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We give a recursion formula to generate all the equivalence classes of connected graphs with coefficients given by the inverses
of the orders of their groups of automorphisms. We use an algebraic graph representation to apply the result to the enumeration
of connected graphs, all of whose biconnected components have the same number of vertices and edges. The proof uses Abel’s
binomial theorem and generalizes Dziobek’s induction proof of Cayley’s formula.

1. Introduction

As pointed out in [1], generating graphs may be useful for
numerous reasons. These include giving more insight into
enumerative problems or the study of some properties of
graphs. Problems of graph generation may also suggest con-
jectures or point out counterexamples. The use of generating
functions (or functionals) in the enumeration or generation
of graphs is standard practice both in mathematics and
physics [2–4]. However, this is by no means obligatory since
any method of manipulating graphs may be used.

Furthermore, the problem of generating graphs taking
into account their symmetries was considered as early as
the 19th century [5] and more recently for instance, in [6].
In particular, in quantum field theory, generated graphs are
weighted by scalars given by the inverses of the orders of their
groups of automorphisms [4]. In [7, 8], this was handled for
trees and connected multigraphs (with multiple edges and
loops allowed), on the level of the symmetric algebra on the
vector space of time-ordered field operators. The underlying
structure is an algebraic graph representation subsequently
developed in [9]. In this representation, graphs are associated
with tensorswhose indices correspond to the vertex numbers.
In the former papers, this made it possible to derive recursion
formulas to produce larger graphs from smaller ones by
increasing by 1 the number of their vertices or the number
of their edges. An interesting property of these formulas is

that of satisfying alternative recurrences which relate either
a tree or connected multigraph on 𝑛 vertices with all pairs
of their connected subgraphs with total number of vertices
equal to 𝑛. In the case of trees, the algorithmic description of
the corresponding formula is about the same as that used by
Dziobek in his induction proof of Cayley’s formula [10, 11].
Accordingly, the formula induces a recurrence for 𝑛𝑛−2/𝑛!,
that is, the sum of the inverses of the orders of the groups
of automorphisms of all the equivalence classes of trees on 𝑛

vertices [12, page 209].
For simplicity, here by graphs we mean simple graphs.

However, our results generalize straightforwardly to graphs
with multiple edges allowed. One instance of an algorithm
for finding the biconnected components of a connected
graph is given in [13]. Our goal here is rather to generate all
the equivalence classes of connected graphs so that they are
decomposed into their biconnected components and have the
coefficients announced in the abstract. To this end, we give
a suitable graph transformation to produce larger connected
graphs from smaller ones by increasing the number of their
biconnected components by one unit. This mapping is then
used to extend the recurrence of [7] to connected graphs.
This new recurrence decomposes the graphs into their
biconnected components and, in addition, can be generalized
to restricted classes of connected graphs with specified
biconnected components. The proof proceeds as suggested
in [7]. That is, given an arbitrary equivalence class whose
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representative is a graph on 𝑚 edges, say, 𝐺, we show that
every one of the𝑚 edges of the graph𝐺 adds 1/(𝑚⋅ |aut𝐺|) to
the coefficient of 𝐺. To this end, we use the fact that labeled
vertices are held fixed under any automorphism.

Moreover, in the algebraic representation framework, the
result yields a recurrence to generate linear combinations of
tensors over the rational numbers. Each tensor represents a
connected graph. As required, these linear combinations have
the property that the sum of the coefficients of all the tensors
representing isomorphic graphs is the inverse of the order
of their group of automorphisms. In this context, tensors
representing generated graphs are factorized into tensors
representing their biconnected components. As in [7–9], a
key feature of this result is its close relation to the algorithmic
description of the computations involved. Indeed, it is easy
to read off from this scheme not only algorithms to perform
the computations, but even data structures relevant for an
implementation.

Furthermore, we prove that when we only consider
the restricted class of connected graphs whose biconnected
components all have, say, 𝑝 vertices and 𝑟 edges, the cor-
responding recurrence has an alternative expression which
relates connected graphs on 𝜇 biconnected components with
all the 𝑝-tuples of their connected subgraphs with total
number of biconnected components equal to 𝜇 − 1. This
induces a recurrence for the sum of the inverses of the orders
of the groups of automorphisms of all the equivalence classes
of connected graphs on 𝜇 biconnected components with that
property.The proof uses an identity related to Abel’s binomial
theorem [14, 15] and generalizes Dziobek’s induction proof of
Cayley’s formula [10].

This paper is organized as follows. Section 2 reviews the
basic concepts of graph theory underlyingmuch of the paper.
Section 3 contains the definitions of the elementary graph
transformations to be used in the following. Section 4 gives a
recursion formula for generating all the equivalence classes of
connected graphs in terms of their biconnected components.
Sections 5 and 6 review the algebraic representation and
some of the linear mappings introduced in [7, 9]. Section 7
derives an algebraic expression for the recurrence of Section
4 and for the particular case in which graphs are such that
their biconnected components are all graphs on the same
vertex and edge numbers. An alternative formulation for the
latter is also given. Finally, Section 8 proves a Cayley-type
formula for graphs of that kind.

2. Basics

We briefly review the basic concepts of graph theory that are
relevant for the following sections.More detailsmay be found
in any standard textbook on graph theory such as [16].

Let 𝐴 and 𝐵 denote sets. By [𝐴]2 we denote the set of all
the 2-element subsets of 𝐴. Also, by 2𝐴 we denote the power
set of 𝐴, that is, the set of all the subsets of 𝐴. By card𝐴 we
denote the cardinality of the set 𝐴. Furthermore, we recall
that the symmetric difference of the sets 𝐴 and 𝐵 is given by
𝐴Δ𝐵 := (𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵).

Here, a graph is a pair 𝐺 = (𝑉, 𝐸), where 𝑉 ⊂ N is a
finite set and 𝐸 ⊆ [𝑉]

2. Thus, the elements of 𝐸 are 2-element

subsets of 𝑉. The elements of 𝑉 and 𝐸 are called vertices
and edges, respectively. In the following, the vertex set of a
graph 𝐺 will often be referred to as 𝑉(𝐺), the edge set as
𝐸(𝐺). The cardinality of𝑉(𝐺) is called the order of 𝐺, written
as |𝐺|. A vertex 𝑣 is said to be incident with an edge 𝑒 if
𝑣 ∈ 𝑒. Then, 𝑒 is an edge at 𝑣. The two vertices incident
with an edge are its endvertices. Moreover, the degree of a
vertex 𝑣 is the number of edges at 𝑣. Two vertices 𝑣 and 𝑢

are said to be adjacent if {𝑣, 𝑢} ∈ 𝐸. If all the vertices of 𝐺
are pairwise adjacent, then 𝐺 is said to be complete. A graph
𝐺
∗ is called a subgraph of a graph 𝐺 if 𝑉(𝐺∗) ⊆ 𝑉(𝐺) and

𝐸(𝐺
∗

) ⊆ 𝐸(𝐺). A path is a graph 𝑃 on 𝑛 ≥ 2 vertices such
that 𝐸(𝑃) = {{𝑣

1
, 𝑣
2
}, {𝑣

2
, 𝑣
3
}, . . . , {𝑣

𝑛−1
, 𝑣
𝑛
}}, 𝑣

𝑗
∈ 𝑉(𝑃) for

all 𝑗 = 1, . . . , 𝑛. The vertices 𝑣
1
and 𝑣

𝑛
have degree 1, while

the vertices 𝑣
2
, . . . , 𝑣

𝑛−1
have degree 2. In this context, the

vertices 𝑣
1
and 𝑣

𝑛
are linked by 𝑃 and called the endpoint

vertices.The vertices 𝑣
2
, . . . , 𝑣

𝑛−1
are called the inner vertices.

A cycle is a graph 𝐶 on 𝑛 > 2 vertices such that 𝐸(𝐶) =

{{𝑣
1
, 𝑣
2
}, {𝑣

2
, 𝑣
3
}, . . . , {𝑣

𝑛−1
, 𝑣
𝑛
}, {𝑣

𝑛
, 𝑣
1
}}, 𝑣

𝑗
∈ 𝑉(𝐶) for all

𝑗 = 1, . . . , 𝑛, every vertex having degree 2. A graph is
said to be connected if every pair of vertices is linked by
a path. Otherwise, it is disconnected. Given a graph 𝐺, a
maximal connected subgraph of 𝐺 is called a component of
𝐺. Furthermore, given a connected graph, a vertex whose
removal (together with its incident edges) disconnects the
graph is called a cutvertex. A graph that remains connected
after erasing any vertex (together with incident edges) (resp.
any edge) is said to be 2-connected (resp. 2-edge connected).
A 2-connected graph (resp. 2-edge connected graph) is also
called biconnected (resp. edge-biconnected). Given a con-
nected graph𝐻, a biconnected component of𝐻 is a maximal
subset of edges such that the induced subgraph is biconnected
(see [17, Section 6.4] for instance). Here, we consider that an
isolated vertex is, by convention, a biconnected graphwith no
biconnected components.

Moreover, given a graph 𝐺, the set 2𝐸(𝐺) is a vector space
over the field Z

2
such that vector addition is given by the

symmetric difference. The cycle space C(𝐺) of the graph 𝐺

is defined as the subspace of 2𝐸(𝐺) generated by all the cycles
in 𝐺. The dimension ofC(𝐺) is called the cyclomatic number
of the graph𝐺. We recall that dimC(𝐺) = card𝐸(𝐺)− |𝐺|+ 𝑐,
where 𝑐 denotes the number of connected components of the
graph 𝐺 [18].

We now introduce a definition of labeled graph. Let 𝐿
be a finite set. Here, a labeling of a graph 𝐺 is a mapping
𝑙 : 𝑉(𝐺) → 2

𝐿 such that ∪
𝑣∈𝑉(𝐺)

𝑙(𝑣) = 𝐿 and 𝑙(𝑣) ∩ 𝑙(𝑣


) = 0

for all 𝑣, 𝑣 ∈ 𝑉(𝐺) with 𝑣 ̸= 𝑣
. In this context, 𝐿 is called

a label set, while the graph 𝐺 is said to be labeled with 𝐿 or
simply a labeled graph. In the sequel, a labeling of a graph 𝐺

will be referred to as 𝑙
𝐺
. Moreover, an unlabeled graph is one

labeled with the empty set.
Furthermore, an isomorphism between two graphs 𝐺 and

𝐺
∗ is a bijection 𝜑 : 𝑉(𝐺) → 𝑉(𝐺

∗

) which satisfies the fol-
lowing conditions:

(i) {𝑣, 𝑣} ∈ 𝐸(𝐺) if and only if {𝜑(𝑣), 𝜑(𝑣)} ∈ 𝐸(𝐺
∗

),

(ii) 𝐿 ∩ 𝑙
𝐺
(𝑣) = 𝐿 ∩ 𝑙

𝐺
∗(𝜑(𝑣)).
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Clearly, an isomorphism defines an equivalence relation on
graphs. In particular, an isomorphism of a graph𝐺 onto itself
is called an automorphism (or symmetry) of 𝐺.

3. Elementary Graph Transformations

We introduce the basic graph transformations to change the
number of biconnected components of a connected graph by
one unit.

Here, given an arbitrary set 𝑋, let Q𝑋 denote the free
vector space on the set𝑋 overQ, the set of rational numbers.
Also, for all integers 𝑛 ≥ 1 and 𝑘 ≥ 0 and label sets 𝐿, let

𝑉
𝑛,𝑘,𝐿

= {𝐺 : |𝐺| = 𝑛, dimC (𝐺) = 𝑘, 𝐺 is labeled

by 𝑙
𝐺
: 𝑉 (𝐺) → 2

𝐿

} .

(1)

Furthermore, let
(i) 𝑉𝑛,𝑘,𝐿conn = {𝐺 ∈ 𝑉

𝑛,𝑘,𝐿

: 𝐺 is connected},
(ii) 𝑉𝑛,𝑘,𝐿biconn = {𝐺 ∈ 𝑉

𝑛,𝑘,𝐿

: 𝐺 is biconnected}.
In what follows, when 𝐿 = 0 we will omit 𝐿 from the upper
indices in the previous definitions.

We proceed to the definition of the elementary linear
mappings to be used in the following.Note that, for simplicity,
our notation does not distinguish between two mappings
defined both according to one of the following definitions,
one on 𝑉

𝑛,𝑘,𝐿 and the other on 𝑉
𝑝,𝑞,𝐿


with 𝑛 ̸= 𝑝 or 𝑘 ̸= 𝑞 or
𝐿 ̸= 𝐿

. This convention will often be used in the rest of the
paper for all themappings given in this section.Therefore, we
will specify the domain of the mappings whenever confusion
may arise.

(i) Adding a biconnected component to a connected graph:
let 𝐿 be a label set. Let 𝐺 be a graph in 𝑉

𝑛,𝑘,𝐿

conn . Let
𝑉(𝐺) = {𝑣

𝑖
}
𝑖=1,...,𝑛

. For all 𝑖 = 1, . . . , 𝑛, let K
𝑖
denote

the set of biconnected components of 𝐺 such that
𝑣
𝑖
∈ 𝑉(𝐻) for all 𝐻 ∈ K

𝑖
. Let L denote the set

of all the ordered partitions of the set K
𝑖
into 𝑝 dis-

joint sets: L = {𝑧
𝑖
:= (K

(1)

𝑖
, . . . ,K

(𝑝)

𝑖
) : ∪

𝑝

𝑙=1
K

(𝑙)

𝑖

= K
𝑖
and K

(𝑙)

𝑖
∩ K

(𝑙


)

𝑖
= 0 ∀𝑙, 𝑙



= 1, . . .,
𝑝 with 𝑙 ̸= 𝑙



}. Furthermore, let J denote the set of
all the ordered partitions of the set 𝑙

𝐺
(𝑣
𝑖
) into 𝑝

disjoint sets: J = {𝑤
𝑖
:= (𝑙

𝐺
(𝑣
𝑖
)
(1)

, . . . , 𝑙
𝐺
(𝑣
𝑖
)
(𝑝)

) :

∪
𝑝

𝑙=1
𝑙
𝐺
(𝑣
𝑖
)
(𝑙)

= 𝑙
𝐺
(𝑣
𝑖
) and 𝑙

𝐺
(𝑣
𝑖
)
(𝑙)

∩ 𝑙
𝐺
(𝑣
𝑖
)
(𝑙


)

= 0 ∀𝑙,

𝑙


= 1, . . . , 𝑝 with 𝑙 ̸= 𝑙


}. Finally, let 𝐺 be a graph in
𝑉
𝑝,𝑞

biconn such that 𝑉(𝐺) ∩ 𝑉(𝐺) = 0. (In case the graph
𝐺 does not satisfy that property, we consider a graph
𝐺
 instead such that𝐺 ≅ 𝐺 and𝑉(𝐺)∩𝑉(𝐺) = 0.We

will not point this out explicitly in the following.) Let
𝑉(𝐺) = {𝑢

𝑙
}
𝑙=1,...,𝑝

. In this context, for all 𝑖 = 1, . . . , 𝑛,
define

𝑟

̂
𝐺

𝑖
: Q𝑉

𝑛,𝑘,𝐿

conn → Q𝑉
𝑛+𝑝−1,𝑘+𝑞,𝐿

conn

𝐺 → ∑

𝑧
𝑖
∈L;𝑤

𝑖
∈J

𝐺
𝑧
𝑖

𝑤
𝑖

,

(2)

where the graphs 𝐺𝑧𝑖
𝑤
𝑖

satisfy the following:

(a) 𝑉(𝐺𝑧𝑖
𝑤
𝑖

) = 𝑉(𝐺) \ {𝑣
𝑖
} ∪ 𝑉(𝐺),

(b) 𝐸(𝐺𝑧𝑖
𝑤
𝑖

) = 𝐸(𝐺) ∪ {{𝑥, 𝑦} ∈ 𝐸(𝐺) : 𝑣
𝑖
∉ {𝑥, 𝑦}}

𝑝

⋃

𝑙=1

{{𝑥, 𝑢
𝑙
} : {𝑥, 𝑣

𝑖
} ∈ 𝐸 (𝐺) , 𝑥 ∈ ∪

𝐻
∗
∈K
(𝑙)

𝑖

𝑉 (𝐻
∗

)} , (3)

(c) 𝑙
𝐺
𝑧
𝑖

𝑤
𝑖

|
𝑉(𝐺)\{𝑣

𝑖
}
= 𝑙

𝐺
|
𝑉(𝐺)\{𝑣

𝑖
}
and 𝑙

𝐺
𝑧
𝑖

𝑤
𝑖

(𝑢
𝑙
) = 𝑙

𝐺
(𝑣
𝑖
)
(𝑙)

for all 𝑙 = 1, . . . , 𝑝.

The mappings 𝑟̂𝐺
𝑖
are extended to all of Q𝑉

𝑛,𝑘,𝐿

conn by
linearity. For instance, Figure 1 shows the result of
applying the mapping 𝑟𝐶4

𝑖
to the cutvertex of a 2-edge

connected graph with two biconnected components,
where 𝐶

4
denotes a cycle on four vertices.

Furthermore, let 𝑋 ⊆ 𝑉
𝑝,𝑞

biconn. Given a linear
combination of graphs 𝜗 = ∑

𝐺∈𝑋
𝛼
𝐺
𝐺, where 𝛼

𝐺
∈ Q,

we define

𝑟
𝜗

𝑖
:= ∑

𝐺∈𝑋

𝛼
𝐺
𝑟
𝐺

𝑖
. (4)

We proceed to generalize the edge contraction oper-
ation given in [16] to the operation of contracting a
biconnected component of a connected graph.

(ii) Contracting a biconnected component of a connected
graph: let 𝐿 be a label set. Let 𝐺 be a graph in 𝑉

𝑛,𝑘,𝐿

conn .
Let 𝐺 ∈ 𝑉

𝑝,𝑞,𝐿


biconn be a biconnected component of 𝐺,
where 𝐿 = ∪

𝑣∈𝑉(
̂
𝐺)
𝑙
𝐺
(𝑣). Define

𝑐̂
𝐺
: 𝑉

𝑛,𝑘,𝐿

conn → 𝑉
𝑛−𝑝+1,𝑘−𝑞,𝐿

conn ; 𝐺 → 𝐺
∗

, (5)

where the graph 𝐺
∗ satisfies the following:

(a) 𝑉(𝐺∗) = 𝑉(𝐺)\𝑉(𝐺)∪{𝑣}, where 𝑣 := min {𝑣


∈

N : 𝑣


∉ 𝑉(𝐺) \ 𝑉(𝐺)},
(b) 𝐸(𝐺∗) = {{𝑥, 𝑦} ∈ 𝐸(𝐺) : {𝑥, 𝑦} ∩ 𝐸(𝐺) = 0}

∪ {{𝑥, 𝑣} : {𝑥, 𝑦} ∈ 𝐸 (𝐺) \ 𝐸 (𝐺) and 𝑦 ∈ 𝑉 (𝐺)} , (6)

(c) 𝑙
𝐺
∗ |
𝑉(𝐺)\𝑉(

̂
𝐺)

= 𝑙
𝐺
|
𝑉(𝐺)\𝑉(

̂
𝐺)

and 𝑙
𝐺
∗(𝑣) =

∪
𝑢∈𝑉(

̂
𝐺)
𝑙
𝐺
(𝑢).

For instance, Figure 2 shows the result of applying the
mapping 𝑐

𝐶
4

to a 2-edge connected graph with three
biconnected components.
We now introduce the following auxiliary mapping.
Let 𝐿 be a label set. Let 𝐺 be a graph in 𝑉

𝑛,𝑘,𝐿. Let
𝑉(𝐺) = {𝑣

𝑖
}
𝑖=1,...,𝑛

. Let 𝐿 be a label set such that
𝐿∩𝐿



= 0. Also, letI denote the set of all the ordered
partitions of the set 𝐿 into 𝑛 disjoint sets:I = {𝑦 :=

(𝐿
(1)

, . . . , 𝐿
(𝑛)

) : ∪
𝑛

𝑗=1
𝐿
(𝑗)

= 𝐿
 and 𝐿

(𝑖)

∩ 𝐿
(𝑗)

=

0 ∀𝑖, 𝑗 = 1, . . . , 𝑛 with 𝑖 ̸= 𝑗}. In this context, define

𝜉
𝐿
 : Q𝑉

𝑛,𝑘,𝐿

→ Q𝑉
𝑛,𝑘,𝐿∪𝐿



; 𝐺 → ∑

𝑦∈I

𝐺
𝑦
, (7)
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𝑟cutvertex

= 4 + 8 + 4)(

Figure 1: The linear combination of graphs obtained by applying the mapping 𝑟𝐶4
𝑖

to the cutvertex of the graph consisting of two triangles
sharing one vertex.

=)(𝑐

Figure 2:The graph obtained by applying themapping 𝑐
𝐶
4

to a graph
with three biconnected components.

where the graphs 𝐺
𝑦
satisfy the following:

(a) 𝑉(𝐺
𝑦
) = 𝑉(𝐺),

(b) 𝐸(𝐺
𝑦
) = 𝐸(𝐺),

(c) 𝑙
𝐺
𝑦

(𝑣
𝑖
) = 𝑙

𝐺
(𝑣
𝑖
) ∪ 𝐿

(𝑖) for all 𝑖 = 1, . . . , 𝑛 and
𝑣
𝑖
∈ 𝑉(𝐺).

The mapping 𝜉
𝐿
 is extended to all of Q𝑉

𝑛,𝑘,𝐿 by line-
arity.

4. Generating Connected Graphs

We give a recursion formula to generate all the equivalence
classes of connected graphs. The formula depends on the
vertex and cyclomatic numbers and produces larger graphs
from smaller ones by increasing the number of their bicon-
nected components by one unit.Here, graphs having the same
parameters are algebraically represented by linear combina-
tions over coefficients from the rational numbers. The key
feature is that the sum of the coefficients of all the graphs in
the same equivalence class is given by the inverse of the order
of their group of automorphisms. Moreover, the generated
graphs are automatically decomposed into their biconnected
components.

In the rest of the paper, we often use the following
notation: given a group𝐻, by |𝐻| we denote the order of𝐻.
Given a graph 𝐺, by aut𝐺 we denote the group of automor-
phisms of 𝐺. Accordingly, given an equivalence class A, by
autAwe denote the group of automorphisms of all the graphs
in A. Furthermore, given a set 𝑊 ⊆ 𝑉

𝑛,𝑘,𝐿, by E(𝑊) we
denote the set of equivalence classes of all the graphs in𝑊.

We proceed to generalize the recursion formula for
generating trees given in [7] to arbitrary connected graphs.

Theorem 1. For all 𝑝 > 1 and 𝑞 ≥ 0 suppose that 𝛽𝑝,𝑞
𝑏𝑖𝑐𝑜𝑛𝑛

:=

∑
𝐺

∈𝑉
𝑝,𝑞

𝑏𝑖𝑐𝑜𝑛𝑛

𝜎
𝐺
𝐺

 with 𝜎
𝐺
 ∈ Q, is such that for any equivalence

classA ∈ E(𝑉
𝑝,𝑞

𝑏𝑖𝑐𝑜𝑛𝑛
) the following holds: (i) there exists𝐺 ∈ A

such that 𝜎
𝐺
 > 0, (ii) ∑

𝐺

∈A 𝜎

𝐺
 = 1/|autA|. In this context,

given a label set 𝐿, for all 𝑛 ≥ 1 and 𝑘 ≥ 0, define 𝛽𝑛,𝑘,𝐿
𝑐𝑜𝑛𝑛

∈

Q𝑉
𝑛,𝑘,𝐿

𝑐𝑜𝑛𝑛
by the following recursion relation:

𝛽
1,0,𝐿

𝑐𝑜𝑛𝑛
:= 𝐺, 𝑤ℎ𝑒𝑟𝑒 𝐺 = ({1} , 0) , 𝑙

𝐺
(1) = 𝐿,

𝛽
1,𝑘,𝐿

𝑐𝑜𝑛𝑛
:= 0 𝑖𝑓 𝑘 > 0,

𝛽
𝑛,𝑘,𝐿

𝑐𝑜𝑛𝑛
:=

1

𝑘 + 𝑛 − 1

×

𝑘

∑

𝑞=0

𝑛

∑

𝑝=2

𝑛−𝑝+1

∑

𝑖=1

((𝑞 + 𝑝 − 1) 𝑟

𝛽
𝑝,𝑞

𝑏𝑖𝑐𝑜𝑛𝑛

𝑖
(𝛽

𝑛−𝑝+1,𝑘−𝑞,𝐿

𝑐𝑜𝑛𝑛
)) .

(8)

Then, 𝛽𝑛,𝑘,𝐿
𝑐𝑜𝑛𝑛

= ∑
𝐺∈𝑉
𝑛,𝑘,𝐿

𝑐𝑜𝑛𝑛

𝛼
𝐺
𝐺 with 𝛼

𝐺
∈ Q. Moreover, for any

equivalence class C ∈ E(𝑉𝑛,𝑘,𝐿
𝑐𝑜𝑛𝑛

), the following holds: (i) there
exists 𝐺 ∈ C such that 𝛼

𝐺
> 0, (ii) ∑

𝐺∈C 𝛼
𝐺
= 1/|autC|.

Proof. Theproof is very analogous to the one given in [7] (see
also [8, 19]).

Lemma 2. Let 𝑛 ≥ 1 and 𝑘 ≥ 0 be fixed integers. Let 𝐿 be a
label set. Let 𝛽𝑛,𝑘,𝐿conn = ∑

𝐺∈𝑉
𝑛,𝑘,𝐿

conn
𝛼
𝐺
𝐺 be defined by formula (8).

Let C ∈ E(𝑉𝑛,𝑘,𝐿conn ) denote any equivalence class. Then, there
exists 𝐺 ∈ C such that 𝛼

𝐺
> 0.

Proof. The proof proceeds by induction on the number of
biconnected components 𝜇. Clearly, the statement is true for
𝜇 = 0.We assume the statement to hold for all the equivalence
classes in E(𝑉𝑛−𝑝+1,𝑘−𝑞,𝐿conn ) with 𝑝 = 2, . . . , 𝑛 − 1 and 𝑞 =

0, . . . , 𝑘, whose elements have 𝜇−1 biconnected components.
Now, suppose that the elements of C ∈ E(𝑉𝑛,𝑘,𝐿conn ) have 𝜇

biconnected components. Let𝛽𝑝,𝑞biconn = ∑
𝐺

∈𝑉
𝑝,𝑞

biconn
𝜎
𝐺
𝐺

 with

𝜎
𝐺
 ∈ Q. Recall that by (4) the mappings 𝑟𝛽

𝑝,𝑞

biconn
𝑖

read as

𝑟

𝛽
𝑝,𝑞

biconn
𝑖

:= ∑

𝐺

∈𝑉
𝑝,𝑞

biconn

𝜎
𝐺
𝑟
𝐺


𝑖
. (9)

Let 𝐺 denote any graph in C. We proceed to show that a
graph isomorphic to𝐺 is generated by applying themappings
𝑟

𝛽
𝑝,𝑞

biconn
𝑖

to a graph 𝐺
∗

∈ 𝑉
𝑛−𝑝+1,𝑘−𝑞,𝐿

conn with 𝜇 − 1 biconnected
components and such that 𝜈

𝐺
∗ > 0, where 𝜈

𝐺
∗ is the

coefficient of𝐺∗ in 𝛽𝑛−𝑝+1,𝑘−𝑞,𝐿conn . Let𝐺 ∈ 𝑉
𝑝,𝑞,𝐿


biconn be any bicon-
nected component of the graph 𝐺, where 𝐿 = ∪

𝑣∈𝑉(
̂
𝐺)
𝑙
𝐺
(𝑣).
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Contracting the graph𝐺 to the vertex 𝑢 := min{𝑢 ∈ N : 𝑢


∉

𝑉(𝐺) \ 𝑉(𝐺)} yields a graph 𝑐̂
𝐺
(𝐺) ∈ 𝑉

𝑛−𝑝+1,𝑘−𝑞,𝐿

conn with 𝜇 − 1

biconnected components. Let D ∈ E(𝑉𝑛−𝑝+1,𝑘−𝑞,𝐿conn ) denote
the equivalence class such that 𝑐̂

𝐺
(𝐺) ∈ D. By the inductive

assumption, there exists a graph 𝐻
∗

∈ D such that 𝐻∗

≅

𝑐̂
𝐺
(𝐺) and 𝜈

𝐻
∗ > 0. Let 𝑣

𝑗
∈ 𝑉(𝐻

∗

) be the vertex mapped to 𝑢
of 𝑐̂

𝐺
(𝐺) by an isomorphism. Relabeling the graph 𝐺 with the

empty set yields a graph 𝐺


∈ 𝑉
𝑝,𝑞

biconn. Applying the mapping
𝑟
𝐺


𝑗
to the graph𝐻∗ yields a linear combination of graphs, one

of which is isomorphic to 𝐺. That is, there exists𝐻 ≅ 𝐺 such
that 𝛼

𝐻
> 0.

Lemma 3. Let 𝑛 ≥ 1 and 𝑘 ≥ 0 be fixed integers. Let 𝐿 be
a label set such that card𝐿 ≥ 𝑛. Let 𝛽𝑛,𝑘,𝐿

𝑐𝑜𝑛𝑛
= ∑

𝐺∈𝑉
𝑛,𝑘,𝐿

𝑐𝑜𝑛𝑛

𝛼
𝐺
𝐺 be

defined by formula (8). Let C ∈ E(𝑉𝑛,𝑘,𝐿
𝑐𝑜𝑛𝑛

) be an equivalence
class such that 𝑙

𝐺
(𝑣) ̸= 0 for all 𝑣 ∈ 𝑉(𝐺) and 𝐺 ∈ C. Then,

∑
𝐺∈C 𝛼

𝐺
= 1.

Proof. The proof proceeds by induction on the number of
biconnected components 𝜇. Clearly, the statement is true for
𝜇 = 0.We assume the statement to hold for all the equivalence
classes in E(𝑉𝑛−𝑝+1,𝑘−𝑞,𝐿conn ) with 𝑝 = 2, . . . , 𝑛 − 1 and 𝑞 =

0, . . . , 𝑘, whose elements have 𝜇− 1 biconnected components
and the property that no vertex is labeled with the empty set.
Now, suppose that the elements of C ∈ E(𝑉𝑛,𝑘,𝐿conn ) have 𝜇

biconnected components. By Lemma 2, there exists a graph
𝐺 ∈ C such that 𝛼

𝐺
> 0, where 𝛼

𝐺
is the coefficient of 𝐺

in 𝛽
𝑛,𝑘,𝐿

conn. Let 𝑚 := card𝐸(𝐺). Therefore, 𝑚 = 𝑘 + 𝑛 − 1. By
assumption, 𝑙

𝐺
(𝑣) ̸= 0 for all 𝑣 ∈ 𝑉(𝐺) so that |autC| = 1.

We proceed to show that∑
𝐺∈C 𝛼

𝐺
= 1. To this end, we check

from which graphs with 𝜇 − 1 biconnected components, the
elements ofC are generated by the recursion formula (8), and
how many times they are generated.

Choose any one of the 𝜇 biconnected components of the
graph 𝐺 ∈ C. Let this be the graph 𝐺 ∈ 𝑉

𝑝,𝑞,𝐿


biconn, where
𝐿


= ∪
𝑣∈𝑉(

̂
𝐺)
𝑙
𝐺
(𝑣). Let 𝑚

:= card𝐸(𝐺) so that 𝑚

=

𝑞 + 𝑝 − 1. Contracting the graph 𝐺 to the vertex 𝑢 with
𝑢 := min{𝑢 ∈ N : 𝑢



∉ 𝑉(𝐺) \ 𝑉(𝐺)} yields a graph
𝑐̂
𝐺
(𝐺) ∈ 𝑉

𝑛−𝑝+1,𝑘−𝑞,𝐿

conn with 𝜇 − 1 biconnected components. Let
D ∈ E(𝑉𝑛−𝑝+1,𝑘−𝑞,𝐿conn ) denote the equivalence class containing
𝑐̂
𝐺
(𝐺). Since 𝑙

𝑐̂
𝐺
(𝐺)

(𝑣) ̸= 0 for all 𝑣 ∈ 𝑉(𝑐̂
𝐺
(𝐺)), we also have

|autD| = 1. Let 𝛽𝑛−𝑝+1,𝑘−𝑞,𝐿conn = ∑
𝐺
∗
∈𝑉
𝑛−𝑝+1,𝑘−𝑞,𝐿

conn
𝜈
𝐺
∗𝐺

∗ with
𝜈
𝐺
∗ ∈ Q. By Lemma 2, there exists a graph 𝐻 ∈ D such

that 𝐻 ≅ 𝑐̂
𝐺
(𝐺) and 𝜈

𝐻
> 0. By the inductive assumption,

∑
𝐺
∗
∈D 𝜈

𝐺
∗ = 1. Now, let 𝑣

𝑗
∈ 𝑉(𝐻) be the vertex which is

mapped to 𝑢 of 𝑐̂
𝐺
(𝐺) by an isomorphism. Let 𝐺 ∈ 𝑉

𝑝,𝑞

biconn
be the biconnected graph obtained by relabeling 𝐺 with the
empty set. Also, let A ∈ E(𝑉

𝑝,𝑞

biconn) denote the equivalence
class such that𝐺 ∈ A. Apply themapping 𝑟𝐺



𝑗
to the graph𝐻.

Note that every one of the graphs in the linear combination
𝑟
𝐺


𝑗
(𝐻) corresponds to a way of labeling the graph 𝐺

 with

𝑙
𝑐̂
𝐺
(𝐺)

(𝑢) = 𝐿
. Therefore, there are |autA| graphs in 𝑟

𝐺


𝑗
(𝐻)

which are isomorphic to the graph 𝐺. Since none of the

vertices of the graph 𝐻 is labeled with the empty set, the
mapping 𝑟

𝐺


𝑗
produces a graph isomorphic to 𝐺 from the

graph 𝐻 with coefficient 𝛼∗
𝐺

= 𝜈
𝐻

> 0. Now, formula (8)
prescribes to apply the mappings 𝑟

𝐺


𝑖
to the vertex which

is mapped to 𝑢 by an isomorphism of every graph in the
equivalence classD occurring in 𝛽

𝑛−𝑝+1,𝑘−𝑞,𝐿

conn (with non-zero
coefficient). Therefore,

∑

𝐺∈C

𝛼
∗

𝐺
= |autA| ⋅ ∑

𝐺
∗
∈D

𝜈
𝐺
∗

= |autA| ,

(10)

where the factor |autA| on the right hand side of the first
equality is due to the fact that every graph in the equivalence
class D generates |autA| graphs in C. Hence, according to
formulas (8) and (4), the contribution to ∑

𝐺∈C 𝛼
𝐺
is 𝑚

/𝑚.
Distributing this factor between the 𝑚

 edges of the graph
𝐺 yields 1/𝑚 for each edge. Repeating the same argument
for every biconnected component of the graph 𝐺 proves that
every one of the𝑚 edges of the graph𝐺 adds 1/𝑚 to∑

𝐺∈C 𝛼
𝐺
.

Hence, the overall contribution is exactly 1. This completes
the proof.

We now show that 𝛽𝑛,𝑘,𝐿conn satisfies the following property.

Lemma 4. Let 𝑛 ≥ 1 and 𝑘 ≥ 0 be fixed integers. Let 𝐿 and 𝐿

be label sets such that 𝐿 ∩ 𝐿


= 0. Then, 𝛽𝑛,𝑘,𝐿∪𝐿


𝑐𝑜𝑛𝑛
= 𝜉

𝐿
(𝛽

𝑛,𝑘,𝐿

𝑐𝑜𝑛𝑛
).

Proof. Let 𝜉
𝐿
 : 𝑉

𝑛,𝑘,𝐿

→ 𝑉
𝑛,𝑘,𝐿∪𝐿



and ̃
𝜉
𝐿
 : 𝑉

𝑛−𝑝+1,𝑘−𝑞,𝐿

→

𝑉
𝑛−𝑝+1,𝑘−𝑞,𝐿∪𝐿



be defined as in Section 3.The identity follows
by noting that 𝜉

𝐿
 ∘ 𝑟

𝛽
𝑝,𝑞

biconn
𝑖

= 𝑟

𝛽
𝑝,𝑞

biconn
𝑖

∘
̃
𝜉
𝐿
 .

Lemma 5. Let 𝑛 ≥ 1 and 𝑘 ≥ 0 be fixed integers. Let 𝐿 be
a label set. Let 𝛽𝑛,𝑘,𝐿

𝑐𝑜𝑛𝑛
= ∑

𝐺∈𝑉
𝑛,𝑘,𝐿

𝑐𝑜𝑛𝑛

𝛼
𝐺
𝐺 be defined by formula

(8). Let C ∈ E(𝑉𝑛,𝑘,𝐿
𝑐𝑜𝑛𝑛

) denote any equivalence class. Then,
∑
𝐺∈C 𝛼

𝐺
= 1/|aut (C)|.

Proof. Let 𝐺 be a graph in C. If 𝑙
𝐺
(𝑣) ̸= 0 for all 𝑣 ∈ 𝑉(𝐺),

we simply recall Lemma 3. Thus, we may assume that there
exists a set𝑉 ⊆ 𝑉(𝐺) such that 𝑙

𝐺
(𝑉



) = {0}. Let 𝐿 be a label
set such that 𝐿 ∩ 𝐿



= 0 and card 𝐿 = card𝑉. Relabeling
the graph 𝐺 with 𝐿 ∪ 𝐿

 via the mapping 𝑙 : 𝑉(𝐺) → 2
𝐿∪𝐿


such that 𝑙|
𝑉(𝐺)\𝑉

 = 𝑙
𝐺
|
𝑉(𝐺)\𝑉

 and 𝑙(𝑣) ̸= 0 for all 𝑣 ∈ 𝑉


yields a graph 𝐺


∈ 𝑉
𝑛,𝑘,𝐿∪𝐿



conn such that |aut𝐺| = 1. Let
D ∈ E(𝑉𝑛,𝑘,𝐿∪𝐿



conn ) be the equivalence class such that 𝐺 ∈ D.
Let 𝛽𝑛,𝑘,𝐿∪𝐿



conn = ∑
𝐺

∈𝑉
𝑛,𝑘,𝐿∪𝐿



conn
𝜈
𝐺
𝐺

 with 𝜈
𝐺
 ∈ Q. By Lemma

3, ∑
𝐺

∈D 𝜈

𝐺
 = 1. Suppose now that there are exactly 𝑇 dis-

tinct labelings 𝑙
𝑗
: 𝑉(𝐺) → 2

𝐿∪𝐿


, 𝑗 = 1, . . . , 𝑇 such that
𝑙
𝑗
|
𝑉(𝐺)\𝑉

 = 𝑙
𝐺
|
𝑉(𝐺)\𝑉

 , 𝑙
𝑗
(𝑣) ̸= 0 for all 𝑣 ∈ 𝑉

, and 𝐺
𝑗
∈ D,

where𝐺
𝑗
is the graph obtained by relabeling𝐺with 𝑙

𝑗
. Clearly,

𝜈
𝐺
𝑗

= 𝛼
𝐺
> 0, where 𝜈

𝐺
𝑗

is the coefficient of 𝐺
𝑗
in 𝛽

𝑛,𝑘,𝐿∪𝐿


conn .
Define 𝑓

𝑗
: 𝐺 → 𝐺

𝑗
for all 𝑗 = 1, . . . , 𝑇. Now, repeating the
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𝛽1,0conn =

𝛽2,0conn =

𝛽3,0conn =

𝛽4,0conn =

𝛽4,1conn =

𝛽3,1conn =

𝛽4,0conn =

1

2

1

3!

1

8

+
1

2

+
1

2

+
1

4!

+
1

3!

1

2

1

2

1

2

Figure 3: The result of computing all the pairwise non-isomorphic connected graphs as contributions to 𝛽
𝑛,𝑘

conn via formula (8) up to order
𝑛 + 𝑘 ≤ 5. The coefficients in front of graphs are the inverses of the orders of their groups of automorphisms.

same procedure for every graph inC and recalling Lemma 4,
we obtain

∑

𝐺

∈D

𝜈
𝐺
 =

𝑇

∑

𝑗=1

∑

𝐺∈C

𝜈
𝑓
𝑗
(𝐺)

= 𝑇∑

𝐺∈C

𝛼
𝐺
= 1. (11)

That is, ∑
𝐺∈C 𝛼

𝐺
= 1/𝑇. Since |autC| = 𝑇, we obtain

∑
𝐺∈C 𝛼

𝐺
= 1/|aut (C)|.

This completes the proof of Theorem 1.

Figure 3 shows 𝛽𝑛,𝑘conn for 1 ≤ 𝑛 + 𝑘 ≤ 5. Now, given
a connected graph 𝐺, let V

𝐺
denote the set of biconnected

components of𝐺. Given a set𝑋 ⊂ ∪
𝑛

𝑝=2
∪
𝑘

𝑞=0
𝑉
𝑝,𝑞

biconn, let𝑉
𝑛,𝑘

𝑋
:=

{𝐺 ∈ 𝑉
𝑛,𝑘

conn : E(V
𝐺
) ⊆ E(𝑋)} with the convention 𝑉

1,0

𝑋
:=

{({1}, 0)}. With this notation, Theorem 1 specializes straight-
forwardly to graphs with specified biconnected components.

Corollary 6. For all 𝑝 > 1 and 𝑞 ≥ 0 suppose that 𝛾𝑝,𝑞
𝑏𝑖𝑐𝑜𝑛𝑛

:=

∑
𝐺

∈𝑋
𝑝,𝑞 𝜎

𝐺
𝐺

 with 𝜎
𝐺
 ∈ Q and 𝑋

𝑝,𝑞

⊆ 𝑉
𝑝,𝑞

𝑏𝑖𝑐𝑜𝑛𝑛
, is such that

for any equivalence class A ∈ E(𝑋𝑝,𝑞

), the following holds:
(i) there exists 𝐺 ∈ A such that 𝜎

𝐺
 > 0, (ii) ∑

𝐺

∈A 𝜎

𝐺
 =

1/|autA|. In this context, for all 𝑛 ≥ 1 and 𝑘 ≥ 0, define 𝛾𝑛,𝑘
𝑐𝑜𝑛𝑛

∈

Q𝑉
𝑛,𝑘

𝑐𝑜𝑛𝑛
by the following recursion relation:

𝛾
1,0

𝑐𝑜𝑛𝑛
:= 𝐺, 𝑤ℎ𝑒𝑟𝑒 𝐺 = ({1} , 0) ,

𝛾
1,𝑘

𝑐𝑜𝑛𝑛
:= 0 if 𝑘 > 0,

𝛾
𝑛,𝑘

𝑐𝑜𝑛𝑛
:=

1

𝑘 + 𝑛 − 1

×

𝑘

∑

𝑞=0

𝑛

∑

𝑝=2

𝑛−𝑝+1

∑

𝑖=1

((𝑞 + 𝑝 − 1) 𝑟

𝛾
𝑝,𝑞

𝑏𝑖𝑐𝑜𝑛𝑛

𝑖
(𝛾

𝑛−𝑝+1,𝑘−𝑞

conn )) .

(12)

Then, 𝛾𝑛,𝑘
𝑐𝑜𝑛𝑛

= ∑
𝐺∈𝑉
𝑛,𝑘

𝑋

𝛼
𝐺
𝐺, where 𝛼

𝐺
∈ Q and 𝑋 :=

∪
𝑛

𝑝=2
∪
𝑘

𝑞=0
𝑋
𝑝,𝑞. Moreover, for any equivalence class C ∈

E(𝑉𝑛,𝑘
𝑋

) the following holds: (i) there exists 𝐺 ∈ C such that
𝛼
𝐺
> 0 (ii) ∑

𝐺∈C 𝛼
𝐺
= 1/| autC|.

Proof. The result follows from the linearity of the mappings
𝑟
𝐺

𝑖
and the fact that larger graphs whose biconnected com-

ponents are all in𝑋 can only be produced from smaller ones
with the same property.

5. Algebraic Representation of Graphs

We represent graphs by tensors whose indices correspond
to the vertex numbers. Our description is essentially that of
[7, 9]. From the present section on, we will only consider
unlabeled graphs.

Let 𝑉 be a vector space over Q. Let S(𝑉) denote the
symmetric algebra on 𝑉. Then, S(𝑉) = ⨁

∞

𝑘=0
S𝑘(𝑉), where

S0(𝑉) := Q1, S1(𝑉) = 𝑉, and S𝑘(𝑉) is generated by the free
commutative product of 𝑘 elements of 𝑉. Also, let S(𝑉)⊗𝑛
denote the 𝑛-fold tensor product of S(𝑉) with itself. Recall
that the multiplication in S(𝑉)

⊗𝑛 is given by the compon-
entwise product:

⋅ : S(𝑉)
⊗𝑛

× S(𝑉)
⊗𝑛

→ S(𝑉)
⊗𝑛

; (𝑠
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠

𝑛
, 𝑠


1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠



𝑛
)

→ 𝑠
1
𝑠


1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠

𝑛
𝑠


𝑛
,

(13)

where 𝑠
𝑖
, 𝑠
𝑗
denote monomials on the elements of 𝑉 for all

𝑖, 𝑗 = 1, . . . , 𝑛. We may now proceed to the correspondence
between graphs on {1, . . . , 𝑛} and some elements of S(𝑉)⊗𝑛.
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(c)

Figure 4: (a) An isolated vertex represented by 1 ∈ S(𝑉). (b) A 2-
vertex tree represented by 𝑅

1,2
∈ S(𝑉)

⊗2. (c) A triangle represented
by 𝑅

1,2
⋅ 𝑅

1,3
⋅ 𝑅

2,3
∈ S(𝑉)

⊗3.

First, for all 𝑖, 𝑗 = 1, . . . , 𝑛 with 𝑖 ̸= 𝑗, we define the following
tensors in S(𝑉)

⊗𝑛.

𝑅
𝑖,𝑗
:= 1

⊗𝑖−1

⊗ 𝑣 ⊗ 1
⊗𝑗−𝑖−1

⊗ 𝑣 ⊗ 1
⊗𝑛−𝑗

, (14)

where 𝑣 is any vector different from zero. (As in Section
3, for simplicity, our notation does not distinguish between
elements, say, 𝑅

𝑖,𝑗
∈ S(𝑉)

⊗𝑛 and 𝑅
𝑖,𝑗

∈ S(𝑉)
⊗𝑛


with 𝑛 ̸= 𝑛
.

This convention will often be used in the rest of the paper
for all the elements of the algebraic representation.Therefore,
we will specify the set containing consider the given elements
whenever necessary.) Now, for all 𝑖, 𝑗 = 1, . . . , 𝑛 with 𝑖 ̸= 𝑗, let

(i) a tensor factor in the 𝑖th position correspond to the
vertex 𝑖 of a graph on {1, . . . , 𝑛},

(ii) a tensor 𝑅
𝑖,𝑗

∈ S(𝑉)
⊗𝑛 correspond to the edge {𝑖, 𝑗} of

a graph on {1, . . . , 𝑛}.

In this context, given a graph 𝐺 with 𝑉(𝐺) = {1, . . . , 𝑛}

and 𝐸(𝐺) = {{𝑖
𝑘
, 𝑗
𝑘
}}
𝑘=1,...,𝑚

, we define the following algebraic
representation of graphs.

(a) If𝑚 = 0, then𝐺 is represented by the tensor 1⊗⋅ ⋅ ⋅⊗1 ∈

S(𝑉)
⊗𝑛.

(b) If 𝑚 > 0, then in S(𝑉)
⊗𝑛 the graph 𝐺 yields a

monomial on the tensors which represent the edges
of 𝐺. More precisely, since for all 1 ≤ 𝑘 ≤ 𝑚 each
tensor 𝑅

𝑖
𝑘
,𝑗
𝑘

∈ S(𝑉)
⊗𝑛 represents an edge of the graph

𝐺, this is uniquely represented by the following tensor
𝑆
𝐺

1,...,𝑛
∈ S(𝑉)

⊗𝑛 given by the componentwise product
of the tensors 𝑅

𝑖
𝑘
,𝑗
𝑘

:

𝑆
𝐺

1,...,𝑛
:=

𝑚

∏

𝑘=1

𝑅
𝑖
𝑘
,𝑗
𝑘

. (15)

Figure 4 shows some examples of this correspondence. Fur-
thermore, let 𝑋 ⊆ {1, . . . , 𝑛



} be a set of cardinality 𝑛 with
𝑛


≥ 𝑛. Also, let 𝜎 : {1, . . . , 𝑛} → 𝑋 be a bijection. With this
notation, define the following elements of S(𝑉)⊗𝑛



:

𝑆
𝐺

𝜎(1),...,𝜎(𝑛)
:=

𝑚

∏

𝑘=1

𝑅
𝜎(𝑖
𝑘
),𝜎(𝑗
𝑘
)
. (16)

In terms of graphs, the tensor 𝑆𝐺
𝜎(1),...,𝜎(𝑛)

represents a discon-
nected graph, say, 𝐺, on the set {1, . . . , 𝑛} consisting of a

1

3 4

2

(a)

5

3

4

1

2

(b)

Figure 5: (a) The graph represented by the tensor 𝑆𝐺
1,2,3,4

∈ S(𝑉)
⊗4.

(b) The graph represented by the tensor 𝑆𝐺
1,5,4,2

∈ S(𝑉)
⊗5 associated

with 𝐺 and the bijection 𝜎 : {1, 2, 3, 4} → {1, 2, 4, 5}; 1 → 1, 2 →

5, 3 → 4, 4 → 2.

graph isomorphic to𝐺whose vertex set is𝑋 and 𝑛−𝑛 isolated
vertices in {1, . . . , 𝑛



} \ 𝑋. Figure 5 shows an example.
Furthermore, let T(S(𝑉)) denote the tensor algebra on

the graded vector space S(𝑉): T(S(𝑉)) := ⨁
∞

𝑘=0
S(𝑉)

⊗𝑘. In
T(S(𝑉)) the multiplication

∙ : T (S (𝑉)) × T (S (𝑉)) → T (S (𝑉)) (17)

is given by concatenation of tensors (e.g., see [20–22]):

(𝑠
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠

𝑛
) ∙ (𝑠



1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠



𝑛
)

:= 𝑠
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠

𝑛
⊗ 𝑠



1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠



𝑛
 ,

(18)

where 𝑠
𝑖
, 𝑠


𝑗
denote monomials on the elements of 𝑉 for all

𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑛
. We proceed to generalize the

definition of the multiplication ∙ to any two positions of the
tensor factors. Let 𝜏 : S(𝑉)⊗2 → S(𝑉)⊗2; 𝑠

1
⊗ 𝑠

2
→ 𝑠

2
⊗ 𝑠

1
.

Moreover, define 𝜏
𝑘
:= 1

⊗𝑘−1

⊗𝜏⊗1
⊗𝑛−𝑘−1

: S(𝑉)⊗𝑛 → S(𝑉)⊗𝑛
for all 1 ≤ 𝑘 ≤ 𝑛 − 1. In this context, for all 1 ≤ 𝑖 ≤ 𝑛,
1 ≤ 𝑗 ≤ 𝑛

, we define ∙
𝑖,𝑗

: S(𝑉)⊗𝑛 × S(𝑉)⊗𝑛


→ S(𝑉)⊗𝑛+𝑛


by
the following equation:

(𝑠
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠

𝑛
) ∙
𝑖,𝑗
(𝑠


1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠



𝑛
)

:= (𝜏
𝑛−1

∘ ⋅ ⋅ ⋅ ∘ 𝜏
𝑖
) (𝑠

1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠

𝑛
)

⊗ (𝜏
1
∘ ⋅ ⋅ ⋅ ∘ 𝜏

𝑗−1
) (𝑠



1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠



𝑛
)

= 𝑠
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠

𝑖
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠

𝑛
⊗ 𝑠

𝑖

⊗ 𝑠


𝑗
⊗ 𝑠



1
⊗ ⋅ ⋅ ⋅ ⊗

̂
𝑠


𝑗
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠



𝑛
 ,

(19)

where 𝑠
𝑖
(resp. ̂𝑠

𝑗
) means that 𝑠

𝑖
(resp. 𝑠

𝑗
) is excluded from the

sequence. In terms of the tensors 𝑆𝐺
1,...,𝑛

∈ S(𝑉)
⊗𝑛 and 𝑆𝐺



1,...,𝑛
 ∈

S(𝑉)
⊗𝑛


the equation previous yields

𝑆
𝐺

1,...,𝑛
∙
𝑖,𝑗
𝑆
𝐺


1,...,𝑛
 := 𝑆

𝐺

𝜎(1),...,𝜎(𝑛)
⋅ 𝑆
𝐺


𝜎

(1),...,𝜎


(𝑛

)
, (20)

where 𝑆𝐺
𝜎(1),...,𝜎(𝑛)

, 𝑆
𝐺


𝜎

(1),...,𝜎


(𝑛

)
∈ S(𝑉)

⊗𝑛+𝑛


, 𝜎(𝑘) = 𝑘 if 1 ≤ 𝑘 <

𝑖, 𝜎(𝑖) = 𝑛, 𝜎(𝑘) = 𝑘 − 1 if 𝑖 < 𝑘 ≤ 𝑛, and 𝜎


(𝑘) = 𝑘 + 𝑛 + 1

if 1 ≤ 𝑘 < 𝑗, 𝜎(𝑗) = 𝑛 + 1, 𝜎(𝑘) = 𝑘 + 𝑛 if 𝑗 < 𝑘 ≤ 𝑛
.
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Figure 6: (a)The graphs represented by the tensors 𝑆𝐺
1,2,3,4

∈ S(𝑉)
⊗4

and 𝑆
𝐺


1,2,3
∈ S(𝑉)

⊗3. (b) The graph represented by the tensor 𝑆𝐻
1,...,6

=

𝑆
𝐺

1,2,3,4
⬦
3,2
𝑆
𝐺


1,2,3
∈ S(𝑉)

⊗6.

Clearly, the tensor 𝑆𝐺
1,...,𝑛

∙
𝑖,𝑗
𝑆
𝐺


1,...,𝑛
 represents a disconnected

graph. Now, let ⋅
𝑖
:= 1

⊗𝑖−1

⊗ ⋅ ⊗ 1
⊗𝑛−𝑖−1

: S(𝑉)
⊗𝑛

→ S(𝑉)
⊗𝑛−1.

In T(S(𝑉)), for all 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛
, define the following

nonassociative and noncommutative multiplication:

⬦
𝑖,𝑗
:= ⋅

𝑛
∘ ∙

𝑖,𝑗
: S(𝑉)

⊗𝑛

× S(𝑉)
⊗𝑛


→ S(𝑉)
⊗𝑛+𝑛


−1

. (21)

The tensor 𝑆𝐺
1,...,𝑛

⬦
𝑖,𝑗
𝑆
𝐺


1,...,𝑛
 represents the graph on 𝑛 + 𝑛



− 1

vertices, say,𝐻 obtained by gluing the vertex 𝑖 of the graph 𝐺
to the vertex 𝑗 of the graph𝐺. If both𝐺 and𝐺 are connected,
the vertex 𝑛 is clearly a cutvertex of the graph 𝐻. Figure 6
shows an example.

6. Linear Mappings

We recall some of the linear mappings given in [9].
LetB

𝑛,𝑘
⊂ S(𝑉)

⊗𝑛 denote the vector space of all the ten-
sors representing biconnected graphs in 𝑉

𝑛,𝑘

biconn. Let B :=

B
1,0
⨁B

2,0
⨁

∞

𝑛=3
⨁

𝑘max(𝑛)

𝑘=1
B

𝑛,𝑘
⊂ T(S(𝑉)), where 𝑘max(𝑛) =

(𝑛(𝑛 − 3)/2) + 1 is, by Kirchhoff ’s lemma [18], the maximum
cyclomatic number of a biconnected graph on 𝑛 vertices. Let

the mapping Δ : B → T(S(𝑉)) be given by the following
equations:

Δ (1) := 1 ⊗ 1,

Δ (𝐵
𝐺

1,...,𝑛
) :=

1

𝑛

𝑛

∑

𝑖=1

Δ
𝑖
(𝐵

𝐺

1,...,𝑛
) if 𝑛 > 1,

(22)

where 𝐺 denotes a biconnected graph on 𝑛 vertices repre-
sented by 𝐵

𝐺

1,...,𝑛
∈ S(𝑉)

⊗𝑛. To define the mappings Δ
𝑖
, we

introduce the following bijections:

(i) 𝜎
𝑖
: 𝑗 → {

𝑗 if 1 ≤ 𝑗 ≤ 𝑖,

𝑗 + 1 if 𝑖 + 1 ≤ 𝑗 ≤ 𝑛,

(ii) 𝜈
𝑖
: 𝑗 → {

𝑗 if 1 ≤ 𝑗 ≤ 𝑖 − 1,

𝑗 + 1 if 𝑖 ≤ 𝑗 ≤ 𝑛.

(23)

In this context, for all 𝑖 = 1, . . . , 𝑛 with 𝑛 > 1, the mappings
Δ
𝑖
: S(𝑉)

⊗𝑛

→ S(𝑉)
⊗𝑛+1 are defined by the following

equation:

Δ
𝑖
(𝐵

𝐺

1,...,𝑛
) := 𝐵

𝐺

𝜎
𝑖
(1),...,𝜎

𝑖
(𝑛)

+ 𝐵
𝐺

𝜈
𝑖
(1),...,𝜈

𝑖
(𝑛)

= 𝐵
𝐺

1,...,𝑖+1,𝑖+2,...,𝑛+1
+ 𝐵

𝐺

1,...,̂𝑖,𝑖+1...,𝑛+1
,

(24)

where �̂� (resp., 𝑖 + 1) means that the index 𝑖 (resp., 𝑖 + 1)
is excluded from the sequence. The tensor 𝐵𝐺

1,...,̂𝑖,...,𝑛+1
(resp.,

𝐵
𝐺

1,...,𝑖+1,𝑖+2,...,𝑛+1

) is constructed from 𝐵
𝐺

1,...,𝑛
by transferring the

monomial on the elements of𝑉which occupies the 𝑘th tensor
factor to the (𝑘 + 1)th position for all 𝑖 ≤ 𝑘 ≤ 𝑛 (resp., 𝑖 + 1 ≤

𝑘 ≤ 𝑛). Furthermore, suppose that 𝐵𝐺
𝜋(1),...,𝜋(𝑛)

∈ S(𝑉)
⊗𝑛


and
that the bijection 𝜋 is such that 𝑖 ∉ 𝜋({1, . . . , 𝑛}) ⊂ {1, . . . , 𝑛



}.
In this context, define

Δ
𝑖
(𝐵

𝐺

𝜋(1),...,𝜋(𝑛)
) := 𝐵

𝐺

𝜈
𝑖
(𝜋(1)),...,𝜈

𝑖
(𝜋(𝑛))

(25)

in agreement withΔ(1) := 1⊗1. It is straightforward to verify
that the mappings Δ

𝑖
satisfy the following property:

Δ
𝑖
∘ Δ

𝑖
= Δ

𝑖+1
∘ Δ

𝑖
, (26)

where we used the same notation for Δ
𝑖

: S(𝑉)
⊗𝑛

→

S(𝑉)
⊗𝑛+1 on the right of either side of the previous equation

and Δ
𝑖
: S(𝑉)

⊗𝑛+1

→ S(𝑉)
⊗𝑛+2 as the leftmost operator

on the left hand side of the equation. Accordingly, Δ
𝑖+1

:

S(𝑉)
⊗𝑛+1

→ S(𝑉)
⊗𝑛+2 as the leftmost operator on the right

hand side of the equation.
Now, for all 𝑚 > 0, define the 𝑚th iterate of Δ

𝑖
, Δ𝑚

𝑖
:

S(𝑉)
⊗𝑛

→ S(𝑉)
⊗𝑛+𝑚, recursively as follows:

Δ
1

𝑖
:= Δ

𝑖
, (27)

Δ
𝑚

𝑖
:= Δ

𝑖
∘ Δ

𝑚−1

𝑖
, (28)

where Δ
𝑖

: S(𝑉)
⊗𝑛+𝑚−1

→ S(𝑉)
⊗𝑛+𝑚 in formula (28).

This can be written in 𝑚 different ways corresponding to
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the composition of Δ𝑚−1
𝑖

with each of the mappings Δ
𝑗

:

S(𝑉)
⊗𝑛+𝑚−1

→ S(𝑉)
⊗𝑛+𝑚 with 𝑖 ≤ 𝑗 ≤ 𝑖 + 𝑚 − 1. These

are all equivalent by formula (26).

Extension to Connected Graphs.Wenow extend themappings
Δ
𝑖
to the vector space of all the tensors representing con-

nected graphs B∗

:= ⨁
∞

𝜇=0
B⬦𝜇, where B⬦0

= Q1. We
proceed to defineB⬦𝜇 for 𝜇 > 0.

First, given two sets 𝐴
𝑛
⊂ S(𝑉)

⊗𝑛 and 𝐵
𝑝
⊂ S(𝑉)

⊗𝑝, by
𝐴
𝑛
⬦
𝑖,𝑗
𝐵
𝑝

⊂ S(𝑉)
⊗𝑛+𝑝−1 with 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑝 we

denote the set of elements obtained by applying the mapping
⬦
𝑖,𝑗
to every ordered pair (𝑎 ∈ 𝐴

𝑛
, 𝑏 ∈ 𝐵

𝑝
). Also, let B

2
:=

B
2,0

and B
𝑛
:= ⨁

𝑘max(𝑛)

𝑘=1
B

𝑛,𝑘
, 𝑛 ≥ 3. In this context, for all

𝜇 ≥ 1 and 𝑛 ≥ 𝜇 + 1, defineB∗

𝑛

𝜇 as follows:

B
∗

𝑛

𝜇

= ⋃

𝑛
1
+⋅⋅⋅+𝑛

𝜇
=𝑛+𝜇−1

𝑛
1

⋃

𝑖
1
=1

⋅ ⋅ ⋅

𝑛
𝜇−1

⋃

𝑖
𝜇−1
=1

𝑛
𝜇
+⋅⋅⋅+𝑛

2
−𝜇+2

⋃

𝑗
1
=1

⋅ ⋅ ⋅

𝑛
𝜇

⋃

𝑗
𝜇−1
=1

B
𝑛
1

⬦
𝑖
1
,𝑗
1

(B
𝑛
2

⬦
𝑖
2
,𝑗
2

(⋅ ⋅ ⋅ (B
𝑛
𝜇−2

⬦
𝑖
𝜇−2
,𝑗
𝜇−2

(B
𝑛
𝜇−1

⬦
𝑖
𝜇−1
,𝑗
𝜇−1

B
𝑛
𝜇

)) ⋅ ⋅ ⋅) .

(29)

Also, define

B


𝑛

∗𝜇

= ⋃

𝜋∈𝑆
𝑛

{𝑆
𝐺

𝜋(1),...,𝜋(𝑛)
| 𝑆

𝐺

1,...,𝑛
∈ B

∗

𝑛

𝜇

} , (30)

where 𝑆
𝑛
denotes the symmetric group on the set {1, . . . , 𝑛}

and 𝑆
𝐺

𝜋(1),...,𝜋(𝑛)
is given by formula (16). Finally, for all 𝜇 ≥ 1,

define

B
⬦𝜇

:=

∞

⨁

𝑛=𝜇+1

B


𝑛

∗𝜇

. (31)

The elements of B⬦𝜇 are clearly tensors representing con-
nected graphs on 𝜇 biconnected components. By (16) and
(21), these may be seen as monomials on tensors represent-
ing biconnected graphs with the componentwise product
⋅ :S(𝑉)⊗𝑛 × S(𝑉)

⊗𝑛

→ S(𝑉)
⊗𝑛 so that repeated indices

correspond to cutvertices of the associated graphs. In this
context, an arbitrary connected graph, say, 𝐺, on 𝑛 ≥ 2

vertices and 𝜇 ≥ 1 biconnected components yields
𝜇

∏

𝑎=1

𝐵
𝐺
𝑎

𝜎
𝑎
(1),...,𝜎

𝑎
(𝑛
𝑎
)
, (32)

Where, for all 1 ≤ 𝑎 ≤ 𝜇, 𝐵𝐺𝑎
𝜎
𝑎
(1),...,𝜎

𝑎
(𝑛
𝑎
)
∈ S(𝑉)

⊗𝑛, 𝐺
𝑎
is a

biconnected graph on 2 ≤ 𝑛
𝑎
≤ 𝑛 vertices represented by

𝐵
𝐺
𝑎

1,...,𝑛
𝑎

∈ S(𝑉)
⊗𝑛
𝑎 , and 𝜎

𝑎
: {1, . . . , 𝑛

𝑎
} → 𝑋

𝑎
⊆ {1, . . . , 𝑛} is a

bijection.
We now extend the mapping Δ := (1/𝑛)∑

𝑛

𝑖=1
Δ
𝑖
toB∗ by

requiring the mappings Δ
𝑖
to satisfy the following condition:

Δ
𝑖
(

𝜇

∏

𝑎=1

𝐵
𝐺
𝑎

𝜎
𝑎
(1),...,𝜎

𝑎(𝑛𝑎)
) :=

𝜇

∏

𝑎=1

Δ
𝑖
(𝐵

𝐺
𝑎

𝜎
𝑎
(1),...,𝜎

𝑎(𝑛𝑎)
) . (33)

Given a connected graph𝐺, the mapping Δ
𝑖
may be thought

of as a way of (a) splitting the vertex 𝑖 into two new vertices

numbered 𝑖 and 𝑖 + 1 and (b) distributing the biconnected
components sharing the vertex 𝑖 between the two new ones in
all the possible ways. Analogously, the action of themappings
Δ
𝑚

𝑖
consists of (a) splitting the vertex 𝑖 into 𝑚 + 1 new

vertices numbered 𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑚 and (b) distributing the
biconnected components sharing the vertex 𝑖 between the
𝑚 + 1 new ones in all the possible ways.

We now combine the mappings Δ𝑛−1
𝑖

with tensors repre-
senting biconnected graphs. Let 𝑛 > 1, 𝑝 ≥ 1 and 1 ≤ 𝑖 ≤ 𝑝

be fixed integers. Let 𝜋
𝑖
: {1, . . . , 𝑛} → {𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑛 −

1}; 𝑗 → 𝑗 + 𝑖 − 1 be a bijection. Let 𝐺 be a biconnected
graph on 𝑛 vertices represented by the tensor 𝐵

𝐺

1,...,𝑛
∈

S(𝑉)
⊗𝑛. The tensors 𝐵𝐺

𝑖,𝑖+1,...,𝑖+𝑛−1
:= 𝐵

𝐺

𝜋
𝑖
(1),...,𝜋

𝑖
(𝑛)

∈ S(𝑉)
⊗𝑛+𝑝−1

(see formula (16)) may be viewed as operators acting on
S(𝑉)

⊗𝑛+𝑝−1 by multiplication. In this context, consider the
following mappings given by the composition of 𝐵𝐺

𝑖,𝑖+1,...,𝑖+𝑛−1

with Δ
𝑛−1

𝑖
:

𝐵
𝐺

𝑖,𝑖+1,...,𝑖+𝑛−1
∘ Δ

𝑛−1

𝑖
: S(𝑉)

⊗𝑝

→ S(𝑉)
⊗𝑛+𝑝−1

. (34)

These are the analog of the mappings 𝑟𝐺
𝑖
given in Section 3.

In plain English, the mappings 𝐵𝐺
𝑖,𝑖+1,...,𝑖+𝑛−1

∘ Δ
𝑛−1

𝑖
produce

a connected graph with 𝑛 + 𝑝 − 1 vertices from one with 𝑝

vertices in the following way:

(a) split the vertex 𝑖 into 𝑛 new vertices, namely, 𝑖, 𝑖+1,. . .,
𝑖 + 𝑛 − 1,

(b) distribute the biconnected components containing
the split vertex between the 𝑛 new ones in all the
possible ways,

(c) merge the 𝑛 new vertices into the graph 𝐺.

When the graph 𝐺 is a 2-vertex tree, the mapping 𝑅
1,2

∘ Δ

coincides with the application 𝐿 = (𝜙 ⊗ 𝜙)Δ of [23] when 𝜙

acts on S(𝑉) by multiplication with a vector.
To illustrate the action of the mappings 𝐵𝐺

𝜋
𝑖
(1),...,𝜋

𝑖
(𝑛)

∘ Δ
𝑖
,

consider the graph 𝐻 consisting of two triangles sharing a
vertex. Let this be represented by𝐵𝐶3

1,2,3
⋅𝐵
𝐶
3

3,4,5
∈ S(𝑉)

⊗5, where
𝐶
3
denotes a triangle represented by 𝐵𝐶3

1,2,3
= 𝑅

1,2
⋅ 𝑅

2,3
⋅ 𝑅

1,3
∈

S(𝑉)
⊗3. Let 𝑇

2
denote a 2-vertex tree represented by 𝐵

𝑇
2

1,2
=

𝑅
1,2

∈ S(𝑉)
⊗2. Applying the mapping 𝑅

3,4
∘ Δ

3
to𝐻 yields

𝑅
3,4

∘ Δ
3
(𝐵

𝐶
3

1,2,3
⋅ 𝐵

𝐶
3

3,4,5
)

= 𝑅
3,4

⋅ Δ
3
(𝐵

𝐶
3

1,2,3
) ⋅ Δ

3
(𝐵

𝐶
3

3,4,5
)

= 𝑅
3,4

⋅ (𝐵
𝐶
3

1,2,3
+ 𝐵

𝐶
3

1,2,4
) ⋅ (𝐵

𝐶
3

3,5,6
+ 𝐵

𝐶
3

4,5,6
)

= 𝑅
3,4

⋅ 𝐵
𝐶
3

1,2,3
⋅ 𝐵

𝐶
3

3,5,6
+ 𝑅

3,4
⋅ 𝐵

𝐶
3

1,2,3
⋅ 𝐵

𝐶
3

4,5,6

+ 𝑅
3,4

⋅ 𝐵
𝐶
3

1,2,4
⋅ 𝐵

𝐶
3

3,5,6
+ 𝑅

3,4
⋅ 𝐵

𝐶
3

1,2,4
⋅ 𝐵

𝐶
3

4,5,6
.

(35)

Figure 7 shows the linear combination of graphs given by
(35) after taking into account that the first and fourth terms
as well as the second and third correspond to isomorphic
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+ 2= 2𝑅3,4 ∘ ( )Δ3

Figure 7:The linear combination of graphs obtained by applying the mapping 𝑅
3,4

∘Δ
3
to the cutvertex of a graph consisting of two triangles

sharing a vertex.

graphs. Note that 3 (resp. 4) is the only cutvertex of the graph
represented by the first (resp. fourth) term, while 3 and 4 are
both cutvertices of the graphs represented by the second or
third terms.

7. Further Recursion Relations

Reference [7] gives two recursion formulas to generate all
the equivalence classes of trees with coefficients given by
the inverses of the orders of their groups of automorphisms.
On the one hand, the main formula is such that larger trees
are produced from smaller ones by increasing the number
of their biconnected components by one unit. On the other
hand, the alternative formula is such that for all 𝑛 ≥ 2, trees
on 𝑛 vertices are produced by connecting a vertex of a tree on 𝑖
vertices to a vertex of a tree on 𝑛 − 𝑖 vertices in all the possible
ways. Theorem 1 generalizes the main formula to connected
graphs. It is the aim of this section to derive an alternative
formula for a simplified version of the latter.

Let 𝐺 denote a connected graph. Recall the notation
introduced in Section 4; V

𝐺
denotes the set of biconnected

components of 𝐺 and E(V
𝐺
) denotes the set of equivalence

classes of the graphs inV
𝐺
. Given a set𝑋 ⊂ ∪

𝑛

𝑝=2
∪
𝑘

𝑞=0
𝑉
𝑝,𝑞

biconn,
let 𝑉𝑛,𝑘

𝑋
:= {𝐺 ∈ 𝑉

𝑛,𝑘

conn : E(V
𝐺
) ⊆ E(𝑋)} with the con-

vention 𝑉
1,0

𝑋
:= {({1}, 0)}. With this notation, in the algebraic

setting, Corollary 6 reads as follows.

Theorem 7. For all 𝑝 > 1 and 𝑞 ≥ 0, suppose that Φ𝑝,𝑞

1,...,𝑝
:=

∑
𝐺

∈𝑋
𝑝,𝑞 𝜎

𝐺
𝐵
𝐺


1,...,𝑝
∈ B

𝑝,𝑞
⊂ S(𝑉)

⊗𝑝 with 𝜎
𝐺
 ∈ Q and 𝑋

𝑝,𝑞

⊆

𝑉
𝑝,𝑞

𝑏𝑖𝑐𝑜𝑛𝑛
, is such that for any equivalence classA ∈ E(𝑋𝑝,𝑞

) the
following holds: (i) there exists 𝐺 ∈ A such that 𝜎

𝐺
 > 0, (ii)

∑
𝐺

∈A 𝜎

𝐺
 = 1/|autA|. In this context, for all 𝑛 ≥ 1 and 𝑘 ≥ 0,

define Ψ𝑛,𝑘

∈ S(𝑉)
⊗𝑛 by the following recursion relation:

Ψ
1,0

:= 1,

Ψ
1,𝑘

:= 0 if 𝑘 > 0,

(36)

Ψ
𝑛,𝑘

:=

1

𝑘 + 𝑛 − 1

×

𝑘

∑

𝑞=0

𝑛

∑

𝑝=2

𝑛−𝑝+1

∑

𝑖=1

((𝑞 + 𝑝 − 1)Φ
𝑝,𝑞

𝑖,𝑖+1,...,𝑖+𝑝−1

⋅Δ
𝑝−1

𝑖
(Ψ

𝑛−𝑝+1,𝑘−𝑞

)) .

(37)

Then, Ψ𝑛,𝑘

= ∑
𝐺∈𝑉
𝑛,𝑘

𝑋

𝛼
𝐺
𝑆
𝐺

1,...,𝑛
, where 𝛼

𝐺
∈ Q and 𝑋 :=

∪
𝑛

𝑝=2
∪
𝑘

𝑞=0
𝑋
𝑝,𝑞. Moreover, for any equivalence class C ∈

E(𝑉𝑛,𝑘
𝑋

), the following holds: (i) there exists 𝐺 ∈ C such that
𝛼
𝐺
> 0, (ii) ∑

𝐺∈C 𝛼
𝐺
= 1/|autC|.

Now, given a nonempty set 𝑌 ⊆ 𝑉
𝑝,𝑞

biconn, we use the fol-
lowing notation:

𝑉
𝜇

𝑌
:= {𝐺 ∈ 𝑉

(𝑝−1)𝜇+1,𝑞𝜇

conn : E (V
𝐺
) ⊆ E (𝑌) , card (V

𝐺
) = 𝜇} ,

(38)

with the convention 𝑉
0

𝑌
:= {({1}, 0)}. When we only consider

graphs whose biconnected components are all in 𝑌, the
previous recurrence can be transformed into one on the
number of biconnected components.

Theorem 8. Let 𝑝 > 1 and 𝑞 ≥ 0 be fixed integers. Let
𝑌 ⊆ 𝑉

𝑝,𝑞

𝑏𝑖𝑐𝑜𝑛𝑛
be a non-empty set. Suppose that 𝜙

𝑝,𝑞

1,...,𝑝
:=

∑
𝐺

∈𝑌

𝜎
𝐺
𝐵
𝐺


1,...,𝑝
∈ B

𝑝,𝑞
⊂ S(𝑉)

⊗𝑝 with 𝜎
𝐺
 ∈ Q, is such

that for any equivalence class A ∈ E(𝑌) the following holds:
(i) there exists 𝐺 ∈ A such that 𝜎

𝐺
 > 0, (ii) ∑

𝐺

∈A 𝜎

𝐺
 =

1/|aut (A)|. In this context, for all 𝜇 ≥ 0, define 𝜓
𝜇

∈

S(𝑉)
⊗(𝑝−1)𝜇+1 by the following recursion relation:

𝜓
0

:= 1,

𝜓
𝜇

:=

1

𝜇

(𝑝−1)(𝜇−1)+1

∑

𝑖=1

𝜙
𝑝,𝑞

𝑖,𝑖+1,...,𝑖+𝑝−1
⋅ Δ

𝑝−1

𝑖
(𝜓

𝜇−1

) .

(39)

Then, 𝜓𝜇 = ∑
𝐺∈𝑉
𝜇

𝑌

𝛼
𝐺
𝑆
𝐺

1,...,(𝑝−1)𝜇+1
with 𝛼

𝐺
∈ Q. Moreover, for

any equivalence classC ∈ E(𝑉
𝜇

𝑌
), the following holds: (i) there

exists 𝐺 ∈ C such that 𝛼
𝐺
> 0, (ii) ∑

𝐺∈C 𝛼
𝐺
= 1/|aut (C)|.

Proof. In this case, Ψ𝑛,𝑘

= 0 unless 𝑛 = (𝑝 − 1)𝜇 + 1 and
𝑘 = 𝑞𝜇, where 𝜇 ≥ 0. Therefore, the recurrence of Theorem 7
can be easily converted into a recurrence on the number of
biconnected components by setting 𝜓𝜇 := Ψ

(𝑝−1)𝜇+1,𝑞𝜇.

For 𝑝 = 2 and 𝑞 = 0, we recover the formula to
generate trees of [7]. As in that paper and [8, 23], we may
extend the result to obtain further interesting recursion rela-
tions.
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Proposition 9. For all 𝜇 > 0,

𝜓
𝜇

=

1

𝜇

× ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑝
=𝜇−1

(

(𝑝−1)𝑖
1
+1

∑

𝑎
1
=1

(𝑝−1)(𝑖
1
+𝑖
2
)+2

∑

𝑎
2
=(𝑝−1)𝑖1+2

⋅ ⋅ ⋅

(𝑝−1)(𝑖
1
+⋅⋅⋅+𝑖
𝑝
)+𝑝

∑

𝑎
𝑝
=(𝑝−1)(𝑖

1
+⋅⋅⋅+𝑖
𝑝−1
)+𝑝

𝜙
𝑝,𝑞

𝑎
1
,...,𝑎
𝑝

)

⋅ (𝜓
𝑖
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝜓
𝑖
𝑝

) ,

(40)

where 𝑖
𝑗
= 0, . . . , 𝜇 − 1 for all 𝑗 = 1, . . . , 𝑝.

Proof. Equation (40) is proved by induction on the number
of biconnected components 𝜇.This is easily verified for 𝜇 = 1:

𝜓
1

= 𝜙
𝑝,𝑞

1,...𝑝
⋅ (1 ⊗ ⋅ ⋅ ⋅ ⊗ 1) = 𝜙

𝑝,𝑞

1,...𝑝
. (41)

We now assume the formula to hold for 𝜓𝜇−1. Then, formula
(37) yields

𝜓
𝜇

=

1

𝜇

(𝑝−1)(𝜇−1)+1

∑

𝑖=1

𝜙
𝑝,𝑞

𝑖,𝑖+1,...,𝑖+𝑝−1
⋅ Δ

𝑝−1

𝑖
(𝜓

𝜇−1

)

=

1

𝜇 (𝜇 − 1)

(𝑝−1)(𝜇−1)+1

∑

𝑖=1

𝜙
𝑝,𝑞

𝑖,𝑖+1,...,𝑖+𝑝−1
⋅ Δ

𝑝−1

𝑖

( ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑝
=𝜇−2

(

(𝑝−1)𝑖
1
+1

∑

𝑎
1
=1

(𝑝−1)(𝑖
1
+𝑖
2
)+2

∑

𝑎
2
=(𝑝−1)𝑖1+2

⋅ ⋅ ⋅

(𝑝−1)(𝑖
1
+⋅⋅⋅+𝑖
𝑝
)+𝑝

∑

𝑎
𝑝
=(𝑝−1)(𝑖1+⋅⋅⋅+𝑖𝑝−1)+𝑝

𝜙
𝑝,𝑞

𝑎
1
,...,𝑎
𝑝

)

⋅ (𝜓
𝑖
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝜓
𝑖
𝑝

))

=

1

𝜇 (𝜇 − 1)

× ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑝
=𝜇−2

(𝑝−1)(𝜇−1)+1

∑

𝑖=1

(Δ
𝑝−1

𝑖
(

(𝑝−1)𝑖
1
+1

∑

𝑎
1
=1

(𝑝−1)(𝑖
1
+𝑖
2
)+2

∑

𝑎
2
=(𝑝−1)𝑖1+2

⋅ ⋅ ⋅

(𝑝−1)(𝑖
1
+⋅⋅⋅+𝑖
𝑝
)+𝑝

∑

𝑎
𝑝
=(𝑝−1)(𝑖1+⋅⋅⋅+𝑖𝑝−1)+𝑝

𝜙
𝑝,𝑞

𝑎
1
,...,𝑎
𝑝

)

⋅𝜙
𝑝,𝑞

𝑖,𝑖+1,...,𝑖+𝑝−1
⋅ Δ

𝑝−1

𝑖
(𝜓

𝑖
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝜓
𝑖
𝑝

))

=

1

𝜇 (𝜇 − 1)

× ( ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑝
=𝜇−2

(

(𝑝−1)𝑖
1
+1

∑

𝑖=1

Δ
𝑝−1

𝑖

(

(𝑝−1)𝑖
1
+1

∑

𝑎
1
=1

(𝑝−1)(𝑖
1
+𝑖
2
)+2

∑

𝑎
2
=(𝑝−1)𝑖1+2

⋅ ⋅ ⋅

(𝑝−1)(𝑖
1
+⋅⋅⋅+𝑖
𝑝
)+𝑝

∑

𝑎
𝑝
=(𝑝−1)(𝑖1+⋅⋅⋅+𝑖𝑝−1)+𝑝

(𝑝−1)(𝑖
1
+⋅⋅⋅+𝑖
𝑝
)+𝑝

∑

𝑎
𝑝
=(𝑝−1)(𝑖1+⋅⋅⋅+𝑖𝑝−1)+𝑝

𝜙
𝑝,𝑞

𝑎
1
,...,𝑎
𝑝

)

⋅ 𝜙
𝑝,𝑞

𝑖,𝑖+1,...,𝑖+𝑝−1

⋅ (Δ
𝑝−1

𝑖
(𝜓

𝑖
1

) ⊗ ⋅ ⋅ ⋅ ⊗ 𝜓
𝑖
𝑝

)

+

(𝑝−1)(𝑖
1
+𝑖
2
)+2

∑

𝑖=(𝑝−1)𝑖1+2

Δ
𝑝−1

𝑖

(

(𝑝−1)𝑖
1
+1

∑

𝑎
1
=1

(𝑝−1)(𝑖
1
+𝑖
2
)+2

∑

𝑎
2
=(𝑝−1)𝑖1+2

⋅ ⋅ ⋅

(𝑝−1)(𝑖
1
+⋅⋅⋅+𝑖
𝑝
)+𝑝

∑

𝑎
𝑝
=(𝑝−1)(𝑖1+⋅⋅⋅+𝑖𝑝−1)+𝑝

)

⋅ 𝜙
𝑝,𝑞

𝑖,𝑖+1,...,𝑖+𝑝−1

⋅ (𝜓
𝑖
1

⊗ Δ
𝑝−1

𝑖
(𝜓

𝑖
2

) ⊗ ⋅ ⋅ ⋅ ⊗ 𝜓
𝑖
𝑝

)

+ ⋅ ⋅ ⋅ +

(𝑝−1)(𝑖+1+⋅⋅⋅+𝑖𝑝)+𝑝

∑

𝑖=(𝑝−1)(𝑖1+𝑖2+⋅⋅⋅+𝑖𝑝−1)+𝑝

Δ
𝑝−1

𝑖

(

(𝑝−1)𝑖
1
+1

∑

𝑎
1
=1

(𝑝−1)(𝑖
1
+𝑖
2
)+2

∑

𝑎
2
=(𝑝−1)𝑖1+2

⋅ ⋅ ⋅

(𝑝−1)(𝑖
1
+⋅⋅⋅+𝑖
𝑝
)+𝑝

∑

𝑎
𝑝
=(𝑝−1)(𝑖1+⋅⋅⋅+𝑖𝑝−1)+𝑝

𝜙
𝑝,𝑞

𝑎
1
,...,𝑎
𝑝

)

⋅ 𝜙
𝑝,𝑞

𝑖,𝑖+1,...,𝑖+𝑝−1
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⋅ (𝜓
𝑖
1

⊗ ⋅ ⋅ ⋅ ⊗ Δ
𝑝−1

𝑖
(𝜓

𝑖
𝑝

))))

=

1

𝜇 (𝜇 − 1)

× ( ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑝
=𝜇−2

((𝑖
1
+ 1)

× (

(𝑝−1)𝑖
1
+𝑝

∑

𝑎
1
=1

(𝑝−1)(𝑖
1
+𝑖
2
)+𝑝+1

∑

𝑎
2
=(𝑝−1)𝑖1+𝑝+1

⋅ ⋅ ⋅

(𝑝−1)(𝑖
1
+⋅⋅⋅+𝑖
𝑝
)+2𝑝−1

∑

𝑎
𝑝
=(𝑝−1)(𝑖1+⋅⋅⋅+𝑖𝑝−1)+2𝑝−1

𝜙
𝑝,𝑞

𝑎
1
,...,𝑎
𝑝

)

⋅ (𝜓
𝑖
1
+1

⊗ ⋅ ⋅ ⋅ ⊗ 𝜓
𝑖
𝑝

) + (𝑖
2
+ 1)

× (

(𝑝−1)𝑖
1
+1

∑

𝑎
1
=1

(𝑝−1)(𝑖
1
+𝑖
2
)+𝑝+1

∑

𝑎
2
=(𝑝−1)𝑖1+2

⋅ ⋅ ⋅

(𝑝−1)(𝑖
1
+⋅⋅⋅+𝑖
𝑝
)+2𝑝−1

∑

𝑎
𝑝
=(𝑝−1)(𝑖1+⋅⋅⋅+𝑖𝑝−1)+2𝑝−1

𝜙
𝑝,𝑞

𝑎
1
,...,𝑎
𝑝

)

⋅ 𝜙
𝑝,𝑞

𝑖,𝑖+1,...,𝑖+𝑝−1
⋅ (𝜓

𝑖
1

⊗ 𝜓
𝑖
2
+1

⊗ ⋅ ⋅ ⋅ ⊗ 𝜓
𝑖
𝑝

)

+ ⋅ ⋅ ⋅ + (𝑖
𝑝
+ 1)

× (

(𝑝−1)𝑖
1
+1

∑

𝑎
1
=1

(𝑝−1)(𝑖
1
+𝑖
2
)+2

∑

𝑎
2
=(𝑝−1)𝑖1+2

⋅ ⋅ ⋅

(𝑝−1)(𝑖
1
+⋅⋅⋅+𝑖
𝑝
)+𝑝

∑

𝑎
𝑝
=(𝑝−1)(𝑖1+⋅⋅⋅+𝑖𝑝−1)+2𝑝−1

𝜙
𝑝,𝑞

𝑎
1
,...,𝑎
𝑝

)

⋅ 𝜙
𝑝,𝑞

𝑖,𝑖+1,...,𝑖+𝑝−1
⋅ (𝜓

𝑖
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝜓
𝑖
𝑝
+1

)))

=

1

𝜇 (𝜇 − 1)

× (

𝜇−1

∑

𝑖
1
=0

∑

𝑖
2
+⋅⋅⋅+𝑖
𝑝
=𝜇−1−𝑖

1

𝑖
1
+

𝜇−1

∑

𝑖
2
=0

∑

𝑖
1
+𝑖
3
+⋅⋅⋅+𝑖
𝑝
=𝜇−1−𝑖

2

𝑖
2

+ ⋅ ⋅ ⋅ +

𝜇−1

∑

𝑖
𝑝
=0

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑝−1
=𝜇−1−𝑖

𝑝

𝑖
𝑝
)

×(

(𝑝−1)𝑖
1
+1

∑

𝑎
1
=1

(𝑝−1)(𝑖
1
+𝑖
2
)+2

∑

𝑎
2
=(𝑝−1)𝑖1+2

⋅ ⋅ ⋅

(𝑝−1)(𝑖
1
+⋅⋅⋅+𝑖
𝑝
)+𝑝

∑

𝑎
𝑝
=(𝑝−1)(𝑖1+⋅⋅⋅+𝑖𝑝−1)+𝑝

𝜙
𝑝,𝑞

𝑎
1
,...,𝑎
𝑝

)

⋅ (𝜓
𝑖
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝜓
𝑖
𝑝

)

=

1

𝜇

∑

𝑖
2
+⋅⋅⋅+𝑖
𝑝
=𝜇−1

(

(𝑝−1)𝑖
1
+1

∑

𝑎
1
=1

(𝑝−1)(𝑖
1
+𝑖
2
)+2

∑

𝑎
2
=(𝑝−1)𝑖1+2

⋅ ⋅ ⋅

(𝑝−1)(𝑖
1
+⋅⋅⋅+𝑖
𝑝
)+𝑝

∑

𝑎
𝑝
=(𝑝−1)(𝑖1+⋅⋅⋅+𝑖𝑝−1)+𝑝

𝜙
𝑝,𝑞

𝑎
1
,...,𝑎
𝑝

)

⋅ (𝜓
𝑖
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝜓
𝑖
𝑝

) .

(42)

Note that formula (40) states that the linear combination
of all the equivalence classes of connected graphs in 𝑉

𝜇

𝑌
is

given by summing over all the 𝑝-tuples of connected graphs
with total number of biconnected components equal to 𝜇−1,
gluing a vertex of each of them to distinct vertices of a graph
in E(𝑌) in all the possible ways.

8. Cayley-Type Formulas

Let 𝑌 ⊆ 𝑉
𝑝,𝑞

biconn. Recall that 𝑉
𝜇

𝑌
is the set of connected graphs

on 𝜇 biconnected components, each of which has 𝑝 vertices
and cyclomatic number 𝑞 and is isomorphic to a graph in 𝑌.
We proceed to use formula (40) to recover some enumerative
results which are usually obtained via generating functions
and the Lagrange inversion formula, see [3]. In particular,
we extend to graphs in 𝑉

𝜇

𝑌
the result that the sum of the

inverses of the orders of the groups of automorphisms of all
the pairwise nonisomorphic trees on 𝑛 vertices equals 𝑛𝑛−2/𝑛!
[12, page 209].

Proposition 10. Let 𝑝 > 1 and 𝑞 ≥ 0 be fixed integers. Let
𝑌 ⊆ 𝑉

𝑝,𝑞

𝑏𝑖𝑐𝑜𝑛𝑛
be a non-empty set. For all 𝜇 ≥ 0,

∑

C∈E(𝑉
𝜇

𝑌
)

1

|autC|

=

((𝑝 − 1) 𝜇 + 1)
𝜇−2

𝜇!

(𝑝 ∑

A∈E(𝑌)

1

|autA|

)

𝜇

.

(43)

Proof. We first recall the following well-known identities
derived from Abel’s binomial theorem [14]:

𝑛−1

∑

𝑖=1

(

𝑛

𝑖
) 𝑖

𝑖−1

(𝑛 − 𝑖)
𝑛−𝑖−1

= 2 (𝑛 − 1) 𝑛
𝑛−2

, (44)

𝑛

∑

𝑖=0

(

𝑛

𝑖
) (𝑥 + 𝑖)

𝑖−1

(𝑦 + (𝑛 − 𝑖))
𝑛−𝑖−1

= (

1

𝑥

+

1

𝑦

) (𝑥 + 𝑦 + 𝑛)
𝑛−1

,

(45)

where 𝑥 and 𝑦 are non-zero numbers. A proof may be
found in [15] for instance. From (45) follows that for
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all 𝑝 > 1 and non-zero numbers 𝑥
1
, . . . , 𝑥

𝑝
, the iden-

tity

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑝
=𝑛

(

𝑛

𝑖
1
, . . . , 𝑖

𝑝

) (𝑥
1
+ 𝑖

1
)
𝑖
1
−1

⋅ ⋅ ⋅ (𝑥
𝑝
+ 𝑖

𝑝
)

𝑖
𝑝
−1

=

𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑝

𝑥
1
⋅ ⋅ ⋅ 𝑥

𝑝

(𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑝
+ 𝑛)

𝑛−1

(46)

holds.Theproof proceeds by induction. For𝑝 = 2 the identity
specializes to (45). We assume the identity (46) to hold for
𝑝 − 1. Then,

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑝
=𝑛

(

𝑛

𝑖
1
, . . . , 𝑖

𝑝

) (𝑥
1
+ 𝑖

1
)
𝑖
1
−1

⋅ ⋅ ⋅ (𝑥
𝑝
+ 𝑖

𝑝
)

𝑖
𝑝
−1

=

𝑛

∑

𝑖
1
=0

∑

𝑖
2
+⋅⋅⋅+𝑖
𝑝
=𝑛−𝑖
1

(

𝑛

𝑖
1

)(

𝑛 − 𝑖
1

𝑖
2
, . . . , 𝑖

𝑝

)

× (𝑥
1
+ 𝑖

1
)
𝑖
1
−1

⋅ ⋅ ⋅ (𝑥
𝑝
+ 𝑖

𝑝
)

𝑖
𝑝
−1

=

𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑝

𝑥
2
⋅ ⋅ ⋅ 𝑥

𝑝

×

𝑛

∑

𝑖
1
=0

(

𝑛

𝑖
1

) (𝑥
1
+ 𝑖

1
)
𝑖
1
−1

(𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑝
+ 𝑛 − 𝑖

1
)

𝑛−𝑖
1
−1

=

𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑝

𝑥
2
⋅ ⋅ ⋅ 𝑥

𝑝

× (

1

𝑥
1

+

1

𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑝

)(𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑝
+ 𝑛)

𝑛−1

=

𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑝

𝑥
1
⋅ ⋅ ⋅ 𝑥

𝑝

(𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑝
+ 𝑛)

𝑛−1

.

(47)

We turn to the proof of formula (43). Let 𝐼(𝜇) := ∑C∈E(𝑉
𝜇

𝑌
)
(1/

|autC|). Formula (40) induces the following recurrence for
𝐼(𝜇):

𝐼 (0) = 1,

𝐼 (𝜇) =

1

𝜇

∑

A∈E(𝑌)

1

|autA|

× ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑝
=𝜇−1

((𝑝 − 1) 𝑖
1
+ 1)

⋅ ⋅ ⋅ ((𝑝 − 1) 𝑖
𝑝
+ 1) 𝐼 (𝑖

1
) ⋅ ⋅ ⋅ 𝐼 (𝑖

𝑝
) .

(48)

We proceed to prove by induction that 𝐼(𝜇) = (((𝑝 − 1)𝜇 +

1)
𝜇−2

/𝜇!)(𝑝∑A∈E(𝑌)(1/|autA|))
𝜇. The result holds for 𝜇 =

0, 1:

𝐼 (0) = 1,

𝐼 (1) = ∑

A∈E(𝑌)

1

|autA|

.

(49)

We assume the result to hold for all 0 ≤ 𝑖 ≤ 𝜇 − 1. Then,

𝐼 (𝜇) =

1

𝜇

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑝
=𝜇−1

((𝑝 − 1) 𝑖
1
+ 1)

⋅ ⋅ ⋅ ((𝑝 − 1) 𝑖
𝑝
+ 1) 𝐼 (𝑖

1
) ⋅ ⋅ ⋅ 𝐼 (𝑖

𝑝
) ∑

A∈E(𝑌)

1

|autA|

(50)

=

𝑝
𝜇−1

𝜇

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑝
=𝜇−1

1

𝑖
1
! ⋅ ⋅ ⋅ 𝑖

𝑝
!

((𝑝 − 1) 𝑖
1
+ 1)

𝑖
1
−1

⋅ ⋅ ⋅ ((𝑝 − 1) 𝑖
𝑝
+ 1)

𝑖
𝑝
−1

( ∑

A∈E(𝑌)

1

|autA|

)

𝜇

(51)

=

𝑝
𝜇−1

𝜇!

(𝑝 − 1)
𝜇−1−𝑝

× ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑝
=𝜇−1

(

𝜇 − 1

𝑖
1
, . . . , 𝑖

𝑝

)(𝑖
1
+

1

𝑝 − 1

)

𝑖
1
−1

⋅ ⋅ ⋅ (𝑖
𝑝
+

1

𝑝 − 1

)

𝑖
𝑝
−1

( ∑

A∈E(𝑌)

1

|autA|

)

𝜇

(52)

=

1

𝜇!

(𝑝 − 1)
𝜇−1−𝑝

(𝑝 − 1)
𝑝−1

× (𝜇 − 1 +

𝑝

𝑝 − 1

)

𝜇−2

(𝑝 ∑

A∈E(𝑌)

1

|autA|

)

𝜇 (53)

=

1

𝜇!

((𝑝 − 1) 𝜇 + 1)
𝜇−2

(𝑝 ∑

A∈E(𝑌)

1

|autA|

)

𝜇

, (54)

where we used formula (46) in going from (52) to (53). This
completes the proof of Proposition 10.

The corollary is now established.

Corollary 11. Let 𝑝 > 1 and 𝑞 ≥ 0 be fixed integers. Let 𝑌 ⊆

𝑉
𝑝,𝑞

𝑏𝑖𝑐𝑜𝑛𝑛
be a non-empty set. For all 𝜇 ≥ 0, {𝐺 ∈ 𝑉

𝜇

𝑌
| 𝑉(𝐺) =

{1, . . . , (𝑝 − 1)𝜇 + 1} is a set of cardinality

((𝑝 − 1) 𝜇 + 1)! ((𝑝 − 1) 𝜇 + 1)
𝜇−2

𝜇!

(𝑝 ∑

A∈E(𝑌)

1

|autA|

)

𝜇

.

(55)

Proof. The result is a straightforward application of
Lagrange’s theorem to the symmetric group on the set
{1, . . . , (𝑝 − 1)𝜇 + 1} and each of its subgroups autC,
for all C ∈ E(𝑉

𝜇

𝑌
).

For 𝑝 = 2 and 𝑞 = 0, formula (55) specializes to Cayley’s
formula [11]:

(𝜇 + 1)
𝜇−1

= 𝑛
𝑛−2

, (56)
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where 𝑛 = 𝜇 + 1 is the number of vertices of all the trees
with 𝜇 biconnected components. In this particular case, the
recurrence given by formula (48) can be easily transformed
into a recurrence on the number of vertices 𝑛:

𝐽 (1) = 1,

𝐽 (𝑛) =

1

2 (𝑛 − 1)

𝑛−1

∑

𝑖=1

𝑖 (𝑛 − 𝑖) 𝐽 (𝑖) 𝐽 (𝑛 − 𝑖) ,

(57)

which by (44) yields 𝐽(𝑛) = 𝑛
𝑛−2

/𝑛!. Now, for 𝑇(𝑛) = 𝑛!𝐽(𝑛),
we obtain Dziobek’s recurrence for Cayley’s formula [10, 24]:

𝑇 (1) = 1,

𝑇 (𝑛) =

1

2 (𝑛 − 1)

𝑛−1

∑

𝑖=1

(

𝑛

𝑖
) 𝑖 (𝑛 − 𝑖) 𝑇 (𝑖) 𝑇 (𝑛 − 𝑖) .

(58)

Furthermore, for graphs whose biconnected components are
all complete graphs on 𝑝 vertices, formula (55) yields

((𝑝 − 1) 𝜇 + 1)!((𝑝 − 1) 𝜇 + 1)
𝜇−2

(𝑝 − 1) !
𝜇

𝜇!

(59)

in agreement with Husimi’s result for this particular case [25]
(see also [26]). Also, when the biconnected components are
all cycles of length 𝑝, we recover a particular case of Leroux’s
result [27]:

((𝑝 − 1) 𝜇 + 1)!((𝑝 − 1) 𝜇 + 1)
𝜇−2

2
𝜇
𝜇!

. (60)
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