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All extremal ternary self-dual codes of length 48 that have some automorphism of prime order
p ≥ 5 are equivalent to one of the two known codes, the Pless code or the extended quadratic
residue code.

1. Introduction.

The notion of an extremal self-dual code has been introduced in [1]. As Gleason [2] remarks
onemay use invariance properties of the weight enumerator of a self-dual code to deduce up-
per bounds on the minimum distance. Extremal codes are self-dual codes that achieve these
bounds. The most wanted extremal code is a binary self-dual doubly even code of length 72
and minimum distance 16. One frequently used strategy is to classify extremal codes with a
given automorphism, see [3, 4] for the first papers on this subject.

Ternary codes with a given automorphism have been studied in [5]. Theminimumdis-
tance d(C) := min{wt(c) | 0/= c ∈ C} of a self-dual ternary code C = C⊥ ≤ F

n
3 of length n is

bounded by

d(C) ≤ 3
⌊ n
12

⌋
+ 3. (1.1)

Codes achieving equality are called extremal. Of particular interest are extremal ternary codes
of length a multiple of 12. There exists a unique extremal code of length 12 (the extended
ternary Golay code), two extremal codes of length 24 (the extended quadratic residue code
Q24 := Q̃R(23, 3) and the Pless code P24). For length 36, the Pless code yields one example
of an extremal code. Reference [5] shows that this is the only code with an automorphism of
prime order p ≥ 5; a complete classification is yet unknown. The present paper investigates
the extremal codes of length 48. There are two such codes known, the extended quadratic



2 International Journal of Combinatorics

residue code Q48 and the Pless code P48. The computer calculations described in this paper
show that these two codes are the only extremal ternary codes C of length 48 for which the
order of the automorphism group is divisible by some prime p ≥ 5. Theoretical arguments ex-
clude all types of automorphisms that do not occur for the two known examples.

Any extremal ternary self-dual code of length 48 defines an extremal even unimodular
lattice of dimension 48 ([6]). A long-term project to find or even classify such lattices was my
main motivation for this paper.

2. Automorphisms of Codes

Let F be some finite field, F
∗ its multiplicative group. For any monomial transformation σ ∈

Monn(F) := F
∗ � Sn, the image π(σ) ∈ Sn is called the permutational part of σ. Then σ has a

unique expression as

σ = diag(α1, . . . , αn)π(σ) = m(σ)π(σ), (2.1)

and m(σ) is called the monomial part of σ. For a code C ≤ F
n we let

Mon(C) := {σ ∈ Monn(F) | σ(C) = C} (2.2)

be the full monomial automorphism group of C.
We call a code C ≤ F

n an orthogonal direct sum, if there are codes Ci ≤ F
ni

(1 ≤ i ≤ s > 1) of length ni such that

C ∼
s

©⊥
i=1

Ci =
{(

c
(1)
1 , . . . , c

(1)
n1 , . . . , c

(s)
1 , . . . , c

(s)
ns

)
| c(i) ∈ Ci(1 ≤ i ≤ s)

}
. (2.3)

Lemma 2.1. Let C ≤ F
n not be an orthogonal direct sum. Then the kernel of the restriction of π to

Mon(C) is isomorphic to F
∗.

Proof. Clearly F
∗C = C since C is an F-subspace. Assume that σ := diag(α1, . . . , αn) ∈ Mon(C)

with αi ∈ F
∗, not all equal. Let {α1, . . . , αn} = {β1, . . . , βs}with pairwise distinct βi. Then

C =
s

©⊥
i=1

ker
(
σ − βiid

)
(2.4)

is the direct sum of eigenspaces of σ. Moreover the standard basis is a basis of eigenvectors
of σ so this is an orthogonal direct sum.

In the investigation of possible automorphisms of codes, the following strategy has
proved to be very fruitful ([4, 7]).

Definition 2.2. Let σ ∈ Mon(C) be an automorphism of C. Then π(σ) ∈ Sn is a direct product
of disjoint cycles of lengths dividing the order of σ. In particular if the order of σ is some
prime p, then we say that σ has cycle type (t, f), if π(σ) has t cycles of length p and f fixed
points (so pt + f = n).
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Lemma 2.3. Let σ ∈ Mon(C) have prime order p.

(a) If p does not divide |F∗| then there is some element τ ∈ Monn(F) such thatm(τστ−1) = id.
Replacing C by τ(C) one hence may assume that m(σ) = 1.

(b) Assume that p does not divide char(F), m(σ) = 1, and π(σ) = (1, . . . , p) · · · ((t − 1)p +
1, . . . , tp)(tp + 1) · · · (n). Then C = C(σ) ⊕ E, where

C(σ) =
{
c ∈ C | c1 = · · · = cp, cp+1 = · · · = c2p, . . . , c(t−1)p+1 = · · · = ctp

}
(2.5)

is the fixed code of σ and

E =

⎧
⎨
⎩c ∈ C |

p∑
i=1

ci =
2p∑

i=p+1

ci = · · · =
tp∑

i=(t−1)p+1
ci = ctp+1 = · · · = cn = 0

⎫
⎬
⎭ (2.6)

is the unique σ-invariant complement of C(σ) in C.

(c) Define two projections

πt : C(σ) −→ F
t, πt(c) :=

(
cp, c2p, . . . , ctp

)
,

πf : C(σ) −→ F
f , πf(c) :=

(
ctp+1, ctp+2, . . . , ctp+f

)
.

(2.7)

SoC(σ) ∼= (πt(C(σ)), πf(C(σ))) =: C(σ)
∗. IfC = C⊥ is self-dual with respect to (x, y) :=∑n

i=1 xiyi, then C(σ)∗ ≤ F
t+f is a self-dual code with respect to the inner product (x, y) :=∑t

i=1 pxiyi +
∑t+f

j=t+1 xjyj .

(d) In particular dim(C(σ)) = (t + f)/2 and dim(E) = t(p − 1)/2.

Proof. (a) follows from the Schur-Zassenhaus theorem in finite group theory. For the ternary
case, see [5, Lemma 1].

(b) and (c) are similar to [4, Lemma 2].

In the following we will keep the notation of the previous lemma and regard the fixed
code C(σ).

Remark 2.4. If f ≤ d(C) then t ≥ f .

Proof. Otherwise the kernel K := ker(πt) = {(0, . . . , 0, c1, . . . , cf) ∈ C(σ)} is a nontrivial
subcode of minimum distance ≤ f < d(C).

The way to analyse the code E from Lemma 2.3 is based on the following remark.

Remark 2.5. Let p /= char(F) be some prime and σ ∈ Monn(F) an element of order p. Let

Xp − 1 = (X − 1)g1 · · · gm ∈ F[X] (2.8)
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be the factorization of Xp − 1 into irreducible polynomials. Then all factors gi have the same
degree d = |〈|F| + pZ〉|, the order of |F| mod p. There are polynomials ai ∈ F[X] (0 ≤ i ≤ m)
such that

1 = a0g1 · · · gm + (X − 1)
m∑
i=1

ai

∏
j /= i

gj . (2.9)

Then the primitive idempotents in F[X]/(Xp − 1) are given by the classes of

ẽ0 = a0g1 · · · gm, ẽi = ai

∏
j /= i

gj(X − 1), 1 ≤ i ≤ m. (2.10)

Let L be the extension field of F with [L : F] = d. Then the group ring

F[X]
(Xp − 1)

= F〈σ〉 ∼= F ⊕ L ⊕ · · · ⊕ L︸ ︷︷ ︸
m

(2.11)

is a commutative semisimple F-algebra. Any codeC ≤ F
n with an automorphism σ ∈ Mon(C)

is a module for this algebra. Put ei := ẽi(σ) ∈ F[σ]. Then C = Ce0 ⊕ Ce1 ⊕ · · · ⊕ Cem with
Ce0 = C(σ), E = Ce1 ⊕ · · · ⊕ Cem. Omitting the coordinates of E that correspond to the fixed
points of σ, the codes Cei are L-linear codes of length t. Clearly dimF(E) = d

∑m
i=1 dimL(Cei).

If C is self-dual then dim(E) = t(p − 1)/2.

3. Extremal Ternary Codes of Length 48

Let C = C⊥ ≤ F
48
3 be an extremal self-dual ternary code of length 48, so d(C) = 15.

3.1. Large Primes

In this section we prove the main result of this paper.

Theorem 3.1. Let C = C⊥ ≤ F
48
3 be an extremal self-dual code with an automorphism of prime order

p ≥ 5. Then C is one of the two known codes. So either C = Q48 is the extended quadratic residue code
of length 48 with automorphism group

Mon(Q48) = C2 × PSL2(47) of order 25 · 3 · 23 · 47 (3.1)

or C = P48 is the Pless code with automorphism group

Mon(P48) = C2 × SL2(23) · 2 of order 26 · 3 · 11 · 23. (3.2)

Lemma 3.2. Let σ ∈ Mon(C) be an automorphism of prime order p ≥ 5. Then either p = 47 and
(t, f) = (1, 1) or p = 23 and (t, f) = (2, 2) or p = 11 and (t, f) = (4, 4).
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Proof. For the proof we use the notation of Lemma 2.3. In particular we let K := ker(πt) =
{(0, . . . , 0, c1, . . . , cf) ∈ C(σ)} and put K∗ := {(c1, . . . , cf) | (0, . . . , 0, c1, . . . , cf) ∈ C(σ)}. Then

K∗ ≤ F
f

3 , d(K∗) ≥ 15, dim(K∗) ≥ f − t

2
. (3.3)

Moreover tp + f = 48.
(1) If t = 1, then p = 47. If p = 47, then t = f = 1. So assume that p < 47 and t = 1.

Then the code E has length p and dimension (p− 1)/2, therefore p ≥ d(C) = 15. So p ≥ 17 and
f ≤ 48 − 17 = 31.

Then K∗ ≤ F
f

3 has dimension (f − 1)/2 and minimum distance d(K∗) ≥ 15. From the
bounds given in [8] there is no such possibility for f ≤ 31.

(2) If t = 2, then p = 23. Assume that t = 2. Since 2 · p ≤ 48 we get p ≤ 23, and if p = 23,
then (t, f) = (2, 2).

So assume that p < 23. The code E is a nonzero code of length 2p and minimum
distance ≥ 15, so 2p ≥ 15 and p is one of 11, 13, 17, 19, and f = 26, 22, 14, 10. The codeK∗ ≤ F

f

3
has dimension ≥ f/2 − 1 and minimum distance ≥ 15. Again by [8] there is no such code.

(3) p /= 13. For p = 13 one now only has the possibility t = 3 and f = 9. The same
argument as above constructs a code K∗ ≤ F

9
3 of dimension at least (f + t)/2 − t = 3 of

minimum distance ≥ 15 > f which is absurd.
(4) If p = 11, then t = f = 4. Otherwise t = 3 and f = 15 and the code K∗ as above has

length 15, dimension ≥ 6, and minimum distance ≥ 15 which is impossible.
(5) If p = 7, then t = f = 6. Otherwise t = 3, 4, 5 and f = 27, 20, 13 and the code K∗ as

above has dimension ≥ (f + t)/2− t = 12, 8, 4, length f , and minimum distance ≥ 15 which is
impossible by [8].

(6) p /= 7. Assume that p = 7, then t = f = 6 and the kernel K of the projection of C(σ)
onto the first 42 components is trivial. So the image of the projection is F

6
3 ⊗〈(1, 1, 1, 1, 1, 1, 1)〉;

in particular it contains the vector (17, 035) of weight 7. So C(σ) contains some word
(17, 035, a1, . . . , a6) of weight ≤ 13 which is a contradiction.

(7) If p = 5, then t = f = 8 or t = 9 and f = 3. Otherwise t = 3, 4, 5, 6, 7 and
f = 33, 28, 23, 18, 13 and the code K∗ ≤ F

f

3 has dimension ≥ (f + t)/2 − t = 15, 12, 9, 6, 3
and minimum distance ≥ 15 which is impossible by [8].

(8) p /= 5. Assume that p = 5. Then one possibility is that t = 8 and the projection of
C(σ) onto the first 8 · 5 coordinates is F

8
3 ⊗ 〈(1, 1, 1, 1, 1)〉 and contains a word of weight 5. But

then C(σ) has a word of weight w with 5 < w ≤ 5 + 8 = 13 a contradiction.
The other possibility is t = 9. Then the code E = E⊥ is a Hermitian self-dual code of

length 9 over the field with 34 = 81 elements, which is impossible, since the length of such a
code is 2 times the dimension and hence even.

Lemma 3.3. If p = 11, then C ∼= P48.

Proof. Let σ ∈ Mon(C) be of order 11. Since (x11 − 1) = (x − 1)gh ∈ F3[x] for irreducible
polynomials g, h of degree 5,

F3〈σ〉 ∼= F3 ⊕ F35 ⊕ F35 . (3.4)
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Let e1, e2, e3 ∈ F3〈σ〉 denote the primitive idempotents. Then C = Ce1 ⊕ Ce2 ⊕ Ce3 with
C(σ) = Ce1 = Ce⊥1 of dimension 4 and Ce2 = Ce⊥3 ≤ (F35 ⊕ F35)

4. Clearly the projection of C(σ)
onto the first 44 coordinates is injective. Since all weights of C are multiples of 3 and ≥ 15, this
leaves just one possibility for C(σ):

G0 = (L0 | R0) :=

⎛
⎜⎜⎝

111 011 011 011 1 1 1 1
011 111 011 011 1 1 −1 −1
011 011 111 011 1 −1 1 −1
011 011 011 111 1 −1 −1 1

⎞
⎟⎟⎠. (3.5)

The cyclic code Z of length 11 with generator polynomial (x−1)g (and similarly the one with
generator polynomial (x − 1)h) has weight enumerator

x11 + 132x5y6 + 110x2y9. (3.6)

In particular it contains more words of weight 6 than of weight 9. This shows that the
dimension of Cei over F35 is 2 for both i = 2, 3, since otherwise one of them has dimension ≥ 3
and therefore contains all words (0, 0, c, αc) for all c ∈ Z and some α ∈ F35 . Not all of them
can have weight ≥ 15. Similarly one sees that the codes Cei ≤ F

4
35 have minimum distance 3

for i = 2, 3. So we may choose generator matrices

G1 :=
(
1 0 a b
0 1 c d

)
, G2 :=

(
1 0 a′ b′

0 1 c′ d′

)
(3.7)

with
(
a b
c d

) ∈ GL2(F35) and
(
a′ b′
c′ d′
)

= −( a b
c d

)−tr . To obtain F3-generator matrices for the
corresponding codes Ce2 and Ce3 of length 48, we choose a generator matrix g1 ∈ F

5 × 11
3 of

the cyclic code Z of length 11 with generator polynomial (x−1)g and the corresponding dual
basis g2 ∈ F

5 × 11
3 of the cyclic code with generator polynomial (x−1)h. We compute the action

of σ (the multiplication with x) and represent this as left multiplication with z11 ∈ F
5 × 5
3 on

the basis g1. If a =
∑4

i=0 aiz
i
11 ∈ F35 with ai ∈ F3, then the entry a in G1 is replaced by∑4

i=0 aiz
i
11g1 ∈ F

5 × 11
3 and analogously for G2, where we use of course the matrix g2 instead of

g1. Replacing the code by an equivalent one we may choose a, b, c as orbit representatives of
the action of 〈−z11〉 on F

∗
35 .

A generator matrix of C is then given by

⎛
⎝

L0 R0
G1 0
G2 0

⎞
⎠. (3.8)

All codes obtained this way are equivalent to the Pless code P48.
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Lemma 3.4. If p = 23, then C ∼= P48 or C ∼= Q48.

Proof. Let σ ∈ Mon(C) be of order 23. Since (x23 − 1) = (x − 1)gh ∈ F3[x] for irreducible
polynomials g, h of degree 11,

F3〈σ〉 ∼= F3 ⊕ F311 ⊕ F311 . (3.9)

Let e1, e2, e3 ∈ F3〈σ〉 denote the primitive idempotents. Then C = Ce1 ⊕ Ce2 ⊕ Ce3 with
C(σ) = Ce1 = Ce⊥1 of dimension 2 and Ce2 = Ce⊥3 ≤ (F311 ⊕ F311)

2. Since all weights of C are
multiples of 3, this leaves just one possibility for C(σ) (up to equivalence):

C(σ) =
〈(

123, 023, 1, 0
)
,
(
023, 123, 0, 1

)〉
. (3.10)

The codes Ce2 and Ce3 are codes of length 2 over F311 such that dim(Ce2) + dim(Ce3) = 2.
Note that the alphabet F311 is identified with the cyclic code of length 23 with generator
polynomial (x − 1)g (resp., (x − 1)h). These codes have minimum distance 9 < 15, so
dim(Ce2) = dim(Ce3) = 1 and both codes have a generator matrix of the form (1, t) (resp.,
(1,−t−1)) for t ∈ F

∗
311 . Going through all possibilities for t (up to the action of the subgroup of

F
∗
311 of order 23) the only codes C for which C(σ) ⊕ Ce2 ⊕ Ce3 have minimum distance ≥ 15

are the two known extremal codes P48 and Q48.

Lemma 3.5. If p = 47, then C ∼= Q48.

Proof. The subcode C0 := {c ∈ F
47
3 |(c, 0) ∈ C} is a cyclic code of length 47, dimension 23, and

minimum distance ≥ 15. Since x47 − 1 = (x − 1)gh ∈ F3[x] for irreducible polynomials g, h of
degree 23, C0 is the cyclic code with generator polynomial (x − 1)g (or equivalently (x − 1)h)
and C = 〈(C0, 0), 1〉 ≤ F

48
3 is the extended quadratic residue code.

3.2. Automorphisms of Order 2

As above let C = C⊥ ≤ F
48
3 be an extremal self-dual ternary code. Assume that σ ∈ Mon(C)

such that the permutational part π(σ) has order 2. Then σ2 = ±1 because of Lemma 2.1. If
σ2 = −1, then σ is conjugate to a block diagonal matrix with all blocks

(
0 1
−1 0

)
=: J and C is a

Hermitian self-dual code of length 24 over F9. Such automorphisms σ with σ2 = −1 occur for
both known extremal codes.

If σ2 = 1, then σ is conjugate to a block diagonal matrix

σ ∼ diag

((
0 1
1 0

)t

, 1f , (−1)a
)

(3.11)

for t, a, f ∈ N0, 2t + a + f = 48.

Proposition 3.6. Assume that σ ∈ Mon(C), σ2 = 1 and π(σ)/= 1. Then either (t, a, f) = (24, 0, 0)
or (t, a, f) = (22, 2, 2). Automorphisms of both kinds are contained in Aut(P48).
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Proof. (1) Wlog f ≤ a: Replacing σ by −σ we may assume without loss of generality that
f ≤ a.

(2) f − t ∈ 4Z: By Lemma 2.3 the code C(σ)∗ ≤ F
t+f
3 is a self-dual code with respect to

the inner product (x, y) = −∑t
i=1 xiyi +

∑f

j=1 xjyj . This space only contains a self-dual code if
f − t is a multiple of 4.

(3) t + f ∈ {22, 24}: The code C(σ)∗ ≤ F
t+f
3 has dimension (t + f)/2 and minimum

distance ≥ 15/2 and hence minimum distance ≥ 8. By [8] this implies that t + f ≥ 22. Since
t + a ≥ t + f and (t + a) + (t + f) = 48 this only leaves these two possibilities.

(4) t+f /= 22: We first treat the case f ≤ 14. ThenK∗ ∼= ker(πt) is a code of length f ≤ 14
and minimum distance ≥ 15 and hence trivial. So πt is injective and

C(σ) ∼= D := πt(C(σ)) ≤ F
t
3, dim(D) = 11, d(D) ≥

⌈
15 − f

2

⌉
. (3.12)

Using [8] and the fact that f − t is a multiple of 4, this only leaves the cases (t, f) ∈
{(19, 3), (21, 1)}. To rule out these two cases we use the fact that D is the dual of the self-
orthogonal ternary code D⊥ = πt(ker(πf)). The bounds in [9] give d(D) ≤ 5 < (15 − 3)/2 for
t = 19 and d(D) ≤ 6 < (15 − 1)/2 for t = 21.

If f ≥ 15, then t ≤ 7 and K∗ ∼= ker(πt) has dimension f − t > 0 and minimum distance
≥ 15. This is easily ruled out by the known bounds (see [8]).

(5) If t + f = 24 then either (t, f) = (24, 0) or (t, f) = (22, 2). Again the case f > t is
easily ruled out using dimension and minimum distance of K∗ as before.

So assume that f ≤ t, and let D = πt(C(σ)) as before. Then dim(D) = 12 and using [8]
one gets that

(
t, f
) ∈ {(24, 0), (22, 2), (20, 4)}. (3.13)

Assume that t = 20. Then there is some self-dual code Λ = Λ⊥ ≤ F
20
3 such that

D⊥ = πt

(
ker
(
πf

)) ≤ Λ = Λ⊥ ≤ D. (3.14)

Clearly also d(Λ) ≥ d(D) ≥ 6, so Λ is an extremal ternary code of length 20. There are 6 such
codes, and none of them has a proper overcode with minimum distance 6.

Remark 3.7. If σ ∈ Mon(C) is some automorphism of order 4, then σ2 = −1 or σ2 has type
(24, 0, 0) in the notation of Proposition 3.6.

Proof. Assume that σ ∈ Mon(C) has order 4 but σ2 /= − 1. Then τ = σ2 is one of the
automorphisms from Proposition 3.6 and so σ is conjugate to some block diagonal matrix

σ ∼ diag

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠

t/2

,

(
0 1
1 0

)f/2

,

(
0 −1
1 0

)a/2

⎞
⎟⎟⎟⎠. (3.15)
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If t = 22 and f = 2 then the fixed code of σ is a self-dual code in 〈(1, 1, 1, 1)〉t/2 ©⊥ 〈(1, 1)〉f/2 and
C(σ)∗ ≤ F

t/2+f/2
3 is a self-dual code with respect to the form (x, y) :=

∑t/2
i=1 xiyi −

∑t/2+f/2
i=t/2+1 xiyi

which implies that t/2 − f/2 is a multiple of 4, a contradiction.

For the two known extremal codes all automorphisms σ of order 4 satisfy σ2 = −1. It
would be nice to have some argument to exclude the other possibility.
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