈ D0 and hence w ∈ H0. Furthermore, it is clear that w ∈ W0 = C, then
w ∈ H0 ∩ W0, and therefore x1 = ΠH0∩W0x0 is well defined. Suppose that w ∈ Hn−1 ∩ Wn−1
and xn is well defined for some n ≥ 1. Again by Lemma 3.2, we deduce that (x̃n, vn) ∈ E × E∗

such that 0 = vn + (1/rn)(Jx̃n − Jxn) and vn ∈ Tx̃n, then from the monotonicity of T we
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conclude that 〈x̃n −w,vn〉 ≥ 0, which implies thatw ∈ Dn and hencew ∈ Hn. It follows from
Lemma 2.4 that

〈w − xn, Jx0 − Jxn〉 = 〈w −ΠHn−1∩Wn−1x0, Jx0 − JΠHn−1∩Wn−1x0〉 ≤ 0, (3.8)

which implies thatw ∈ Wn. Consequently,w ∈ Hn ∩ Wn and so EP∩ F(S)∩ T−10 ⊂ Hn ∩ Wn.
Therefore xn+1 = ΠHn∩Wnx0 is well defined, then, by induction, the sequence {xn} generated
by Algorithm 3.1, is well defined for each integer n ≥ 0.

Remark 3.4. From the above proof, we obtain that

EP ∩ F(S) ∩ T−10 ⊂ Hn ∩ Wn (3.9)

for each integer n ≥ 0.

We are now in a position to prove the main theorem.

Theorem 3.5. Let E be a uniformly smooth and uniformly convex Banach space. Let {rn}∞n=0 be a
sequence in (0,∞) and {αn}∞n=0, {βn}∞n=0 be sequences in [0, 1] such that

lim inf
n→∞

rn > 0, lim sup
n→∞

αn < 1, lim
n→∞

βn = 1. (3.10)

Let EP ∩ F(S) ∩ T−10/= ∅. If S is uniformly continuous, then the sequence {xn} generated by
Algorithm 3.1 converges strongly toΠEP∩F(S)∩ T−10x0.

Proof. First of all, if follows from the definition of Wn that xn = ΠWnx0. Since xn+1 =
ΠHn∩Wnx0 ∈ Wn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (3.11)

Thus {φ(xn, x0)} is nondecreasing. Also from xn = ΠWnx0 and Lemma 2.3, we have that

φ(xn, x0) = φ(ΠWnx0, x0) ≤ φ(w,x0) − φ(w,xn) ≤ φ(w,x0) (3.12)

for eachw ∈ EP∩ F(S)∩ T−10 ⊂ Wn and for each n ≥ 0. Consequently, {φ(xn, x0)} is bounded.
Moreover, according to the inequality

(‖xn‖ − ‖x0‖)2 ≤ φ(xn, x0) ≤ (‖xn‖ + ‖x0‖)2, (3.13)
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we conclude that {xn} is bounded. Thus, we have that limn→∞φ(xn, x0) exists. From
Lemma 2.3, we derive the following:

φ(xn+1, xn) = φ(xn+1,ΠWnx0)

≤ φ(xn+1, x0) − φ(ΠWnx0, x0)

= φ(xn+1, x0) − φ(xn, x0),

(3.14)

for all n ≥ 0. This implies that φ(xn+1, xn) → 0. So it follows from Lemma 2.1 that xn+1 −xn →
0. Since xn+1 = ΠHn∩Wnx0 ∈ Hn, from the definition of Hn, we also have

φ(xn+1, un) ≤ αnφ(xn+1, x̃n) + (1 − αn)φ(xn+1, zn), 〈xn+1 − x̃n, vn〉 ≤ 0. (3.15)

Observe that

φ(xn+1, zn) = φ
(
xn+1, J

−1(βnJx̃n +
(
1 − βn

)
JSx̃n

))

= ‖xn+1‖2 − 2
〈
xn+1, βnJx̃n +

(
1 − βn

)
JSx̃n

〉
+
∥∥βnJx̃n +

(
1 − βn

)
JSx̃n

∥∥2

≤ ‖xn+1‖2 − 2βn〈xn+1, Jx̃n〉 − 2
(
1 − βn

)〈xn+1, JSx̃n〉 + βn‖x̃n‖2 +
(
1 − βn

)‖Sx̃n‖2

= βnφ(xn+1, x̃n) +
(
1 − βn

)
φ(xn+1, Sx̃n).

(3.16)

At the same time,

φ(ΠHnxn, xn) − φ(x̃n, xn) = ‖ΠHnxn‖2 − ‖x̃n‖2 + 2〈x̃n −ΠHnxn, Jxn〉
≥ 2〈ΠHnxn − x̃n, Jx̃n〉 + 2〈x̃n −ΠHnxn, Jxn〉
= 2〈x̃n −ΠHnxn, Jxn − Jx̃n〉.

(3.17)

Since ΠHnxn ∈ Hn and vn = (1/rn)(Jxn − Jx̃n), it follows that

〈x̃n −ΠHnxn, Jxn − Jx̃n〉 = rn〈x̃n −ΠHnxn, vn〉 ≥ 0 (3.18)

and hence that φ(ΠHnxn, xn) ≥ φ(x̃n, xn). Further, from xn+1 ∈ Hn, we have φ(xn+1, xn) ≥
φ(ΠHnxn, xn), which yields

φ(xn+1, xn) ≥ φ(ΠHnxn, xn) ≥ φ(x̃n, xn). (3.19)
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Then it follows from φ(xn+1, xn) → 0 that φ(x̃n, xn) → 0. Hence it follows from Lemma 2.1
that x̃n − xn → 0. Since from (3.15) we derive

φ(xn+1, x̃n) − φ(x̃n, xn)

= ‖xn+1‖2 − 2〈xn+1, Jx̃n〉 + ‖x̃n‖2 −
(
‖x̃n‖2 − 2〈x̃n, Jxn〉 + ‖xn‖2

)

= ‖xn+1‖2 − ‖xn‖2 − 2〈xn+1, Jx̃n〉 + 2〈x̃n, Jxn〉

= ‖xn+1‖2 − ‖xn‖2 − 2〈xn+1 − x̃n, Jx̃n − Jxn〉
− 2〈xn+1 − x̃n, Jxn〉 + 2〈x̃n, Jxn − Jx̃n〉

= (‖xn+1‖ − ‖xn‖)(‖xn+1‖ + ‖xn‖) + 2rn〈xn+1 − x̃n, vn〉 − 2〈xn+1 − x̃n, Jxn〉
+ 2〈x̃n, Jxn − Jx̃n〉

≤ ‖xn+1 − xn‖(‖xn+1‖ + ‖xn‖) + 2‖xn+1 − x̃n‖‖xn‖ + 2‖x̃n‖‖Jxn − Jx̃n‖
≤ ‖xn+1 − xn‖(‖xn+1‖ + ‖xn‖) + 2(‖xn+1 − xn‖ + ‖xn − x̃n‖)‖xn‖ + 2‖x̃n‖‖Jxn − Jx̃n‖,

(3.20)

we have

φ(xn+1, x̃n) ≤ φ(x̃n, xn) + ‖xn+1 − xn‖(‖xn+1‖ + ‖xn‖)

+ 2(‖xn+1 − xn‖ + ‖xn − x̃n‖)‖xn‖ + 2‖x̃n‖‖Jxn − Jx̃n‖.
(3.21)

Thus, from φ(x̃n, xn) → 0, xn − x̃n → 0, and xn+1 − xn → 0, we know that φ(xn+1, x̃n) → 0.
Consequently from (3.16), φ(xn+1, x̃n) → 0, and βn → 1 it follows that

φ(xn+1, zn) −→ 0. (3.22)

So it follows from (3.15), φ(xn+1, x̃n) → 0, and φ(xn+1, zn) → 0 that φ(xn+1, un) → 0. Utilizing
Lemma 2.1 we deduce that

lim
n→∞

‖xn+1 − un‖ = lim
n→∞

‖xn+1 − x̃n‖ = lim
n→∞

‖xn+1 − zn‖ = 0. (3.23)



Fixed Point Theory and Applications 13

Furthermore, for u ∈ EP ∩ F(S) ∩ T−10 arbitrarily fixed, it follows from Proposition 2.8 that

φ
(
un, yn

)
= φ

(
Krnyn, yn

) ≤ φ
(
u, yn

) − φ
(
u,Krnyn

)

= φ
(
u, J−1(αnJx̃n + (1 − αn)JSzn)

)
− φ(u, un)

= ‖u‖2 − 2〈u, αnJx̃n + (1 − αn)JSzn〉 + ‖αnJx̃n + (1 − αn)JSzn‖2 − φ(u, un)

≤ ‖u‖2 − 2αn〈u, Jx̃n〉 − 2(1 − αn)〈u, JSzn〉 + αn‖x̃n‖2 + (1 − αn)‖Szn‖2 − φ(u, un)

= αnφ(u, x̃n) + (1 − αn)φ(u, Szn) − φ(u, un)

≤ (1 − αn)φ(u, zn) + αnφ(u, x̃n) − φ(u, un)

= (1 − αn)φ
(
u, J−1

(
βnJx̃n +

(
1 − βn

)
JSx̃n

))
+ αnφ(u, x̃n) − φ(u, un)

= (1 − αn)
[
‖u‖2 − 2

〈
u, βnJx̃n +

(
1 − βn

)
JSx̃n

〉
+
∥∥βnJx̃n +

(
1 − βn

)
JSx̃n

∥∥2
]

+ αnφ(u, x̃n) − φ(u, un)

≤ (1 − αn)
[
‖u‖2 − 2βn〈u, Jx̃n〉 − 2

(
1 − βn

)〈u, JSx̃n〉 + βn‖x̃n‖2 +
(
1 − βn

)‖Sx̃n‖2
]

+ αnφ(u, x̃n) − φ(u, un)

= (1 − αn)
[
βnφ(u, x̃n) +

(
1 − βn

)
φ(u, Sx̃n)

]
+ αnφ(u, x̃n) − φ(u, un)

≤ (1 − αn)
[
βnφ(u, x̃n) +

(
1 − βn

)
φ(u, x̃n)

]
+ αnφ(u, x̃n) − φ(u, un)

= (1 − αn)φ(u, x̃n) + αnφ(u, x̃n) − φ(u, un)

= φ(u, x̃n) − φ(u, un)

= φ(u, x̃n) − φ(u, xn+1) + φ(u, xn+1) − φ(u, un)

= ‖x̃n‖2 − ‖xn+1‖2 + 2〈u, Jxn+1 − Jx̃n〉 + ‖xn+1‖2 − ‖un‖2 + 2〈u, Jun − Jxn+1〉
≤ ‖x̃n − xn+1‖(‖x̃n‖ + ‖xn+1‖) + 2‖u‖‖Jxn+1 − Jx̃n‖
+ ‖xn+1 − un‖(‖xn+1‖ + ‖un‖) + 2‖u‖‖Jun − Jxn+1‖.

(3.24)

Since J is uniformly norm-to-norm continuous on bounded subsets ofE, it follows from (3.23)
that ‖Jxn+1 − Jx̃n‖ → 0 and ‖Jun − Jxn+1‖ → 0, which hence yield φ(un, yn) → 0. Utilizing
Lemma 2.1, we get ‖un − yn‖ → 0. Observe that

∥∥xn+1 − yn

∥∥ ≤ ‖xn+1 − un‖ +
∥∥un − yn

∥∥ −→ 0, (3.25)

due to (3.23). Since J is uniformly norm-to-norm continuous on bounded subsets of E, we
have that

lim
n→∞

∥∥Jxn+1 − Jyn

∥∥ = lim
n→∞

‖Jxn+1 − Jx̃n‖ = 0. (3.26)
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On the other hand, we have

‖xn − zn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖ −→ 0. (3.27)

Noticing that

∥∥Jxn+1 − Jyn

∥∥ = ‖Jxn+1 − (αnJx̃n + (1 − αn)JSzn)‖
= ‖αn(Jxn+1 − Jx̃n) + (1 − αn)(Jxn+1 − JSzn)‖
= ‖(1 − αn)(Jxn+1 − JSzn) − αn(Jx̃n − Jxn+1)‖
≥ (1 − αn)‖Jxn+1 − JSzn‖ − αn‖Jx̃n − Jxn+1‖,

(3.28)

we have

‖Jxn+1 − JSzn‖ ≤ 1
1 − αn

(∥∥Jxn+1 − Jyn

∥∥ + αn‖Jx̃n − Jxn+1‖
)
. (3.29)

From (3.26) and lim supn→∞αn < 1, we obtain

lim
n→∞

‖Jxn+1 − JSzn‖ = 0. (3.30)

Since J−1 is also uniformly norm-to-norm continuous on bounded subsets of E∗, we obtain

lim
n→∞

‖xn+1 − Szn‖ = 0. (3.31)

Observe that

‖xn − Sxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Szn‖ + ‖Szn − Sxn‖. (3.32)

Since S is uniformly continuous, it follows from (3.27), (3.31) and xn+1 − xn → 0 that xn −
Sxn → 0.

Now let us show that ωw({xn}) ⊂ EP ∩ F(S) ∩ T−10, where

ωw({xn}) :=
{
x̂ ∈ C : xnk ⇀ x̂ for some subsequence {nk} ⊂ {n} with nk ↑ ∞}

. (3.33)

Indeed, since {xn} is bounded and X is reflexive, we know that ωw({xn})/= ∅. Take x̂ ∈
ωw({xn}) arbitrarily, then there exists a subsequence {xnk} of {xn} such that xnk ⇀ x̂. Hence
x̂ ∈ F(S). Let us show that x̂ ∈ T−10. Since xn− x̃n → 0, we have that x̃nk ⇀ x̂. Moreover, since
J is uniformly norm-to-norm continuous on bounded subsets of E and lim infn→∞rn > 0, we
obtain

vn =
1
rn
(Jxn − Jx̃n) −→ 0. (3.34)
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It follows from vn ∈ Tx̃n and the monotonicity of T that

〈
z − x̃n, z

′ − vn

〉 ≥ 0 (3.35)

for all z ∈ D(T) and z′ ∈ Tz. This implies that

〈
z − x̂, z′

〉 ≥ 0 (3.36)

for all z ∈ D(T) and z′ ∈ Tz. Thus from the maximality of T , we infer that x̂ ∈ T−10. Therefore,
x̂ ∈ F(S) ∩ T−10. Further, let us show that x̂ ∈ EP. Since un − yn → 0 and xn − un → 0, from
xnk ⇀ x̂ we obtain that ynk ⇀ x̂ and unk ⇀ x̂.

Since J is uniformly norm-to-norm continuous on bounded subsets of E, from un −
yn → 0 we derive

lim
n→∞

∥∥Jun − Jyn

∥∥ = 0. (3.37)

From lim infn→∞rn > 0, it follows that

lim
n→∞

∥∥Jun − Jyn

∥∥
rn

= 0. (3.38)

By the definition of un := Krnyn, we have

F
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C, (3.39)

where

F
(
un, y

)
= f

(
un, y

)
+
〈
Aun, y − un

〉
. (3.40)

Replacing n by nk, we have from (A2) that

1
rnk

〈
y − unk , Junk − Jynk

〉 ≥ −F(unk , y
) ≥ F

(
y, unk

)
, ∀y ∈ C. (3.41)

Since y �→ f(x, y) + 〈Ax, y − x〉 is convex and lower semicontinuous, it is also weakly lower
semicontinuous. Letting nk → ∞ in the last inequality, from (3.38) and (A4) we have

F
(
y, x̂

) ≤ 0, ∀y ∈ C. (3.42)

For t, with 0 < t ≤ 1, and y ∈ C, let yt = ty + (1 − t)x̂. Since y ∈ C and x̂ ∈ C, then yt ∈ C and
hence F(yt, x̂) ≤ 0. So, from (A1) we have

0 = F
(
yt, yt

) ≤ tF
(
yt, y

)
+ (1 − t)F

(
yt, x̂

) ≤ tF
(
yt, y

)
. (3.43)
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Dividing by t, we have

F
(
yt, y

) ≥ 0, ∀y ∈ C. (3.44)

Letting t ↓ 0, from (A3) it follows that

F
(
x̂, y

) ≥ 0, ∀y ∈ C. (3.45)

So, x̂ ∈ EP. Therefore, we obtain that ωw({xn}) ⊂ EP ∩ F(S) ∩ T−10 by the arbitrariness of x̂.
Next, let us show that ωw({xn}) = {ΠEP∩F(S)∩ T−10x0} and xn → ΠEP∩F(S)∩ T−10x0.
Indeed, put x = ΠEP∩F(S)∩ T−10x0. From xn+1 = ΠHn∩Wnx0 and x ∈ EP ∩ F(S) ∩ T−10 ⊂

Hn∩Wn, we have φ(xn+1, x0) ≤ φ(x, x0). Now fromweakly lower semicontinuity of the norm,
we derive for each x̂ ∈ ωw({xn})

φ(x̂, x0) = ‖x̂‖2 − 2〈x̂, x0〉 + ‖x0‖2

≤ lim inf
k→∞

(
‖xnk‖2 − 2〈xnk , x0〉 + ‖x0‖2

)

= lim inf
k→∞

φ(xnk , x0)

≤ lim sup
k→∞

φ(xnk , x0)

≤ φ(x, x0).

(3.46)

It follows from the definition of ΠEP∩F(S)∩ T−10x0 that x̂ = x and hence

lim
k→∞

φ(xnk , x0) = φ(x, x0). (3.47)

So we have limk→∞‖xnk‖ = ‖x‖. Utilizing the Kadec-Klee property of E, we conclude that
{xnk} converges strongly to ΠEP∩F(S)∩ T−10x0. Since {xnk} is an arbitrary weakly convergent
subsequence of {xn}, we know that {xn} converges strongly to ΠEP∩F(S)∩ T−10x0. This
completes the proof.

Theorem 3.5 covers [25, Theorem 3.1] by taking C = E, f ≡ 0 and A ≡ 0. Also
Theorem 3.5 covers [24, Theorem 2.1] by taking f ≡ 0, A ≡ 0 and T ≡ 0.

Theorem 3.6. LetC be a nonempty closed convex subset of a uniformly smooth and uniformly convex
Banach space E. Let T : E → 2E

∗
be a maximal monotone operator with domain D(T) = C, S : C →

C be a relatively nonexpansive mapping, A : C → E∗ be an α-inverse-strongly monotone mapping
and f : C×C → R be a bifunction satisfying (A1)–(A4). Assume that {rn}∞n=0 is a sequence in (0,∞)
satisfying lim infn→∞rn > 0 and that {αn}∞n=0 is a sequences in (0, 1) satisfying limn→∞αn = 0.

Define a sequence {xn} by the following algorithm.
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Algorithm 3.7.

x0 ∈ C arbitrarily chosen,

0 = vn +
1
rn
(Jx̃n − Jxn), vn ∈ Tx̃n,

yn = J−1(αnJx0 + (1 − αn)JSx̃n),

un ∈ C such that

f
(
un, y

)
+
〈
Aun, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Hn =
{
v ∈ C : φ(v, un) ≤ αnφ(v, x0) + (1 − αn)φ(v, x̃n), 〈v − x̃n, vn〉 ≤ 0

}
,

Wn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, . . . ,

(3.48)

where J is the single valued duality mapping on E. Let EP∩ F(S)∩ T−10/= ∅. If S is uniformly
continuous, then {xn} converges strongly to ΠEP∩F(S)∩ T−10x0.

Proof. For each n ≥ 0, define two sets Cn and Dn as follows:

Cn =
{
v ∈ C : φ(v, un) ≤ αnφ(v, x0) + (1 − αn)φ(v, x̃n)

}
,

Dn = {v ∈ C : 〈v − x̃n, vn〉 ≤ 0}.
(3.49)

It is obvious that Cn is closed and Dn,Wn are closed convex sets for each n ≥ 0. Let us
show that Cn is convex and so Hn = Cn ∩ Dn is closed and convex. Similarly to the proof
of Lemma 3.3, since

φ(v, un) ≤ αnφ(v, x0) + (1 − αn)φ(v, x̃n) (3.50)

is equivalent to

2αn〈v, Jx0〉 + 2(1 − αn)〈v, Jx̃n〉 − 2〈v, Jun〉 ≤ αn‖x0‖2 + (1 − αn)‖x̃n‖2 − ‖un‖2, (3.51)



18 Fixed Point Theory and Applications

we know that Cn is convex and so isHn = Cn ∩ Dn. Next, let us show that EP∩ F(S)∩ T−10 ⊂
Cn for each n ≥ 0. Indeed, utilizing Proposition 2.8, we have, for each w ∈ EP ∩ F(S) ∩ T−10,

φ(w,un) = φ
(
w,Krnyn

) ≤ φ
(
w,yn

)

= φ
(
w, J−1(αnJx0 + (1 − αn)JSx̃n)

)

= ‖w‖2 − 2〈w,αnJx0 + (1 − αn)JSx̃n〉 + ‖αnJx0 + (1 − αn)JSx̃n‖2

≤ ‖w‖2 − 2αn〈w, Jx0〉 − 2(1 − αn)〈w, JSx̃n〉 + αn‖x0‖2 + (1 − αn)‖Sx̃n‖2

= αnφ(w,x0) + (1 − αn)φ(w,Sx̃n)

≤ αnφ(w,x0) + (1 − αn)φ(w, x̃n).

(3.52)

So w ∈ Cn for all n ≥ 0 and EP ∩ F(S) ∩ T−10 ⊂ Cn. As in the proof of Lemma 3.3, we can
obtain w ∈ Dn and hence w ∈ Hn. It follows from Lemma 2.4 that

〈w − xn, Jx0 − Jxn〉 = 〈w −ΠHn−1∩Wn−1x0, Jx0 − JΠHn−1∩Wn−1x0〉 ≤ 0, (3.53)

which implies thatw ∈ Wn. Consequently,w ∈ Hn ∩ Wn and so EP∩ F(S)∩ T−10 ⊂ Hn ∩ Wn

for all n ≥ 0. Therefore, the sequence {xn} generated by Algorithm 3.7 is well defined. As in
the proof of Theorem 3.5, we can obtain φ(xn+1, xn) → 0. Since xn+1 = ΠHn∩Wnx0 ∈ Hn, from
the definition of Hn we also have

φ(xn+1, un) ≤ αnφ(xn+1, x0) + (1 − αn)φ(xn+1, x̃n), 〈xn+1 − x̃n, vn〉 ≤ 0. (3.54)

As in the proof of Theorem 3.5, we can deduce not only from φ(xn+1, xn) → 0 that
φ(x̃n, xn) → 0 but also from φ(x̃n, xn) → 0, xn − x̃n → 0 and xn+1 − xn → 0 that

lim
n→∞

φ(xn+1, x̃n) = 0. (3.55)

Since xn+1 = ΠHn∩Wnx0 ∈ Hn, from the definition of Hn, we also have

φ(xn+1, un) ≤ αnφ(xn+1, x0) + (1 − αn)φ(xn+1, x̃n). (3.56)

It follows from (3.55) and αn → 0 that

lim
n→∞

φ(xn+1, un) = 0. (3.57)

Utilizing Lemma 2.1 we have

lim
n→∞

‖xn+1 − un‖ = lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+1 − x̃n‖ = 0. (3.58)
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Furthermore, for u ∈ EP ∩ F(S) ∩ T−10 arbitrarily fixed, it follows from Proposition 2.8 that

φ
(
un, yn

)
= φ

(
Krnyn, yn

) ≤ φ
(
u, yn

) − φ
(
u,Krnyn

)

= φ
(
u, J−1(αnJx0 + (1 − αn)JSx̃n)

)
− φ(u, un)

= ‖u‖2 − 2〈u, αnJx0 + (1 − αn)JSx̃n〉 + ‖αnJx0 + (1 − αn)JSx̃n‖2 − φ(u, un)

≤ ‖u‖2 − 2αn〈u, Jx0〉 − 2(1 − αn)〈u, JSx̃n〉 + αn‖x0‖2 + (1 − αn)‖Sx̃n‖2 − φ(u, un)

= αnφ(u, x0) + (1 − αn)φ(u, Sx̃n) − φ(u, un)

≤ αnφ(u, x0) + φ(u, x̃n) − φ(u, un)

= αnφ(u, x0) + φ(u, x̃n) − φ(u, xn+1) + φ(u, xn+1) − φ(u, un)

= αnφ(u, x0) + ‖x̃n‖2 − ‖xn+1‖2 + 2〈u, Jxn+1 − Jx̃n〉 + ‖xn+1‖2

− ‖un‖2 + 2〈u, Jun − Jxn+1〉
≤ αnφ(u, x0) + ‖x̃n − xn+1‖(‖x̃n‖ + ‖xn+1‖) + 2‖u‖‖Jxn+1 − Jx̃n‖
+ ‖xn+1 − un‖(‖xn+1‖ + ‖un‖) + 2‖u‖‖Jun − Jxn+1‖.

(3.59)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, it follows
from (3.58) that ‖Jxn+1 − Jx̃n‖ → 0 and ‖Jun − Jxn+1‖ → 0, which together with αn → 0,
yield φ(un, yn) → 0. Utilizing Lemma 2.1, we get ‖un − yn‖ → 0. Observe that

∥∥xn+1 − yn

∥∥ ≤ ‖xn+1 − un‖ +
∥∥un − yn

∥∥ −→ 0, (3.60)

due to (3.58). Since J is uniformly norm-to-norm continuous on bounded subsets of E, we
have

lim
n→∞

∥∥Jxn+1 − Jyn

∥∥ = lim
n→∞

‖Jxn+1 − Jxn‖ = lim
n→∞

‖Jxn+1 − Jx̃n‖ = 0. (3.61)

Note that

∥∥JSx̃n − Jyn

∥∥ = ‖JSx̃n − (αnJx0 + (1 − αn)JSx̃n)‖ = αn‖Jx0 − JSx̃n‖. (3.62)

Therefore, from αn → 0 we get

lim
n→∞

∥∥JSx̃n − Jyn

∥∥ = 0. (3.63)

Since J−1 is also uniformly norm-to-norm continuous on bounded subsets of E∗, we obtain

lim
n→∞

∥∥Sx̃n − yn

∥∥ = 0. (3.64)
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It follows that

‖xn − Sxn‖ ≤ ‖xn − xn+1‖ +
∥∥xn+1 − yn

∥∥ +
∥∥yn − Sx̃n

∥∥ + ‖Sx̃n − Sxn‖. (3.65)

Since S is uniformly continuous, it follows from (3.58) and (3.64) that xn − Sxn → 0.
Finally, we prove that xn → ΠEP∩F(S)∩ T−10x0. Indeed, for x̂ ∈ EP ∩ F(S) ∩ T−10

arbitrarily fixed, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x̂ ∈ C, then
x̂ ∈ F(S). Now let us show that x̂ ∈ T−10. Since xn − x̃n → 0, we have that x̃nk ⇀ x̂.
Moreover, since J is uniformly norm-to-norm continuous on bounded subsets of E, and
lim infn→∞rn > 0, we obtain that vn = (1/rn)(Jxn − Jx̃n) → 0. It follows from vn ∈ Tx̃n

and the monotonicity of T that 〈z − x̃n, z
′ − vn〉 ≥ 0 for all z ∈ D(T) and z′ ∈ Tz. This implies

that 〈z − x̂, z′〉 ≥ 0 for all z ∈ D(T) and z′ ∈ Tz. Thus from the maximality of T , we infer that
x̂ ∈ T−10. Further, let us show that x̂ ∈ EP. Since un − yn → 0 and xn − un → 0, from xnk ⇀ x̂
we obtain that ynk ⇀ x̂ and unk ⇀ x̂.

Since J is uniformly norm-to-norm continuous on bounded subsets of E, from un −
yn → 0 we derive limn→∞‖Jun − Jyn‖ = 0. From lim infn→∞rn > 0 it follows that

lim
n→∞

∥∥Jun − Jyn

∥∥
rn

= 0. (3.66)

By the definition of un := Krnyn, we have

F
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C, (3.67)

where F(un, y) = f(un, y) + 〈Aun, y − un〉. Replacing n by nk, we have from (A2) that

1
rnk

〈
y − unk , Junk − Jynk

〉 ≥ −F(unk , y
) ≥ F

(
y, unk

)
, ∀y ∈ C. (3.68)

Since y �→ f(x, y) + 〈Ax, y − x〉 is convex and lower semicontinuous, it is also weakly
lower semicontinuous. Letting nk → ∞ in the last inequality, from (3.66) and (A4) we have
F(y, x̂) ≤ 0, for all y ∈ C. For t, with 0 < t ≤ 1, and y ∈ C, let yt = ty + (1 − t)x̂. Since y ∈ C
and x̂ ∈ C, then yt ∈ C and hence F(yt, x̂) ≤ 0. So, from (A1) we have

0 = F
(
yt, yt

) ≤ tF
(
yt, y

)
+ (1 − t)F

(
yt, x̂

) ≤ tF
(
yt, y

)
. (3.69)

Dividing by t, we have F(yt, y) ≥ 0, for all y ∈ C. Letting t ↓ 0, from (A3) it follows that
F(x̂, y) ≥ 0, for all y ∈ C. So, x̂ ∈ EP. Therefore, we obtain that ωw({xn}) ⊂ EP ∩ F(S) ∩ T−10
by the arbitrariness of x̂.

Next, let us show that ωw({xn}) = {ΠEP∩F(S)∩ T−10x0} and xn → ΠEP∩F(S)∩ T−10x0.
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Indeed, put x = ΠEP∩F(S)∩ T−10x0. From xn+1 = ΠHn∩Wnx0 and x ∈ EP ∩ F(S) ∩ T−10 ⊂
Hn∩Wn, we have φ(xn+1, x0) ≤ φ(x, x0). Now fromweakly lower semicontinuity of the norm,
we derive for each x̂ ∈ ωw({xn})

φ(x̂, x0) = ‖x̂‖2 − 2〈x̂, x0〉 + ‖x0‖2

≤ lim inf
k→∞

(
‖xnk‖2 − 2〈xnk , x0〉 + ‖x0‖2

)

= lim inf
k→∞

φ(xnk , x0)

≤ lim sup
k→∞

φ(xnk , x0)

≤ φ(x, x0).

(3.70)

It follows from the definition of ΠEP∩F(S)∩ T−10x0 that x̂ = x and hence limk→∞φ(xnk , x0) =
φ(x, x0). So we have limk→∞‖xnk‖ = ‖x‖. Utilizing the Kadec-Klee property of E, we know
that xnk → ΠEP∩F(S)∩ T−10x0. Since {xnk} is an arbitrary weakly convergent subsequence of
{xn}, we know that xn → ΠEP∩F(S)∩ T−10x0. This completes the proof.

Theorem 3.6 covers [25, Theorem 3.2] by taking C = E, f ≡ 0 and A ≡ 0. Also
Theorem 3.6 covers [24, Theorem 2.2] by taking f ≡ 0, A ≡ 0 and T ≡ 0.
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