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We define the concept of the generalized u0-concave operators, which generalize the definition
of the u0-concave operators. By using the iterative method and the partial ordering method, we
prove the existence and uniqueness of fixed points of this class of the operators. As an example of
the application of our results, we show the existence and uniqueness of solutions to a class of the
Hammerstein integral equations.

1. Introduction and Preliminary

In [1, 2], Collatz divided the typical problems in computation mathematics into five classes,
and the first class is how to solve the operator equation

Ax = x (1.1)

by the iterative method, that is, construct successively the sequence

xn+1 = Axn (1.2)

for some initial x0 to solve (1.1).
Let P be a cone in real Banach space E and the partial ordering ≤ defined by P , that

is, x ≤ y if and only if y − x ∈ P . The concept and properties of the cone can be found in [3–
5]. People studied how to solve (1.1) by using the iterative method and the partial ordering
method (see [1–11]).



2 Fixed Point Theory and Applications

In [7], Krasnosel’skiı̆ gave the concept of u0-concave operators and studied the
existence and uniqueness of the fixed point for the operator by the iterative method. The
concept of u0-concave operators was defined by Krasnosel’skiı̆ as follows.

Let operator A : P �→ P and u0 > θ. Suppose that

(i) for any x > θ, there exist α = α(x) > 0 and β = β(x) > 0, such that

αu0 ≤ Ax ≤ βu0; (1.3)

(ii) for any x ∈ P satisfying α1u0 ≤ x ≤ β1u0 (α1 = α1(x) > 0, β1 = β1(x) > 0) and any
0 < t < 1, there exists η = η(x, t) > 0, such that

A(tx) ≥ (
1 + η

)
tAx. (1.4)

Then A is called an u0-concave operator.
In many papers, the authors studied u0-concave operators and obtained some results

(see [3–5, 8–15]). In this paper, we generalize the concept of u0-concave operators, give a
concept of the generalized u0-concave operators, and study the existence and uniqueness of
fixed points for this class of operators by the iterative method. Our results generalize the
results in [3, 4, 7, 15].

2. Main Result

In this paper, we always let P be a cone in real Banach space E and the partial ordering ≤
defined by P . Given w0 ∈ E, let P(w0) = {x ∈ E | x ≥ w0}.

Definition 2.1. Let operator A : P(w0) �→ P(w0) and u0 > θ. Suppose that

(i) for any x > w0, there exist α = α(x) > 0 and β = β(x) > 0, such that

αu0 +w0 ≤ Ax ≤ βu0 +w0; (2.1)

(ii) for any x ∈ P(w0) satisfying α1u0 +w0 ≤ x ≤ β1u0 +w0 (α1 = α1(x) > 0, β1 = β1(x) >
0) and any 0 < t < 1, there exists η = η(x, t) > 0, such that

A[tx + (1 − t)w0] ≥
(
1 + η

)
tAx +

[
1 − (

1 + η
)
t
]
w0. (2.2)

Then A is called a generalized u0-concave operator.

Remark 2.2. In Definition 2.1, let w0 = θ, we get the definition of the u0-concave operator.

Theorem 2.3. Let operator A : P(w0) �→ P(w0) be generalized u0-concave and increasing (i.e.,
x ≤ y ⇒ Ax ≤ Ay), then A has at most one fixed point in P(w0) \ {w0}.
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Proof. Let x(1) > w0,x(2) > w0 be two different fixed points of A, that is, Ax(1) = x(1), Ax(2) =
x(2), and x(1) /=x(2). By Definition 2.1, there exist real numbers α1 = α1(x(1)) > 0, β1 = β1(x(1)) >
0, α2 = α2(x(2)) > 0, β2 = β2(x(2)) > 0, such that

α1u0 +w0 ≤ x(1) ≤ β1u0 +w0, α2u0 +w0 ≤ x(2) ≤ β2u0 +w0. (2.3)

Hence α1/β2(x(2) −w0) +w0 ≤ α1u0 +w0 ≤ x(1) ≤ β1u0 +w0 ≤ β1/α2(x(2) −w0) +w0.
Let α = α1/β2, β = β1/α2, we get that α(x(2) −w0) +w0 ≤ x(1) ≤ β(x(2) −w0) +w0, that

is, αx(2) + (1 − α)w0 ≤ x(1) ≤ βx(2) + (1 − β)w0. Let

t0 = sup
{
t > 0 | tx(2) + (1 − t)w0 ≤ x(1) ≤ t−1x(2) +

(
1 − t−1

)
w0

}
, (2.4)

hence 0 < t ≤ t−1, that is, 0 < t ≤ 1, then t0 ∈ (0, 1].
Next we will show that t0 = 1. Assume that t0 < 1; by (2.2) and (2.4), there exists

η1 = η1(x(2), t0) > 0, such that

x(1) = Ax(1) ≥ A
[
t0x

(2) + (1 − t0)w0

]

≥ (
1 + η1

)
t0Ax(2) +

[
1 − (

1 + η1
)
t0
]
w0

=
(
1 + η1

)
t0x

(2) +
[
1 − (

1 + η1
)
t0
]
w0.

(2.5)

By (2.2), there exists η2 = η2(x(2), t0) > 0, such that

x(2) = Ax(2) = A
{
t0
[
t−10 x(2) +

(
1 − t−10

)
w0

]
+ (1 − t0)w0

}

≥ (
1 + η2

)
t0A

[
t−10 x(2) +

(
1 − t−10

)
w0

]
+
[
1 − (

1 + η2
)
t0
]
w0,

(2.6)

hence,

A
[
t−10 x(2) +

(
1 − t−10

)
w0

]
≤ (

1 + η2
)−1

t−10 Ax(2) +
[
1 − (

1 + η2
)−1

t−10
]
w0. (2.7)

Therefore,

x(1) = Ax(1) ≤ A
[
t−10 x(2) +

(
1 − t−10

)
w0

]

≤ (
1 + η2

)−1
t−10 Ax(2) +

[
1 − (

1 + η2
)−1

t−10
]
w0

≤ (
1 + η2

)−1
t−10 x(2) +

[
1 − (

1 + η2
)−1

t−10
]
w0.

(2.8)

Obviously, by (2.5) and (2.8), we get

(
1 + η1

)
t0x

(2) +
[
1 − (

1 + η1
)
t0
]
w0 ≤ x(1) ≤ (

1 + η2
)−1

t−10 x(2) +
[
1 − (

1 + η2
)−1

t−10
]
w0. (2.9)
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Let η = min{η1, η2}, we have

(
1 + η

)
t0x

(2) +
[
1 − (

1 + η
)
t0
]
w0 ≤ x(1) ≤ (

1 + η
)−1

t−10 x(2) +
[
1 − (

1 + η
)−1

t−10
]
w0, (2.10)

in contradiction to the definition of t0. Therefore, t0 = 1.
By (2.4), x(1) = x(2). The proof is completed.

To prove the following Theorem 2.4, we will use the definition of the u0-norm as
follows.

Given u0 > θ, set

Eu0 = {x ∈ E | there exists a real number λ > 0, such that − λu0 ≤ x ≤ λu0},
‖x‖u0

= inf{λ > 0 | −λu0 ≤ x ≤ λu0}, ∀x ∈ Eu0 .
(2.11)

It is easy to see that Eu0 becomes a normed linear space under the norm ‖ · ‖u0 . ‖x‖u0 is called
the u0- norm of the element x ∈ Eu0 (see [3, 4]).

Theorem 2.4. Let operator A : P(w0) �→ P(w0) be increasing and generalized u0-concave. Suppose
that A has a fixed point x∗ in P(w0) \ {w0}, then, constructing successively the sequence xn+1 =
Axn (n = 0, 1, 2, . . .) for any initial x0 ∈ P(w0) \ {w0}, we have ‖xn − x∗‖u0 → 0 (n → ∞).

Proof. Suppose that {xn} is generated from xn+1 = Axn (n = 0, 1, 2, . . .). Take 0 < ε0 < 1, such
that ε0x∗+(1−ε0)w0 ≤ x1 ≤ ε−10 x∗+(1−ε−10 )w0. Let y0 = ε0x

∗+(1−ε0)w0, z0 = ε−10 x∗+(1−ε−10 )w0,
and constructing successively the sequences yn+1 = Ayn, zn+1 = Azn (n = 0, 1, 2, . . .). Since A
is a generalized u0-concave operator, we know that there exists η1 = η1(x∗, ε0) > 0, such that

x∗ = Ax∗ = A
{
ε0
[
ε−10 x∗ +

(
1 − ε−10

)
w0

]
+ (1 − ε0)w0

}

≥ (
1 + η1

)
ε0A

[
ε−10 x∗ +

(
1 − ε−10

)
w0

]
+
[
1 − (

1 + η1
)
ε0
]
w0,

(2.12)

hence, A[ε−10 x∗ + (1 − ε−10 )w0] ≤ (1 + η1)
−1ε−10 Ax∗ + [1 − (1 + η1)

−1ε−10 ]w0, then

z1 = A(z0) = A
[
ε−10 x∗ +

(
1 − ε−10

)
w0

]
≤ (

1 + η1
)−1

ε−10 Ax∗ +
[
1 − (

1 + η1
)−1

ε−10
]
w0

=
(
1 + η1

)−1
ε−10 (Ax∗ −w0) +w0 < ε−10 (Ax∗ −w0) +w0 = ε−10 Ax∗ +

(
1 − ε−10

)
w0

= ε−10 x∗ +
(
1 − ε−10

)
w0 = z0.

(2.13)

By (2.2), we can easily get y1 > y0. So it is easy to show that

y0 ≤ y1 ≤ · · · ≤ yn ≤ · · · ≤ x∗ ≤ · · · ≤ zn ≤ · · · ≤ z1 ≤ z0. (2.14)
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Let

tn = sup
{
t > 0 | tx∗ + (1 − t)w0 ≤ yn, zn ≤ t−1x∗ +

(
1 − t−1

)
w0

}
(n = 0, 1, 2, . . .), (2.15)

then,

0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ · · · ≤ 1, (2.16)

which implies that the limit of {tn} exists. Let limn→∞tn = t∗, then 0 < tn ≤ t∗ ≤ 1.
Next we will show that t∗ = 1. Suppose that 0 < t∗ < 1. Since A is a generalized

u0-concave operator, then there exists η2 = η2(x∗, t∗) > 0, such that

A[t∗x∗ + (1 − t∗)w0] ≥
(
1 + η2

)
t∗Ax∗ +

[
1 − (

1 + η2
)
t∗
]
w0 =

(
1 + η2

)
t∗x∗ +

[
1 − (

1 + η2
)
t∗
]
w0.

(2.17)

Moreover,

x∗ = Ax∗ = A
{
t∗
[
(t∗)−1x∗ +

(
1 − (t∗)−1

)
w0

]
+ (1 − t∗)w0

}

≥ (
1 + η2

)
t∗A

[
(t∗)−1x∗ +

(
1 − (t∗)−1

)
w0

]
+
[
1 − (

1 + η2
)
t∗
]
w0.

(2.18)

Therefore,

A
[
(t∗)−1x∗ +

(
1 − (t∗)−1

)
w0

]
≤ (

1 + η2
)−1(t∗)−1x∗ +

[
1 − (

1 + η2
)−1(t∗)−1

]
w0. (2.19)

By (2.17) and (2.19), for any 0 < t ≤ t∗, there exists η3 = η3(x∗, t) > 0, such that

A[tx∗ + (1 − t)w0] ≥
(
1 + η3

)
tx∗ +

[
1 − (

1 + η3
)
t
]
w0,

A
[
t−1x∗ +

(
1 − t−1

)
w0

]
≤ (

1 + η3
)−1

t−1x∗ +
[
1 − (

1 + η3
)−1

t−1
]
w0.

(2.20)

Particularly, for any 0 < tn ≤ t∗ (n = 0, 1, 2, . . .), we have

A[tnx∗ + (1 − tn)w0] ≥
(
1 + η

)
tnx

∗ +
[
1 − (

1 + η
)
tn
]
w0,

A
[
t−1n x∗ +

(
1 − t−1n

)
w0

]
≤ (

1 + η
)−1

t−1n x∗ +
[
1 − (

1 + η
)−1

t−1n
]
w0,

(2.21)

where η = η(tn, x∗) > 0.
Hence,

yn+1 = Ayn ≥ A[tnx∗ + (1 − tn)w0] ≥
(
1 + η

)
tnx

∗ +
[
1 − (

1 + η
)
tn
]
w0,

zn+1 = Azn ≤ A
[
t−1n x∗ +

(
1 − t−1n

)
w0

]
≤ (

1 + η
)−1

t−1n x∗ +
[
1 − (

1 + η
)−1

t−1n
]
w0.

(2.22)
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By (2.15), and (2.22), we get tn+1 ≥ (1 + η)tn (n = 0, 1, 2, . . .) therefore, tn+1 ≥ (1 + η)n+1t0 (n =
0, 1, 2, . . .), in contradiction to 0 < tn ≤ 1 (n = 1, 2, . . .). Hence,

t∗ = 1. (2.23)

Since A is a generalized u0-concave operator, thus there exist real numbers α = α(x∗) > 0,
β = β(x∗) > 0, such that αu0 + w0 ≤ x∗ ≤ βu0 + w0, and tnx

∗ + (1 − tn)w0 ≤ yn ≤ xn+1 ≤ zn ≤
t−1n x∗ + (1 − t−1n )w0 (n = 0, 1, 2, . . .), we have

(tn − 1)x∗ + (1 − tn)w0 ≤ xn+1 − x∗ ≤
(
t−1n − 1

)
x∗ +

(
1 − t−1n

)
w0. (2.24)

Moreover

(tn − 1)x∗ + (1 − tn)w0 ≥ (tn − 1)
(
βu0 +w0

)
+ (1 − tn)w0 = (tn − 1)βu0,

(
t−1n − 1

)
x∗ +

(
1 − t−1n

)
w0 ≤

(
t−1n − 1

)(
βu0 +w0

)
+
(
1 − t−1n

)
w0 =

(
t−1n − 1

)
βu0.

(2.25)

Hence,

(
1 − t−1n

)
βu0 ≤ (tn − 1)βu0 ≤ xn+1 − x∗ ≤

(
t−1n − 1

)
βu0 (n = 0, 1, 2, . . .). (2.26)

Consequently, by (2.23), we get ‖xn − x∗‖u0 → 0 (n → ∞).
To prove the following Theorem 2.5, we will use the definition of the normal cone as

follows.
Let P be a cone in E. Suppose that there exist constants N > 0, such that

θ ≤ x ≤ y ⇒ ‖x‖ ≤ N
∥∥y

∥∥, (2.27)

then P is said to be normal, and the smallest N is called the normal constant of P (see
[3–5]).

Theorem 2.5. v Let P be a normal cone of E. If operator A : P(w0) �−→ P(w0) is increasing and
generalized u0-concave, and η = η(t, x) is irrelevant to x in (2.2), then A has the only one fixed point
x∗ ∈ P(w0) \ {w0}. Moreover, constructing successively the sequence xn+1 = Axn (n = 0, 1, 2, . . .)
for any initial x0 > w0, we have ‖xn − x∗‖ → 0 (n → ∞).

Proof. Since A is a generalized u0-concave operator, hence there exist real numbers β > α > 0,
such that αu0 +w0 ≤ A(u0 +w0) ≤ βu0 +w0. Take t0 ∈ (0, 1) small enough, then t0u0 +w0 ≤
A(u0 +w0) ≤ (1/t0)u0 +w0.

Therefore, tn+1 ≥ tn, that is, {tn} is an increasing sequence and 0 < tn ≤ 1, hence, the
limit of {tn} exists. Set limn→∞tn = t∗, then 0 < t∗ ≤ 1.
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Let γ(t) = (1 + η(t))t, where η(t) which is irrelevant to x is η(t, x) in (2.2), and A is
increasing, so t < γ(t) ≤ 1, A(tx + (1 − t)w0) ≥ γ(t)Ax + (1 − γ(t))w0, for all t ∈ (0, 1). By
γ(t0)/t0 > 1, we can choose a natural number k > 0 big enough, such that

(
γ(t0)
t0

)k

>
1
t0
. (2.28)

Let

y0 = tk0u0 +w0, z0 =
1

tk0
u0 +w0; yn = Ayn−1, zn = Azn−1 (n = 1, 2, . . .). (2.29)

Obviously, y0, z0 ∈ P(w0), y0 < z0. Since A is increasing, we have

y1 = Ay0 = A
(
tk0u0 +w0

)
= A

[
t0
(
tk−10 u0 +w0

)
+ (1 − t0)w0

]

≥ γ(t0)A
(
tk−10 u0 +w0

)
+
(
1 − γ(t0)

)
w0

= γ(t0)A
[
t0
(
tk−20 u0 +w0

)
+ (1 − t0)w0

]
+
(
1 − γ(t0)

)
w0

≥ γ(t0)
[
γ(t0)A

(
tk−20 u0 +w0

)
+
(
1 − γ(t0)

)
w0

]
+
(
1 − γ(t0)

)
w0

= γ2(t0)A
(
tk−20 u0 +w0

)
+
(
1 − γ2(t0)

)
w0 ≥ · · · ≥ γk(t0)A(u0 +w0) +

(
1 − γk(t0)

)
w0

> tk−10 (t0u0 +w0) +
(
1 − tk−10

)
w0 = tk0u0 +w0 = y0.

(2.30)

Since Ax = A{t0[t−10 x + (1 − t−10 )w0] + (1 − t0)w0} ≥ γ(t0)A[t−10 x + (1 − t−10 )w0] + (1 − γ(t0))w0,
we get A[t−10 x + (1 − t−10 )w0] ≤ 1/γ(t0)Ax + (1 − 1/γ(t0))w0. Hence

z1 = A

(
1

tk0
u0 +w0

)

= A

[
1
t0

(
1

tk−10

u0 +w0

)

+
(
1 − 1

t0

)
w0

]

≤ 1
γ(t0)

A

(
1

tk−10

u0 +w0

)

+
(
1 − 1

γ(t0)

)
w0

≤ · · · ≤ 1
γk(t0)

A(u0 +w0) +

(

1 − 1
γk(t0)

)

w0 ≤ 1
t0γk(t0)

u0 +w0 <
1

tk0
u0 +w0 = z0,

(2.31)

then y0 ≤ y1 ≤ z1 ≤ z0. It is easy to see

y0 ≤ y1 ≤ · · · ≤ yn ≤ · · · ≤ zn ≤ · · · ≤ z1 ≤ z0. (2.32)
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Let

tn = sup
{
t > 0 | yn ≥ tzn + (1 − t)w0

}
. (2.33)

Obviously, yn ≥ tnzn + (1 − tn)w0. So yn+1 ≥ yn ≥ tnzn + (1 − tn)w0 ≥ tnzn+1 + (1 − tn)w0.
Therefore, tn+1 ≥ tn, that is, {tn} is an increasing sequence and 0 < tn ≤ 1, hence, the

limit of {tn} exists. Set limn→∞tn = t∗, then 0 < t∗ ≤ 1.
Next we will show that t∗ = 1. Suppose that 0 < t∗ < 1, we have the following.
(i) If for any natural number n, tn < t∗ < 1, then

yn+1 = Ayn ≥ A[tnzn + (1 − tn)w0] = A

{
tn
t∗
[t∗zn + (1 − t∗)w0] +

(
1 − tn

t∗

)
w0

}

≥ γ

(
tn
t∗

)
A[t∗zn + (1 − t∗)w0] +

(
1 − γ

(
tn
t∗

))
w0

≥ γ

(
tn
t∗

)
[
γ(t∗)Azn +

(
1 − γ(t∗)

)
w0

]
+
(
1 − γ

(
tn
t∗

))
w0

= γ

(
tn
t∗

)
γ(t∗)Azn +

(
1 − γ

(
tn
t∗

)
γ(t∗)

)
w0 = γ

(
tn
t∗

)
γ(t∗)zn+1 +

(
1 − γ

(
tn
t∗

)
γ(t∗)

)
w0,

(2.34)

hence,

tn+1 ≥ γ

(
tn
t∗

)
γ(t∗) =

(
1 + η

(
tn
t∗

))
tn
t∗
(
1 + η(t∗)

)
t∗ ≥ tn

(
1 + η(t∗)

)
. (2.35)

Taking limits, we have t∗ ≥ t∗(1 + η(t∗)) > t∗, a contradiction.
(ii) Suppose that there exists a natural number N > 0, such that tn = t∗(n > N).
When n > N, so we have

yn+1 = Ayn ≥ A[tnzn + (1 − tn)w0] = A[t∗zn + (1 − t∗)w0]

≥ γ(t∗)Azn +
(
1 − γ(t∗)

)
w0 = γ(t∗)zn+1 +

(
1 − γ(t∗)

)
w0,

(2.36)

then t∗ = tn+1 ≥ γ(t∗) = (1 + η(t∗))t∗ > t∗, a contradiction.
Therefore, t∗ = 1.
For any natural numbers n, p, we have

θ ≤ yn+p − yn ≤ zn+p − yn ≤ zn − yn ≤ zn − [tnzn + (1 − tn)w0] = (1 − tn)(zn −w0). (2.37)

Similarly, θ ≤ zn − zn+p ≤ zn − yn ≤ (1 − tn)(zn −w0). By the normality of P and limn→∞tn = 1,
we get

∥∥(yn+p −w0
) − (

yn −w0
)∥∥ =

∥∥yn+p − yn

∥∥ ≤ N(1 − tn)‖zn −w0‖ → 0 (n → ∞),
∥∥(zn+p −w0

) − (zn −w0)
∥∥ =

∥∥zn − zn+p
∥∥ ≤ N(1 − tn)‖zn −w0‖ → 0 (n → ∞),

(2.38)
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whereN is the normal constant of P . Hence the limits of {yn} and {zn} exist. Let limn→∞yn =
y∗, and let limn→∞zn = z∗, then yn ≤ y∗ ≤ z∗ ≤ zn (n = 0, 1, 2, . . .), hence,

θ ≤ z∗ − y∗ ≤ zn − yn ≤ (1 − tn)(zn −w0) → θ (n → ∞). (2.39)

That is, y∗ = z∗. Let x∗ = y∗ = z∗, then yn+1 = Ayn ≤ Ax∗ ≤ Azn = zn+1.
Taking limits, we get x∗ ≤ Ax∗ ≤ x∗. HenceAx∗ = x∗, that is, x∗ ∈ P(w0)\{w0} is a fixed

point ofA. By Theorem 2.4, the conclusions of Theorem 2.5 hold. The proof is completed.

3. Examples

Example 3.1. Let I = [0, 1], let C(I) = {x(t) : I �→ R | x(t) is continuous}, let‖x‖ =
sup{|x(t)||t ∈ I}, let P = {x ∈ C(I) | x(t) ≥ 0, ∀t ∈ I}, then C(I) is a real Banach space
and P is a normal and solid cone in C(I) (P is called solid if it contains interior points,

i.e.,
◦
P /= ∅). Take a < 0, let w0 = w0(t) ≡ a, P(w0) = {x ∈ C(I) | x(t) ≥ w0, ∀t ∈ I}, and

◦
P(w0) = {x +w0 ∈ P(w0) | x ∈

◦
P}.

Considering the Hammerstein integral equation

x(t) =
∫1

0
k(t, s)f(s, x(s))ds, t ∈ [0, 1], (3.1)

where k(t, s) : I × I �→ [0,+∞) is continuous, f(s, u) : I × [a,+∞) �→ R is increasing for u.
Suppose that

(1) there exist real numbers 0 ≤ m ≤ M ≤ 1, such that m ≤ k(t, s) ≤ M, for all (t, s) ∈
I × I, and f(s, u) ≥ a/M, for all(s, u) ∈ I × [a,+∞),

(2) for any λ ∈ (0, 1) and u ∈ (a,+∞), there exists η = η(λ) > 0, such that

mf[s, λu + (1 − λ)a] ≥ (
1 + η

)
λmf(s, u) +

[
1 − (

1 + η
)
λ
]
a. (3.2)

Then (3.1) has the only one solution x∗ ∈ P(w0) \ {w0}. Moreover, constructing successively
the sequence:

xn(t) =
∫1

0
k(t, s)f(s, xn−1(s))ds, ∀t ∈ I, n = 1, 2, . . . (3.3)

for any initial x0 ∈ P(w0) \ {w0}, we have ‖xn − x∗‖ → 0 (n → ∞).

Proof. Considering the operator

Ax(t) =
∫1

0
k(t, s)f(s, x(s))ds, t ∈ I. (3.4)
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Obviously,A : P(w0)\{w0} �→
◦
P(w0) is increasing. Therefore, (i) of Definition 2.1 is satisfied.

For any x ∈
◦
P(w0), by (3.2), we have

A[λx(t) + (1 − λ)w0] =
∫1

0
k(t, s)f(s, λx(s) + (1 − λ)w0)ds

=
∫1

0

1
m
k(t, s)mf(s, λx(s) + (1 − λ)w0)ds

≥ (
1 + η

)
λ

∫1

0

1
m
k(t, s)mf(s, x(s))ds +

[
1 − (

1 + η
)
λ
]
w0

∫1

0

1
m
k(t, s)ds

≥ (
1 + η

)
λAx(t) +

[
1 − (

1 + η
)
λ
]
w0.

(3.5)

Therefore, (ii) of Definition 2.1 is satisfied. Hence the operator A : P(w0) �→ P(w0) is
generalized u0-concave. Consequently, operatorA satisfies all conditions of Theorem 2.5, thus
the conclusion of Example 3.1 holds.

Example 3.2. Let R be a real numbers set, and let P = {x | x ≥ 0, x ∈ R}, then R is a real Banach
space and P is a normal and solid cone in R. LetAx = (x+2)1/2−2. Considering the equation:
x = Ax. Obviously, A is a generalized u0-concave operator and satisfies all the conditions of
Theorem 2.5. Hence A has the only one fixed point x∗ ∈ P(−2) \ {−2} = (−2,+∞). Moreover,
we know x∗ = −1 by computing.

In Example 3.2, we know that operator A : [−2,+∞) �→ [−2,+∞) doesn’t satisfy the
definition of u0-concave operators. Therefore, we can’t obtain the fixed point of A by the
fixed point theorem of u0-concave operators. The u0-concave operators’ fixed points are all
positive, but here A’s fixed point is negative.
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