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A Richardson variety 𝑋
𝛾

𝛼
in the Orthogonal Grassmannian is defined to be the intersection of a Schubert variety 𝑋

𝛾 in the
Orthogonal Grassmannian and an opposite Schubert variety 𝑋

𝛼
therein. We give an explicit description of the initial ideal (with

respect to certain conveniently chosen term order) for the ideal of the tangent cone at any T-fixed point of 𝑋𝛾

𝛼
, thus generalizing

a result of Raghavan and Upadhyay (2009). Our proof is based on a generalization of the Robinson-Schensted-Knuth (RSK)
correspondence, which we call the Orthogonal-bounded-RSK (OBRSK).

1. Introduction

The Orthogonal Grassmannian is defined in Section 2. A
Richardson variety𝑋𝛾

𝛼
in theOrthogonal Grassmannian (The

Richardson varieties in the ordinary Grassmannian are also
studied by Stanley in [1], where these varieties are called
skew Schubert varieties. Discussion of these varieties in the
ordinary Grassmannian also appears in [2].) is defined to be
the intersection of a Schubert variety 𝑋𝛾 in the Orthogonal
Grassmannian with an opposite Schubert variety𝑋𝛼 therein.
In particular, the Schubert and opposite Schubert varieties
are special cases of the Richardson varieties. In this paper,
we provide an explicit description of the initial ideal (with
respect to certain conveniently chosen term order) for the
ideal of the tangent cone at any 𝑇-fixed point 𝑒𝛽 of 𝑋𝛾

𝛼
. It

should be noted that the local properties of the Schubert
varieties at 𝑇-fixed points determine their local properties at
all other points, because of the 𝐵 action; but this does not
extend to the Richardson varieties, since Richardson varieties
only have a 𝑇-action.

In Raghavan and Upadhyay [3], an explicit description of
the initial ideal (with respect to certain conveniently chosen
term orders) for the ideal of the tangent cone at any 𝑇-fixed
point of a Schubert variety in the Orthogonal Grassmannian

has been obtained. In this paper, we generalize the result of
[3] to the case of the Richardson varieties in the Orthogonal
Grassmannian.

Sturmfels [4] andHerzog and Trung [5] proved results on
a class of determinantal varieties which are equivalent to the
results of [6–8] for the case of the Schubert varieties (in the
ordinary Grassmannian) at the 𝑇-fixed point 𝑒id. The key to
their proofs was to use a version of the Robinson-Schensted-
Knuth correspondence (which we will call the “ordinary”
RSK) in order to establish a degree-preserving bijection
between a set of monomials defined by an initial ideal and
a “standard monomial basis.” The difficulty in extending this
method of proof to the case of the Schubert varieties (in
the ordinary Grassmannian) at an arbitrary 𝑇-fixed point 𝑒𝛽
lies in generalizing this bijection, which is done in the three
papers [6–8]; the work done in [8] is slightly more general,
since it applies to the Richardson varieties, and not just to the
Schubert varieties. These three bijections, when restricted to
the Schubert varieties in the ordinary Grassmannian, are in
fact the same bijection (This supports the conviction of the
authors in [6] that this bijection is natural and that it is in
some sense the only natural bijection satisfying the required
geometric conditions.), although this is not immediately
apparent. In the work of Kreiman in [8], this “generalized
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bijection” has been viewed for the first time as an extended
version of the “ordinary” RSK correspondence, which he calls
the Bounded-RSK correspondence; this viewpoint was not
present in [6, 7]. Although the formulations of the bijections
in [6, 7] are similar to each other, the formulation of the
bijection in [8] is in terms of different combinatorial indexing
sets.

The work done in [3] by Raghavan and Upadhyay
does not involve any version of the RSK correspondence,
unlike the work done by Herzog and Trung in [5]. The
work done in [3] relies on a degree-preserving bijection
between a set of monomials defined by an initial ideal and
a “standard monomial basis,” and this bijection is proved
by Raghavan and Upadhyay in [9]. It is mentioned in [9]
that it will be nice if the bijection proved therein can be
viewed as a kind of “Bounded-RSK” correspondence, as
done by Kreiman in [8] for the case of the Richardson
varieties in the ordinaryGrassmannian.This paper fulfills the
expectation of [9] that one should be able to view the bijection
there as a generalized-bounded-RSK correspondence, which
we call here the Orthogonal-bounded-RSK correspondence
(OBRSK). Kreiman has mentioned in his paper [8] that he
believes in the possibility of adapting the methods of his
paper ([8]) to the Richardson varieties in the Symplectic and
the Orthogonal Grassmannian as well; this paper supports
Kreiman’s belief for the Orthogonal Grassmannian case.

2. The Orthogonal Grassmannian and
Richardson Varieties in It

Fix an algebraically closed field k of characteristic not equal
to 2. Fix a natural number 𝑑, a vector space 𝑉 of dimension
2𝑑 over k, and a nondegenerate symmetric bilinear form
⟨ , ⟩ on 𝑉. For 𝑘 an integer such that 1 ≤ 𝑘 ≤ 2𝑑, set
𝑘
∗

:= 2𝑑 + 1 − 𝑘. Fix a basis 𝑒1, . . . , 𝑒2𝑑 of 𝑉 such that
⟨𝑒𝑖, 𝑒𝑘⟩ equals 1 if 𝑖 = 𝑘

∗ and is 0 otherwise. Denote by
𝑆𝑂(𝑉) the group of linear automorphisms of 𝑉 that preserve
the bilinear form ⟨ , ⟩ and also the volume form. A linear
subspace of 𝑉 is said to be isotropic, if the bilinear form
⟨ , ⟩ vanishes identically on it. Denote byM𝑑(𝑉)

 the closed
subvariety of the Grassmannian of 𝑑-dimensional subspaces
consisting of the points corresponding to maximal isotropic
subspaces. The action of 𝑆𝑂(𝑉) on 𝑉 induces an action on
M𝑑(𝑉)

. There are two orbits for this action. These orbits are
isomorphic: acting by a linear automorphism that preserves
the form but not the volume form gives an isomorphism. We
denote by M𝑑(𝑉) the orbit of the span of 𝑒1, . . . , 𝑒𝑑 and call
it the (even) Orthogonal Grassmannian. One can define the
Orthogonal Grassmannian in the case when the dimension
of 𝑉 is not necessarily even. But it is enough to consider the
case when the dimension of 𝑉 is even, the reason being the
following (see also Section 2.1 of [9] for the same ): suppose
that the dimension of 𝑉 is odd; say dimension of 𝑉 = 2𝑑 + 1.
Let �̃� := 2𝑑 + 2 and �̃� be a vector space of dimension �̃� with
a nondegenerate symmetric form. Let �̃�1, . . . , �̃��̃� be a basis of
�̃� such that ⟨�̃�𝑖, �̃�𝑘⟩ equals 1 if 𝑖 = 𝑘

∗ and is 0 otherwise. Put
𝑒 := �̃�𝑑+1 and 𝑓 := �̃�𝑑+2. Take 𝜆 to be an element of the field
such that 𝜆2

= 1/2. We can take 𝑉 to be the subspace of �̃�

spanned by the vectors �̃�1, . . . , �̃�𝑑, 𝜆𝑒+𝜆𝑓, �̃�𝑑+3, . . ., and �̃��̃�, and
a basis of 𝑉 to be these vectors in that order.

There is a natural map from M𝑑+1(�̃�)
 to M𝑑(𝑉): inter-

secting with 𝑉 an isotropic subspace of �̃� of dimension 𝑑 + 1

gives an isotropic subspace of 𝑉 of dimension 𝑑, and we
denote this map by ∩. The map ∩ is onto, for every isotropic
subspace of �̃� (and hence of 𝑉) is contained in an isotropic
subspace of �̃� of dimension 𝑑 + 1. In fact, more is true: the
map ∩ is two-to-one. The map ∩ being two-to-one, it is also
elementary to see that the two points in any fiber lie one
in each component of M𝑑+1(�̃�)

. We therefore get a natu-
ral isomorphism between M𝑑+1(�̃�) and M𝑑(𝑉). Therefore,
now onwards we call the (even) Orthogonal Grassmannian
M𝑑(𝑉) (as defined above for a 2𝑑-dimensional vector space
𝑉) the Orthogonal Grassmannian.

Let M𝑑(𝑉) ⊆ 𝐺𝑑(𝑉) → P(∧𝑑
𝑉) be the Plücker

embedding (where 𝐺𝑑(𝑉) denotes the Grassmannian of all
𝑑-dimensional subspaces of 𝑉). Thus M𝑑(𝑉) is a closed
subvariety of the projective variety 𝐺𝑑(𝑉), and henceM𝑑(𝑉)

inherits the structure of a projective variety.
We take 𝐵 (resp., 𝐵−) to be the subgroup of 𝑆𝑂(𝑉)

consisting of those elements that are upper triangular (resp.,
lower triangular) with respect to the basis 𝑒1, . . . , 𝑒2𝑑 and
the subgroup 𝑇 of 𝑆𝑂(𝑉) consisting of those elements that
are diagonal with respect to 𝑒1, . . . , 𝑒2𝑑. It can be easily
checked that 𝑇 is a maximal torus of 𝑆𝑂(𝑉); 𝐵 and 𝐵

− are
the Borel subgroups of 𝑆𝑂(𝑉) which contain 𝑇. The group
𝑆𝑂(𝑉) acts transitively on M𝑑(𝑉), and the 𝑇-fixed points of
M𝑑(𝑉) under this action are easily seen to be of the form
⟨𝑒𝑖
1

, . . . , 𝑒𝑖
𝑑

⟩ for {𝑖1, . . . , 𝑖𝑑} in 𝐼(𝑑), where 𝐼(𝑑) is the set of
subsets of {1, . . . , 2𝑑} of cardinality 𝑑 satisfying the following
two conditions:

(i) for each 𝑘, 1 ≤ 𝑘 ≤ 2𝑑, the subset contains exactly one
of 𝑘, 𝑘∗, and

(ii) the number of elements in the subset that exceed 𝑑 is
even.

We write 𝐼(𝑑, 2𝑑) for the set of all 𝑑-element subsets of
{1, . . . , 2𝑑}. There is a natural partial order on 𝐼(𝑑, 2𝑑) and so
also on 𝐼(𝑑): V = (V1 < ⋅ ⋅ ⋅ < V𝑑) ≤ 𝑤 = (𝑤1 < ⋅ ⋅ ⋅ < 𝑤𝑑)

if and only if V1 ≤ 𝑤1,. . ., V𝑑 ≤ 𝑤𝑑. For 𝜇 = {𝜇1, . . . , 𝜇𝑑} ∈

𝐼(𝑑, 2𝑑), 𝜇1 < ⋅ ⋅ ⋅ < 𝜇𝑑, define the complement of 𝜇 as
{1, . . . , 2𝑑} \ 𝜇, and denote it by 𝜇.

The 𝐵-orbits (as well as 𝐵−-orbits) ofM𝑑(𝑉) are naturally
indexed by its 𝑇-fixed points: each 𝐵-orbit (as well as 𝐵−-
orbit) contains one and only one such point. Let 𝛼 ∈ 𝐼(𝑑)

be arbitrary, and let 𝑒𝛼 denote the corresponding 𝑇-fixed
point of M𝑑(𝑉). The Zariski closure of the 𝐵- (resp., 𝐵−-)
orbit through 𝑒𝛼, with canonical reduced scheme structure,
is called a Schubert variety (resp., opposite Schubert variety)
and denoted by 𝑋𝛼 (resp., 𝑋𝛼). For 𝛼, 𝛾 ∈ 𝐼(𝑑), the scheme-
theoretic intersection 𝑋

𝛾

𝛼
= 𝑋𝛼 ∩ 𝑋

𝛾 is called a Richardson
variety. Each 𝐵-orbit (as well as 𝐵−-orbit) being irreducible
and open in its closure, it follows that 𝐵-orbit closures (resp.,
𝐵
−-orbit closures) are indexed by the 𝐵-orbits (resp., 𝐵−-

orbits). Thus the set 𝐼(𝑑) becomes an indexing set for the
Schubert varieties in M𝑑(𝑉), and the set consisting of all
pairs of elements of 𝐼(𝑑) becomes an indexing set for the
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Figure 1

Richardson varieties in M𝑑(𝑉). It can be shown that 𝑋𝛾

𝛼
is

nonempty if and only if 𝛼 ≤ 𝛾; that for 𝛽 ∈ 𝐼(𝑑), 𝑒𝛽 ∈ 𝑋
𝛾

𝛼
if

and only if 𝛼 ≤ 𝛽 ≤ 𝛾.

3. Statement of the Problem and
the Strategy of the Proof

3.1. Initial Statement of the Problem. The problem that is
tackled in this paper is this: given a 𝑇-fixed point on a
Richardson variety in M𝑑(𝑉), compute the initial ideal,
with respect to some convenient term order, of the ideal of
functions vanishing on the tangent cone to the Richardson
variety at the given 𝑇-fixed point. The term order is specified
in Section 3.4, and the answer is given inTheorem 7.

For the rest of this paper, 𝛼, 𝛽, and 𝛾 are arbitrarily fixed
elements of 𝐼(𝑑) such that 𝛼 ≤ 𝛽 ≤ 𝛾. So, the problem tackled
in this paper can be restated as follows. Given the Richardson
variety 𝑋𝛾

𝛼
in M𝑑(𝑉) and the 𝑇-fixed point 𝑒𝛽 in it, find the

initial ideal of the ideal of functions vanishing on the tangent
cone at 𝑒𝛽 to 𝑋

𝛾

𝛼
, with respect to some conveniently chosen

termorder.The tangent cone being a subvariety of the tangent
space at 𝑒𝛽 to M𝑑(𝑉), we first choose a convenient set of
coordinates for the tangent space. But for that we need to fix
some notation.

3.2. Basic Notation. For this subsection, let us fix an arbitrary
element V of 𝐼(𝑑, 2𝑑). We will be dealing extensively with
ordered pairs (𝑟, 𝑐), 1 ≤ 𝑟, 𝑐 ≤ 2𝑑, such that 𝑟 is not and 𝑐

is an entry of V. Let R(V) denote the set of all such ordered
pairs, and set N(V) := {(𝑟, 𝑐) ∈ R(V) | 𝑟 > 𝑐}, OR(V) :=

{(𝑟, 𝑐) ∈ R(V) | 𝑟 < 𝑐
∗
}, ON(V) := {(𝑟, 𝑐) ∈ R(V) | 𝑟 >

𝑐, 𝑟 < 𝑐
∗
} = OR(V) ∩ N(V), dV := {(𝑟, 𝑐) ∈ R(V) | 𝑟 = 𝑐

∗
},

AR(V) := {(𝑟, 𝑐) ∈ R(V) | 𝑟 > 𝑐
∗
}, and AN(V) := {(𝑟, 𝑐) ∈

R(V) | 𝑟 > 𝑐, 𝑟 > 𝑐
∗
}. We will refer to dV as the diagonal.

Figure 1 shows a drawing of R(V). We think of 𝑟 and
𝑐 in (𝑟, 𝑐) as row index and column index, respectively.
The columns are indexed from left to right by the entries
of V in ascending order and the rows from top to bottom
by the entries of {1, . . . , 2𝑑} \ V in ascending order. The
points of dV are those on the diagonal, the points of OR(V)

are those that are (strictly) above the diagonal, and the
points of N(V) are those that are to the South-West of
the polyline captioned “boundary of N(V)”—we draw the
boundary so that points on the boundary belong to N(V).
The reader can readily verify that 𝑑 = 13 and V =

(1, 2, 3, 4, 6, 7, 10, 11, 13, 15, 18, 19, and 22) for the particular
picture drawn.The points ofOR(V) indicated by solid circles
form an extended V-chain (see Figure 1); the definition of an
extended V-chain is given later in Section 3.5.

We will be considering monomials in some of these
sets. A monomial, as usual, is a subset with each member
being allowed amultiplicity (taking values in the nonnegative
integers). The degree of a monomial has also the usual sense:
consider the underlying set of the monomial and look at
the multiplicity with which each element of this underlying
set appears in the monomial; the degree of the monomial
is the sum of these multiplicities. The intersection of any
two monomials in a set also has the natural meaning; it
is the monomial whose underlying set is the intersection
of the underlying sets of the given two monomials and
the multiplicity of each element being the minimum of the
multiplicities with which the element occurs in the two given
monomials.

Given any twomonomials𝐴 and𝐵 consisting of elements
of R(V), let set (𝐴) and set (𝐵) denote the underlying sets of
𝐴 and 𝐵, respectively. We say that 𝐵 ⊆ 𝐴 (as monomials)
if set (𝐵) ⊆ set(𝐴), and the multiplicity with which every
element occurs in the monomial 𝐵 is less than or equal to
the multiplicity with which the same element occurs in the
monomial 𝐴. Given two monomials 𝐴 and 𝐵 consisting of
elements of R(V) such that 𝐵 ⊆ 𝐴 (as monomials), we can
define a monomial called the “monomial minus” of 𝐵 from 𝐴

(denoted by 𝐴\𝑚𝐵) as follows. Take any element 𝑥 of set(𝐵).
If the multiplicity with which 𝑥 occurs in 𝐴 is 𝑚𝑥(𝐴) and
the multiplicity with which 𝑥 occurs in 𝐵 is 𝑚𝑥(𝐵), then the
multiplicity with which 𝑥 occurs in the monomial 𝐴\𝑚𝐵 is
𝑚𝑥(𝐴) −𝑚𝑥(𝐵). And any element in set(𝐴) \ set(𝐵) occurs in
the monomial𝐴\𝑚𝐵 with the same multiplicity with which it
occurs in 𝐴. This finishes the description of 𝐴\𝑚𝐵.

Remark 1. Note that in this subsection, and Vwas any element
of 𝐼(𝑑, 2𝑑), V was not necessarily in 𝐼(𝑑). In particular, all the
above basic notations will hold true, if we take V ∈ 𝐼(𝑑) as
well.

3.3. The Ideal of the Tangent Cone to 𝑋
𝛾

𝛼
at 𝑒𝛽. Let 𝛽 be

the element of 𝐼(𝑑) which was fixed at the beginning of this
section. Consider thematrix of size 2𝑑×𝑑whose columns are
numbered by the entries of 𝛽 and the rows by {1, . . . , 2𝑑}; the
rows corresponding to the entries of 𝛽 form the 𝑑×𝑑 identity
matrix, and the remaining 𝑑 rows form a skew symmetric
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matrix whose upper half entries are variables of the form
𝑋(𝑟,𝑐), where (𝑟, 𝑐) ∈ OR(𝛽).

Let M𝑑(𝑉) ⊆ 𝐺𝑑(𝑉) → P(∧𝑑
𝑉) be the Plücker

embedding (where𝐺𝑑(𝑉) denotes the Grassmannian of all 𝑑-
dimensional subspaces of 𝑉). For 𝜃 in 𝐼(𝑑, 2𝑑), let 𝑝𝜃 denote
the corresponding Plücker coordinate. Consider the affine
patch A of P(∧𝑑

𝑉) given by 𝑝𝛽 ̸= 0. The affine patch A𝛽
:=

M𝑑(𝑉) ∩ A of the Orthogonal Grassmannian M𝑑(𝑉) is an
affine space whose coordinate ring can be taken to be the
polynomial ring in variables of the form 𝑋(𝑟,𝑐) with (𝑟, 𝑐) ∈

OR(𝛽).
For 𝜃 ∈ 𝐼(𝑑), consider the submatrix of the above men-

tionedmatrix given by the rows numbered 𝜃\𝛽 and columns
numbered 𝛽 \ 𝜃. Such a submatrix is of even size and is skew-
symmetric about antidiagonal, therefore its determinant is a
square. The square root, which is determined up to sign, is
called the Pfaffian. Let 𝑓𝜃,𝛽 denote this Pfaffian. Set 𝑌𝛾

𝛼
(𝛽) :=

𝑋
𝛾

𝛼
∩A𝛽. From [10] we can deduce a set of generators for the

ideal 𝐼 of functions on A𝛽 vanishing on 𝑌
𝛾

𝛼
(𝛽) (see Section

4.2 of [9] for the special case of the Schubert varieties). The
following equation gives the generators:

𝐼 = (𝑓𝜏,𝛽 | 𝜏 ∈ 𝐼 (𝑑) , 𝛼 ≰ 𝜏 or 𝜏 ≰ 𝛾) . (1)

We are interested in the tangent cone to 𝑋
𝛾

𝛼
at 𝑒𝛽 or, what is

the same, the tangent cone to 𝑌
𝛾

𝛼
(𝛽) at the origin. Observe

that𝑓𝜏,𝛽 is a homogeneous polynomial. Because of this,𝑌𝛾

𝛼
(𝛽)

itself is a cone and so is equal to its tangent cone at the origin.
The ideal of the tangent cone to𝑋𝛾

𝛼
at 𝑒𝛽 is therefore the ideal

𝐼 in (1).

3.4. The Term Order. We now specify the term order ⊳ on
monomials in the coordinate functions (of the tangent space
to M𝑑(𝑉) at the torus fixed point 𝑒𝛽; it is easy to see that
coordinate ring of the tangent space to M𝑑(𝑉) at 𝑒𝛽 is the
polynomial ring in variables of the form𝑋(𝑟,𝑐), where (𝑟, 𝑐) ∈
OR(𝛽)) with respect to which the initial ideal of the ideal 𝐼
of the tangent cone is to be taken.

Let > be a total order on OR(𝛽) satisfying all of the
following 6 conditions.

(i) 𝜇 > 𝜈, if 𝜇 ∈ ON(𝛽), 𝜈 ∈ OR(𝛽) \ ON(𝛽), and the
row indices of 𝜇 and 𝜈 are equal.

(ii) 𝜇 > 𝜈, if 𝜇 ∈ ON(𝛽), 𝜈 ∈ ON(𝛽), the row indices of
𝜇 and 𝜈 are equal, and the column index of 𝜇 exceeds
that of 𝜈.

(iii) 𝜇 > 𝜈 if 𝜇 ∈ ON(𝛽), 𝜈 ∈ OR(𝛽), and the row index
of 𝜇 is less than that of 𝜈.

(iv) 𝜇 > 𝜈, if 𝜇 ∈ OR(𝛽) \ ON(𝛽), 𝜈 ∈ ON(𝛽), and the
column indices of 𝜇 and 𝜈 are equal.

(v) 𝜇 > 𝜈, if 𝜇 ∈ OR(𝛽) \ON(𝛽), 𝜈 ∈ OR(𝛽) \ON(𝛽),
the column indices of 𝜇 and 𝜈 are equal, and the row
index of 𝜇 exceeds that of 𝜈.

(vi) 𝜇 > 𝜈, if 𝜇 ∈ OR(𝛽) \ ON(𝛽), 𝜈 ∈ OR(𝛽), and the
column index of 𝜇 is less than that of 𝜈.

Note here that the first 3 conditions above are the same as the
conditions put on the total order >1 as mentioned in Section
1.6 of [3]. Recall that in the paper [3], initial ideals of ideals of
tangent cones at torus fixed points to the Schubert varieties
in Orthogonal Grassmannians were computed, and the paper
[3] did not deal with the Richardson varieties. The last 3
conditions above arise in this paper as an addition to the 3
conditions put on the total order >1 (as mentioned in Section
1.6 of [3]), because here we are dealing with the Richardson
varieties inM𝑑(𝑉).

Let ⊳ be the term order on monomials in OR(𝛽) given
by the homogeneous lexicographic order with respect to >.

Remark 2. The total order > on OR(𝛽) satisfying the 6
propertiesmentioned above can be realized as a concrete total
order onOR(𝛽) if we put the following extra condition on it.

Let 𝑟(𝜇), 𝑟(𝜈), 𝑐(𝜇), and 𝑐(𝜈) denote the row index of 𝜇,
the row index of 𝜈, the column index of 𝜇, and the column
index of 𝜈, respectively. If 𝑟(𝜇) < 𝑟(𝜈), 𝜇 ∈ OR(𝛽) \ON(𝛽),
𝜈 ∈ ON(𝛽), and 𝑐(𝜈) < 𝑐(𝜇), then 𝜈 > 𝜇 when (𝑟(𝜈), 𝑐(𝜇)) ∉

N(𝛽)and 𝜇 > 𝜈 when (𝑟(𝜈), 𝑐(𝜇)) ∈ N(𝛽).

3.5. Extended V-Chains and Associated Elements of 𝐼(𝑑). For
this subsection, let V be an arbitrarily fixed element of 𝐼(𝑑, 2𝑑)
(not necessarily an element of 𝐼(𝑑), unless otherwise stated).
For elements 𝜆 = (𝑅, 𝐶), 𝜇 = (𝑟, 𝑐) of R(V), we write 𝜆 > 𝜇

if 𝑅 > 𝑟 and 𝐶 < 𝑐 (Note that these are strict inequalities.).
A sequence 𝜆1 > ⋅ ⋅ ⋅ > 𝜆𝑘 of elements of OR(V) is called an
extended V-chain. Note that an extended V-chain can also be
empty. Letting 𝐶 to be an extended V-chain, we define 𝐶+

:=

𝐶∩ON(V) and𝐶−
:= 𝐶∩(OR(V)\ON(V)).We call𝐶+ (resp.,

𝐶
−) the positive (resp., negative) parts of the extended V-chain

𝐶. We call an extended V-chain 𝐶 positive (resp., negative) if
𝐶 = 𝐶

+ (resp., 𝐶 = 𝐶
−). The extended V-chain 𝐶 is called

nonempty if it has at least one element in it. Note that if we
specialize to the case when V ∈ 𝐼(𝑑), then whatever is called a
V-chain in Section 2.4.1 of [9] is a positive extended V-chain
over here. To every extended V-chain𝐶, we will now associate
2 subsets dV

𝐶
(+) and dV

𝐶
(−) of dV (each of even cardinality), but

for that we first need to fix some notation and recall certain
terminology from [3, 9].

Definition 3 (Pr and Pro). Given any subset 𝐷 of ON(V), let
Pr(𝐷) denote the monomial whose underlying set is given by
{𝜇 | 𝜇 is a vertical or horizontal projection of some element of
𝐷} (both vertical and horizontal, as defined in Section 2.3 of
[9]), and the cardinality of any element 𝜇 of this underlying
set inside themonomial Pr(𝐷) equals the number of elements
in 𝐷 whose one of the projections (vertical or horizontal)
is 𝜇. For 𝜆 = (𝑟, 𝑐) in R(V), define 𝜆

#
:= (𝑐

∗
, 𝑟

∗
). The

involution 𝜆 → 𝜆
# is just the reflection with respect to the

diagonal dV. For a subset E of N(V), the symbol E# has the
obvious meaning. One calls E 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 if E = E#. Given
any symmetric subset 𝐸 ofN(V), let one denote by 𝐸(top) the
set 𝐸 ∩ ON(V), by 𝐸(diag) the set 𝐸 ∩ dV, and by Pro(𝐸) the
monomial formed by taking the union of the subset 𝐸(diag)
with themonomial Pr(𝐸(top)). Let onemake the definition of
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Pro(𝐸)more precise.Themultiplicity withwhich any element
occurs in the monomial Pro(𝐸) is equal to the sum of the
multiplicities with which the element occurs in the subset
𝐸(diag) and the monomial Pr(𝐸(top)). So for any symmetric
subset𝐸 ofN(V), Pro(𝐸) is amonomial consisting of elements
from the diagonal. Similarly for any subset𝐷 ofON(V), Pr(𝐷)

is also a monomial consisting of elements from the diagonal.

Let V ∈ 𝐼(𝑑). Let 𝐶 : 𝛼1 = (𝑟1, 𝑐1) > 𝛼2 = (𝑟2, 𝑐2) > ⋅ ⋅ ⋅ >

𝛼𝑙 = (𝑟𝑙, 𝑐𝑙) be a positive extended V-chain in ON(V). Two
consecutive elements 𝛼𝑗 and 𝛼𝑗+1 of𝐶 are said to be connected
if the following conditions are both satisfied:

(i) their legs are “intertwined”, that is, 𝑟∗
𝑗
≥ 𝑐𝑗+1,

(ii) the point (𝑟𝑗+1, 𝑟
∗

𝑗
) belongs toN(V).

Consider the coarsest equivalence relation on the elements
of 𝐶 generated by the above relation. The equivalence classes
of 𝐶 with respect to this equivalence relation are called the
connected components of the V-chain 𝐶.

For any 𝛼 = (𝑟, 𝑐) inON(V), the elements 𝑝V(𝛼) := (𝑐
∗
, 𝑐)

and 𝑝ℎ(𝛼) := (𝑟, 𝑟
∗
) of the diagonal are called, respectively,

the vertical and horizontal projections of 𝛼. Given the positive
extended V-chain𝐶 as above, letS𝐶 be themonomial ofN(V)

associated to 𝐶 defined as follows.
First suppose that 𝐶 is a connected V-chain in ON(V).
Observe that if there is at all an integer 𝑗 (1 ≤ 𝑗 ≤ 𝑙) such
that the horizontal projection𝑝ℎ(𝛼𝑗) does not belong toN(V),
then 𝑗 = 𝑙. Define

S𝐶 :=

{{{{{{{

{{{{{{{

{

{𝑝V (𝛼1) , . . . , 𝑝V (𝛼𝑙)} if 𝑙 is even
{𝑝V (𝛼1) , . . . , 𝑝V (𝛼𝑙)} ∪ {𝑝ℎ (𝛼𝑙)}

if 𝑙 is odd, 𝑝ℎ (𝛼𝑙) ∈ N (V)

{𝑝V (𝛼1) , . . . , 𝑝V (𝛼𝑙−1)} ∪ {𝛼𝑙, 𝛼
#
𝑙
}

if 𝑙 is odd, 𝑝ℎ (𝛼𝑙) ∉ N (V) .

(2)

For a V-chain 𝐶 that is not necessarily connected, let
𝐶 = 𝐶1 ∪ 𝐶2 ∪ ⋅ ⋅ ⋅ be the partition of 𝐶 into its connected
components, and set

S𝐶 := S𝐶
1

∪S𝐶
2

∪ ⋅ ⋅ ⋅ . (3)

Note that even if we take V to be in 𝐼(𝑑, 2𝑑) (and not
merely in 𝐼(𝑑)) and define S𝐶 for any positive extended V-
chain 𝐶 exactly in the same way as we did above, there is no
logical inconsistency.Hencewe extend the definition ofS𝐶 to
any positive extended V-chain 𝐶, where V ∈ 𝐼(𝑑, 2𝑑). Clearly
S𝐶 is a symmetric subset of N(V). Hence the monomial
Pro(S𝐶) is well defined for any positive extended V-chain 𝐶,
where V ∈ 𝐼(𝑑, 2𝑑).

Definition 4 (the flip map 𝐹). For any V ∈ 𝐼(𝑑, 2𝑑) and any
element 𝜆 = (𝑟, 𝑐) ∈ R(V), let 𝐹(𝜆) be the element of R(V

∗
)

given by 𝐹(𝜆) := (𝑐, 𝑟). So 𝐹 is an invertible map from R(V)

toR(V
∗
) (note here that if V ∈ 𝐼(𝑑), then V

∗ needs not always
to belong to 𝐼(𝑑)); let one denote the inverse of 𝐹 by 𝐹−1. The
map 𝐹 naturally induces an invertible map from the set of all
monomials inR(V) to the set of all monomials inR(V

∗
). One

continues to call the induced map 𝐹 and its inverse 𝐹−1.

Definition 5 (the subsets dV
𝐶
(+) and dV

𝐶
(−) of dV). Given any

non-empty extended V-chain 𝐶, one will now associate 2

subsets dV
𝐶
(+) and dV

𝐶
(−) of dV (each of even cardinality) with

it. Let

d
V

𝐶
(+) :=

{

{

{

𝐹
−1
(Pr (𝐹 (𝐶)) \𝑚Pro (S𝐹(𝐶)))

if 𝐶 is negative
Pro (S𝐶+) if otherwise.

(4)

Similarly, let

d
V

𝐶
(−) := {

Pr (𝐶) \𝑚Pro (S𝐶) if 𝐶 is positive
𝐹
−1
(Pro (S𝐹(𝐶−))) if otherwise.

(5)

It is an easy exercise to check that dV
𝐶
(+) and dV

𝐶
(−) thus

defined are actually subsets (not monomials) of dV and that
each of them has even cardinality.

Definition 6 (elements of 𝐼(𝑑) associated with dV
𝐶
(+) and

dV
𝐶
(−)). For this definition, we let V to be an arbitrary element

in 𝐼(𝑑). Note that given any subset 𝑆 of dV of even cardinality,
one can naturally associate an element of 𝐼(𝑑) to it by
removing those entries from V which appear as column
indices in the elements of the set 𝑆 and then adding to it the
row indices of all the elements of 𝑆. It is easy to check that
the resulting element actually belongs to 𝐼(𝑑). One denotes
the resulting element by 𝐼(𝑑)(𝑆). If 𝑆 is empty, then 𝐼(𝑑)(𝑆) is
taken to be V itself.

Let 𝑤+

𝐶
(V) := 𝐼(𝑑)(dV

𝐶
(+)) and 𝑤

−

𝐶
(V) := 𝐼(𝑑)(dV

𝐶
(−)).

These are the two elements of 𝐼(𝑑) that we can naturally
associate with the subsets dV

𝐶
(+) and dV

𝐶
(−) of dV.

3.6.TheMainTheorem and a Strategy of the Proof. Recall that
the ideal of the tangent cone to𝑋𝛾

𝛼
at 𝑒𝛽 is the ideal 𝐼 given by

(1). Let ⊳ be as in Section 3.4. For any element 𝑓 ∈ 𝐼; let in⊳𝑓

denote the initial term of 𝑓 with respect to the term order
⊳. We define in⊳𝐼 to be the ideal ⟨in⊳𝑓 | 𝑓 ∈ 𝐼⟩ inside the
polynomial ring 𝑃 := k[𝑋(𝑟,𝑐) | (𝑟, 𝑐) ∈ OR(𝛽)]. For any
monomial 𝑈 in OR(𝛽), let us denote by 𝑋𝑈 the product of
all the elements 𝑋(𝑟,𝑐), where (𝑟, 𝑐) runs over the elements in
𝑈 with multiplicities.

Let Chains𝛾
𝛼
(𝛽) denote the set {𝑋𝐶 |𝐶 is a nonempty

extended 𝛽-chain in OR(𝛽) such that either (i) or (ii) below
holds}.

(i) 𝐶− is nonempty, and 𝛼 ≰ 𝑤
−

𝐶−
(𝛽). (ii) 𝐶+ is nonempty,

and 𝑤
+

𝐶+
(𝛽) ≰ 𝛾.

The main result of this paper is the following.

Theorem 7. in⊳𝐼 = ⟨Chains𝛾
𝛼
(𝛽)⟩.

Example 8. Let 𝑑 = 5, 𝛼 = (1, 2, 3, 6, 7), 𝛽 = (1, 2, 4, 6, 8), and
𝛾 = (1, 2, 5, 7, 8). Clearly then 𝛼 ≤ 𝛽 ≤ 𝛾. It can be verified
that the set Chains𝛾

𝛼
(𝛽) consists of elements of the following

3 types.

(i) Any extended 𝛽-chain in OR(𝛽) which contains the
element (3, 6).

(ii) Any extended 𝛽-chain in OR(𝛽) which contains the
element (3, 4) and a nonempty positive part.
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(iii) All positive extended 𝛽-chain in OR(𝛽) except the
singleton-𝛽-chain {(5, 4)}.

One can therefore determine the corresponding initial
ideal in⊳𝐼 usingTheorem 7.

Remark 9. It follows from the statement of Theorem 7 that
the set of all monomials inOR(𝛽)which contain at least one
extended 𝛽-chain𝐶 such that𝑋𝐶 ∈ Chains𝛾

𝛼
(𝛽) form a vector

space basis of the initial ideal in⊳𝐼 over the field k; see, for
example, Example 8. In the special case when the Richardson
variety is a Schubert variety, it is easy to see that the previous
statement of this remark says exactly what has been said in
the main theorem (Theorem 1.8.1) of [3].

Remark 10. Since in⊳𝐼 = ⟨Chains𝛾
𝛼
(𝛽)⟩, it follows that the

dimension as a vector space of the graded piece of 𝑃/in⊳𝐼 of
degree 𝑚 equals the cardinality of the set of all monomials
in OR(𝛽) of degree 𝑚 which do not contain any extended
𝛽-chain 𝐶 such that𝑋𝐶 ∈ Chains𝛾

𝛼
(𝛽).

Since 𝑃/𝐼 and 𝑃/in⊳𝐼 have the same Hilbert function, the
same is true with 𝑃/in⊳𝐼 (in the previous statement) replaced
by 𝑃/𝐼. Hence if 𝑅𝛾

𝛼
(𝛽) denotes the coordinate ring of the

tangent cone to𝑋𝛾

𝛼
at 𝑒𝛽, then the dimension as a vector space

of the homogeneous piece of 𝑅𝛾

𝛼
(𝛽) of degree 𝑚 equals the

cardinality of the set of all monomials in OR(𝛽) of degree
𝑚 which are such that for every extended 𝛽-chain 𝐶 in the
monomial, 𝛼 ≤ 𝑤

−

𝐶−
(𝛽) and 𝑤

+

𝐶+
(𝛽) ≤ 𝛾.

From Remark 10, the following corollary is immediate
(the proof is similar to that of Corollary 2.5.2 of [9])

Corollary 11. Themultiplicity of𝑋𝛾

𝛼
at 𝑒𝛽 equals the number of

monomials inOR(𝛽) of maximal cardinality that are square-
free and are such that, given any extended 𝛽-chain 𝐶 in any of
these monomials, one has: 𝛼 ≤ 𝑤

−

𝐶−
(𝛽) and 𝑤+

𝐶+
(𝛽) ≤ 𝛾.

We now briefly sketch the proof of Theorem 7 (omitting
details, which can be found in Section 8). In order to
introduce the main combinatorial objects of interest and
outline a strategy of the proof, we will first need to prove that
the set Chains𝛾

𝛼
(𝛽) ⊆ in⊳𝐼, and this proof will follow from

whatever is said in Remark 12.

Remark 12. Let𝐶 be a nonempty extended𝛽-chain inOR(𝛽)

such that𝑋𝐶 ∈ Chains𝛾
𝛼
(𝛽). If 𝐶+ is nonempty and 𝑤

+

𝐶+
(𝛽) ≰

𝛾, then it can be proved that 𝑋𝐶+ ∈ in⊳𝐼, the proof being
exactly the same as that in Section 4 of [3]. Then since in⊳𝐼 is
an ideal and𝑋𝐶 = 𝑋𝐶−𝑋𝐶+ , it follows that𝑋𝐶 ∈ in⊳𝐼.

If 𝐶− is nonempty and 𝛼 ≰ 𝑤
−

𝐶−
(𝛽), look at 𝐹(𝐶−

), where
𝐹 is the flip map as defined in Definition 4 from the set of
all monomials inR(𝛽) to the set of all monomials inR(𝛽

∗
).

Then 𝐹(𝐶
−
) is a positive extended 𝛽

∗-chain in OR(𝛽
∗
). We

need to prove that 𝑋𝐶 ∈ in⊳𝐼, for which it is enough to
show that 𝑋𝐶− ∈ in⊳𝐼. To prove that 𝑋𝐶− ∈ in⊳𝐼, we will
proceed in a way equivalent to the proof done in Section 4 of
[3]. But there is a subtle difference between what is proved in
Section 4 of [3] and what we are going to prove here; namely,
Whatever was proved in Section 4 of [3] can be rephrased in
the language of this paper as “Every positive extended𝛽-chain

𝐷 satisfying the property that𝑤+

𝐷
(𝛽) ≰ 𝛾 belongs to the initial

ideal of the ideal of the tangent cone,” but here we are going
to prove that “Every negative extended 𝛽-chain 𝐷 satisfying
the property that 𝛼 ≰ 𝑤

−

𝐷
(𝛽) belongs to the initial ideal of the

ideal of the tangent cone.”
Because of this subtle difference, we need to construct

certain gadgets for negative extended 𝛽-chains, which will
play a role similar to the role of the objects like the new forms,
Proj and Proj𝑒 corresponding to positive extended 𝛽-chains
(For positive extended 𝛽-chains, such objects are already
defined in [3]). This construction is given in the following
paragraph.

Consider the positive extended 𝛽
∗-chain 𝐹(𝐶

−
). We can

construct new forms, Proj and Proj𝑒 for 𝐹(𝐶−
) in the same

way as they were constructed in [3], note here the fact that
𝛽
∗ may or may not belong to 𝐼(𝑑) does not really affect the

construction of the new forms, Proj and Proj𝑒 for𝐹(𝐶−
).Then

we apply the map 𝐹−1 to these objects constructed for 𝐹(𝐶−
),

the resulting objects are the analogues of the new forms, Proj
and Proj𝑒 for the negative extended 𝛽-chain 𝐶

−. We apply
a similar treatment to any other monomial related to 𝐹(𝐶

−
)

that we happen to encounter if we replace the “V-chain 𝐴”
in Section 4.2 of [3] with “the positive extended 𝛽

∗-chain
𝐹(𝐶

−
).”

In Section 2.4 of [3], an element 𝑦𝐸 of 𝐼(𝑑) corresponding
to any V-chain 𝐸 (the notion of a V-chain being as in Section
1.7 of [3]) has been defined. The analogous element of 𝐼(𝑑)
for the negative extended 𝛽-chain𝐶− (we call it 𝑦𝐶− here) can
be obtained from 𝐹

−1
(Proj𝑒(𝐹(𝐶−

))) by following the natural
process: the column indices of elements of 𝐹−1

(Proj𝑒(𝐹(𝐶−
)))

occur as members of 𝛽; these are replaced by the row indices to
obtain the desired element of 𝐼(𝑑) for 𝐶−. It is easy to check
that 𝑦𝐶− belongs to 𝐼(𝑑) and that 𝑦𝐶− ≤ 𝑤

−

𝐶−
(𝛽) ≤ 𝛽. Since we

already have that 𝛼 ≰ 𝑤
−

𝐶−
(𝛽), it follows that 𝛼 ≰ 𝑦𝐶− . These

facts about 𝑦𝐶− will be needed to produce an analogue of the
main proof of [3] in our present case. To be more precise,
these facts about 𝑦𝐶− give the analogues of Propositions 2.4.1
and 2.4.2 of [3], and these two propositions had been used
quite crucially inside the main proof of [3].

With all these analogues constructed for negative ex-
tended 𝛽-chains, we can proceed in an “equivalent” manner
(Here, by “equivalent” we mean keeping track of the subtle
difference as mentioned above and working accordingly.) as
in the paper [3] and end up proving the desired fact, namely,
𝑋𝐶− ∈ in⊳𝐼.

Since Chains𝛾
𝛼
(𝛽) ⊆ in⊳𝐼, we have ⟨Chains𝛾

𝛼
(𝛽)⟩ ⊆

in⊳𝐼. To prove Theorem 7, we now need to show that
⟨Chains𝛾

𝛼
(𝛽)⟩ ⊇ in⊳𝐼. For this, it suffices to show that, in

any degree, the number of monomials of ⟨Chains𝛾
𝛼
(𝛽)⟩ is ≥

the number of monomials of in⊳𝐼. Or equivalently, it suffices
to show that, in any degree, the number of monomials of
𝑃/⟨Chains𝛾

𝛼
(𝛽)⟩ is ≤ the number of monomials of 𝑃/in⊳𝐼.

Consider the affine patch 𝑌
𝛾

𝛼
(𝛽) (:= 𝑋

𝛾

𝛼
∩ A𝛽

) of the
Richardson variety𝑋𝛾

𝛼
. The following is a well known result.

Theorem 13. k[𝑌𝛾

𝛼
(𝛽)] = 𝑃/𝐼, where 𝑃 = k[𝑋(𝑟,𝑐) | (𝑟, 𝑐) ∈

OR(𝛽)] and 𝐼 is as in (1).
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Table 1: Two subsets of the ring 𝑃 = k[𝑋
(𝑟,𝑐)

|(𝑟, 𝑐) ∈ OR(𝛽)] and their indexing sets.

Set of elements in 𝑃 = k[𝑋
(𝑟,𝑐)

|(𝑟, 𝑐) ∈ OR(𝛽)] Indexing set
Monomials of 𝑃/ ⟨Chains𝛾

𝛼
(𝛽)⟩ Pairs of nonempty skew-symmetric lexicographic multisets on 𝛽 × 𝛽 bounded by 𝑇

𝛼
,𝑊

𝛾

Standard monomials on 𝑌
𝛾

𝛼
(𝛽) Nonvanishing skew-symmetric notched bitableaux on 𝛽 × 𝛽 bounded by 𝑇

𝛼
,𝑊

𝛾

Both themonomials of𝑃/in⊳𝐼 and the standardmonomi-
als on𝑌𝛾

𝛼
(𝛽) form a basis for𝑃/𝐼, and thus agree in cardinality

in any degree. Therefore, to prove, that in any degree, the
number of monomials of 𝑃/⟨Chains𝛾

𝛼
(𝛽)⟩ is ≤ the number of

monomials of 𝑃/in⊳𝐼, it suffices to give a degree-preserving
injection from the set of all monomials in 𝑃/⟨Chains𝛾

𝛼
(𝛽)⟩

to the set of all standard monomials on 𝑌
𝛾

𝛼
(𝛽). We construct

such an injection, the Orthogonal-bounded-RSK (OBRSK),
from an indexing set of the former to an indexing set of the
later. These indexing sets are given in Table 1.

4. Skew-Symmetric Notched Bitableaux

In this section onwards, the terminology and notation of
Sections 4 and 5 of [8] will be in force. Recall the definition
of a semistandard notched bitableau from Section 5 of [8].

Definition 14 (dual of an element with respect to a semi-
standard notched bitableau). Let (𝑃, 𝑄) be a semistandard
notched bitableau. Let 𝑝𝑖,𝑗 (resp., 𝑞𝑖,𝑗) denote the entry in the
𝑖th row and 𝑗th column of 𝑃 (resp., 𝑄). For any row number
𝑖 of 𝑃 (or of 𝑄), let 𝑘𝑖 denote the total number of entries in
the 𝑖th row of 𝑃 (or 𝑄). One calls the entry 𝑞𝑖,𝑘

𝑖
+1−𝑗 of 𝑄 the

dual of the entry 𝑝𝑖,𝑗 of 𝑃 with respect to (𝑃, 𝑄). Similarly, we
call the entry 𝑝𝑖,𝑘

𝑖
+1−𝑗 of 𝑃 the dual of the entry 𝑞𝑖,𝑗 of𝑄 with

respect to (𝑃, 𝑄).

Note that any entry of 𝑃 or 𝑄 can be identified uniquely
by specifying 4 coordinates, namely, the entry 𝑥, the tableau
𝐴 (𝐴 = 𝑃 or 𝑄) in which the entry lies, the row number 𝑖 of
the entry in the tableau 𝐴, and the column number 𝑗 of the
entry in the tableau 𝐴. Let set(𝑃, 𝑄) denote the set of all 4-
tuples of the form (𝑥, 𝐴, 𝑖, 𝑗). Given any 4-tuple (𝑥, 𝐴, 𝑖, 𝑗) ∈
set(𝑃, 𝑄), let us denote by 𝐷(𝑃,𝑄)(𝑥, 𝐴, 𝑖, 𝑗) the 4-tuple which
represents the dual of 𝑥 with respect to (𝑃, 𝑄) (as defined in
Definition 14). For (𝑥, 𝐴, 𝑖, 𝑗), (𝑥

, 𝐴

, 𝑖

, 𝑗


) ∈ set(𝑃, 𝑄), we

say that (𝑥, 𝐴, 𝑖, 𝑗) ⪯ (𝑥

, 𝐴


, 𝑖

, 𝑗


) if 𝑥 ≤ 𝑥

. Similarly, we
say that (𝑥, 𝐴, 𝑖, 𝑗) ≺ (𝑥


, 𝐴


, 𝑖

, 𝑗


) if 𝑥 < 𝑥

 and (𝑥, 𝐴, 𝑖, 𝑗) ≃

(𝑥

, 𝐴


, 𝑖

, 𝑗


) if 𝑥 = 𝑥

.
A semistandard notched bitableau (𝑃, 𝑄) is said to be

skew-symmetric if the following 2 conditions are satisfied
simultaneously.

(i) The bitableau (𝑃, 𝑄) should be of even size; that is, the
number of elements in each row of 𝑃 and𝑄 should be
even.

(ii) For any (𝑥, 𝐴, 𝑖, 𝑗), (𝑥

, 𝐴


, 𝑖

, 𝑗


) ∈ set(𝑃, 𝑄), (𝑥, 𝐴,

𝑖, 𝑗) ⪯ (𝑥

, 𝐴


, 𝑖

, 𝑗


) if and only if 𝐷(𝑃,𝑄)(𝑥, 𝐴, 𝑖, 𝑗) ⪰

𝐷(𝑃,𝑄)(𝑥

, 𝐴


, 𝑖

, 𝑗


). Moreover, (𝑥, 𝐴, 𝑖, 𝑗) ≺ (𝑥


, 𝐴


, 𝑖
,

𝑗

) if and only if 𝐷(𝑃,𝑄)(𝑥, 𝐴, 𝑖, 𝑗) ≻

𝐷(𝑃,𝑄)(𝑥

, 𝐴


, 𝑖

, 𝑗


), and (𝑥, 𝐴, 𝑖, 𝑗) ≃ (𝑥


, 𝐴


, 𝑖

, 𝑗


) if

and only if 𝐷(𝑃,𝑄)(𝑥, 𝐴, 𝑖, 𝑗) ≃ 𝐷(𝑃,𝑄)(𝑥

, 𝐴


, 𝑖

, 𝑗


).

Property (ii) will be henceforth referred to as the duality
property associated to the skew-symmetric notched bitableau
(𝑃, 𝑄). Note that a skew-symmetric notched bitableau is a
semistandard notched bitableau by default. The degree of a
skew-symmetric notched bitableau (𝑃, 𝑄) is the total number
of boxes in 𝑃 (or 𝑄). The notions of negative, positive, and
nonvanishing skew-symmetric notched bitableau remain the
same as in Section 5 of [8]. The notion of a skew-symmetric
notched bitableau (𝑃, 𝑄) being bounded by 𝑇,𝑊 (where 𝑇,𝑊
are subsets of N2), and the notion of negative and positive
parts of a skew-symmetric notched bitableau (𝑃, 𝑄) remain
the same as they were in Section 5 of [8].

If (𝑃, 𝑄) is a nonvanishing skew-symmetric notched
bitableau, define 𝜄(𝑃, 𝑄) to be the notched bitableau obtained
by reversing the order of the rows of (𝑄, 𝑃). One checks that
𝜄(𝑃, 𝑄) is a nonvanishing skew-symmetric notched bitableau.
The map 𝜄 is an involution, and it maps negative skew-
symmetric notched bitableaux to positive ones and vice versa.
Thus 𝜄 gives a bijective pairing between the sets of negative
and positive skew-symmetric notched bitableaux.

5. Pairs of Skew-Symmetric Lexicographic
Multisets on N2

Recall the notions of a multiset onN2, finiteness of a multiset
on N2 and degree of a multiset on N2, from Section 4 of [8].
By a lexicographic multiset on N2, we mean a finite multiset
𝜋 = {(𝛼1, 𝛽1), . . . , (𝛼𝑡, 𝛽𝑡)} on N2 such that 𝛽𝑘 ≥ 𝛽𝑘+1 ∀𝑘,
and if 𝛽𝑘 = 𝛽𝑘+1, then 𝛼𝑘 ≥ 𝛼𝑘+1, 𝑘 = 1, . . . , 𝑡 − 1. Given
a lexicographic multiset 𝜋 on N2, let 𝜋𝑡 denote the multiset
on N2 (which is not necessarily lexicographic) obtained by
switching the two coordinates of 𝜋. We call the multiset
𝜋
𝑡 on N2 the transpose of the multiset 𝜋. Consider a pair

{𝜋1, 𝜋2} of multisets on N2 (not necessarily lexicographic),
where both 𝜋1 and 𝜋2 are of the same degree (say, 𝑡). Let
𝜋1 = {(𝑎1, 𝑏1), . . . , (𝑎𝑡, 𝑏𝑡)}, and 𝜋2 = {(𝑑1, 𝑐1), . . . , (𝑑𝑡, 𝑐𝑡)}.

We call the first coordinate of the multiset 𝜋1 the 𝑎-cell,
the second coordinate of 𝜋1 the 𝑏-cell, the first coordinate of
𝜋2 the 𝑑-cell, and the second coordinate of 𝜋2 the 𝑐-cell. Any
entry in the pair {𝜋1, 𝜋2} of multisets on N2 can be identified
uniquely by specifying 3 coordinates: the cell ∇ of {𝜋1, 𝜋2}

in which the entry lies (∇ = 𝑎, 𝑏, 𝑐, 𝑜𝑟 𝑑), the position 𝑖

(counting from left to right) of the entry in the cell ∇, and
the value ⊑ (∇, 𝑖) of the entry sitting in the 𝑖th position of the
cell ∇.
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Set 𝑆𝜋
1
,𝜋
2

:= {𝑥 | 𝑥 = (∇, 𝑖, ⊑ (∇, 𝑖)), ∇ ∈ {𝑎, 𝑏, 𝑐, 𝑑}, 𝑖 ∈

{1, . . . , 𝑡}}. For any 𝑥 ∈ 𝑆𝜋
1
,𝜋
2

, let

𝐷𝜋
1
,𝜋
2
(𝑥)

:=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

(𝑐, 𝑡 + 1 − 𝑖, ⊑ (𝑐, 𝑡 + 1 − 𝑖))

if 𝑥 = (𝑎, 𝑖, ⊑ (𝑎, 𝑖))

(𝑑, 𝑡 + 1 − 𝑖, ⊑ (𝑑, 𝑡 + 1 − 𝑖))

if 𝑥 = (𝑏, 𝑖, ⊑ (𝑏, 𝑖))

(𝑎, 𝑡 + 1 − 𝑖, ⊑ (𝑎, 𝑡 + 1 − 𝑖))

if 𝑥 = (𝑐, 𝑖, ⊑ (𝑐, 𝑖))

(𝑏, 𝑡 + 1 − 𝑖, ⊑ (𝑏, 𝑡 + 1 − 𝑖))

if 𝑥 = (𝑑, 𝑖, ⊑ (𝑑, 𝑖)) .

∀𝑖 ∈ {1, . . . , 𝑡}

(6)

We call 𝐷𝜋
1
,𝜋
2

(𝑥) the dual of 𝑥 with respect to the pair
{𝜋1, 𝜋2} of multisets on N2. Note that, for every 𝑥 ∈ 𝑆𝜋

1
,𝜋
2

, we
have 𝐷𝜋

1
,𝜋
2

(𝑥) ∈ 𝑆𝜋
1
,𝜋
2

. For any two elements 𝑥, 𝑥
∈ 𝑆𝜋

1
,𝜋
2

,
where 𝑥 = (∇, 𝑖, ⊑ (∇, 𝑖)) and 𝑥


= (∇


, 𝑖

, ⊑ (∇


, 𝑖

)), we say

that 𝑥 ≾ 𝑥
 if ⊑ (∇, 𝑖) ≤ ⊑ (∇


, 𝑖

). Similarly, we say that 𝑥⋨𝑥

if ⊑ (∇, 𝑖) < ⊑ (∇

, 𝑖

) and 𝑥 ≈ 𝑥

 if ⊑ (∇, 𝑖) =⊑ (∇

, 𝑖

).

The above pair {𝜋1, 𝜋2} of multisets on N2 is said to be
skew-symmetric lexicographic if the following conditions are
satisfied simultaneously.

(i) 𝜋1 is a lexicographic multiset on N2.
(ii) 𝜋𝑡

2
is a lexicographic multiset on N2.

(iii) 𝑎𝑖 < 𝑑𝑡+1−𝑖 ∀𝑖 ∈ {1, . . . , 𝑡}.
(iv) 𝑏𝑖 < 𝑐𝑡+1−𝑖 ∀𝑖 ∈ {1, . . . , 𝑡}.
(v) For any 𝑥, 𝑦 ∈ 𝑆𝜋

1
,𝜋
2

, 𝑥 ≾ 𝑦 if and only if
𝐷𝜋
1
,𝜋
2

(𝑥) ≿ 𝐷𝜋
1
,𝜋
2

(𝑦). Moreover, 𝑥⋨𝑦 if and only
if 𝐷𝜋

1
,𝜋
2

(𝑥) ⋩ 𝐷𝜋
1
,𝜋
2

(𝑦), and 𝑥 ≈ 𝑦‘ if and only if
𝐷𝜋
1
,𝜋
2

(𝑥) ≈ 𝐷𝜋
1
,𝜋
2

(𝑦) (→ this property is called the
duality property associated to the pair {𝜋1, 𝜋2} of
skew-symmetric lexicographic multisets on N2).

For any pair {𝜋1, 𝜋2} of skew-symmetric lexicographic
multisets on N2, we define the degree of the pair to be 2 times
the degree of 𝜋1 (or of 𝜋2, they are the same). A pair {𝜋1, 𝜋2}

of skew-symmetric lexicographic multisets on N2 is said to
be negative if 𝑎𝑘 < 𝑏𝑘, 𝑘 = 1, . . . , 𝑡, positive if 𝑎𝑘 > 𝑏𝑘, 𝑘 =

1, . . . , 𝑡, and nonempty if 𝑎𝑘 ̸= 𝑏𝑘, 𝑘 = 1, . . . , 𝑡, where 𝜋1 =

{(𝑎1, 𝑏1), . . . , (𝑎𝑡, 𝑏𝑡)} and 𝜋2 = {(𝑑1, 𝑐1), . . . , (𝑑𝑡, 𝑐𝑡)}. Note that
condition (v) above will imply that if 𝑎𝑘 < 𝑏𝑘 ∀𝑘 = 1, . . . , 𝑡,
then 𝑑𝑡+1−𝑘 < 𝑐𝑡+1−𝑘 ∀𝑘 = 1, . . . , 𝑡. Similarly, if 𝑎𝑘 > 𝑏𝑘 ∀𝑘 =

1, . . . , 𝑡, then 𝑑𝑡+1−𝑘 > 𝑐𝑡+1−𝑘 ∀𝑘 = 1, . . . , 𝑡, and if 𝑎𝑘 ̸= 𝑏𝑘 ∀𝑘 =

1, . . . , 𝑡, then 𝑑𝑡+1−𝑘 ̸= 𝑐𝑡+1−𝑘 ∀𝑘 = 1, . . . , 𝑡.
Let {𝜋1, 𝜋2} be a pair of nonempty skew-symmetric lexi-

cographic multisets on N2 given by 𝜋1 = {(𝑎1, 𝑏1), . . . , (𝑎𝑡, 𝑏𝑡)}

and 𝜋2 = {(𝑑1, 𝑐1), . . . , (𝑑𝑡, 𝑐𝑡)}. Let us denote by 𝜋
−

1
(resp., 𝜋+

1
)

the lexicographic multiset onN2 consisting of those elements
of 𝜋1 such that 𝑎𝑖 < 𝑏𝑖 (resp., 𝑎𝑖 > 𝑏𝑖). Let us denote by
𝜋
−

2
(resp., 𝜋+

2
) the lexicographic multiset on N2 consisting

of those elements of 𝜋2 such that 𝑑𝑖 < 𝑐𝑖 (resp., 𝑑𝑖 > 𝑐𝑖).
We call {𝜋−

1
, 𝜋

−

2
} and {𝜋

+

1
, 𝜋

+

2
} the negative and positive parts

respectively of the pair {𝜋1, 𝜋2}. Note here that because of
condition (v) above,𝜋−

1
and𝜋−

2
will have the same degree, and

the same holds true for 𝜋+

1
and 𝜋

+

2
. It is easy to see now that

both the pairs {𝜋−

1
, 𝜋

−

2
} and {𝜋

+

1
, 𝜋

+

2
} of multisets on N2 are

skew-symmetric lexicographic in their own right.
Given a lexicographic multiset 𝜋 on N2, define 𝑙(𝜋) to be

the lexicographic multiset on N2 obtained by first switching
the two coordinates of 𝜋 and then rearranging the elements
so that the newmultiset is lexicographic. Let 𝑙𝑡 be amap from
the set of all lexicographic multisets on N2 to itself given by
first switching the two coordinates of a given lexicographic
multiset 𝜋 and then rearranging the elements so that the
transpose of the resulting multiset becomes lexicographic.

We now define an involution 𝐿 on the set of all
pairs of skew-symmetric lexicographic multisets on N2 by
𝐿({𝜋1, 𝜋2}) := {𝑙(𝜋1), 𝑙

𝑡
(𝜋2)}. It is easy to check that this map

is well defined, and it maps pairs of negative skew-symmetric
lexicographicmultisets onN2 to positive ones, and vice versa.
Thus 𝐿 gives a bijective pairing between the set of all pairs of
negative skew-symmetric lexicographic multisets on N2 and
the set of all pairs of positive skew-symmetric lexicographic
multisets on N2.

6. The Orthogonal-Bounded-
RSK Correspondence

We next define the Orthogonal-bounded-RSK correspondence
(OBRSK) as a function which maps a pair of negative
skew-symmetric lexicographic multisets on N2 to a negative
skew-symmetric notched bitableau. Let {𝜋1, 𝜋2} be a pair
of negative skew-symmetric lexicographic multisets on N2

whose entries are labeled as in Section 5.We inductively form
a sequence of notched bitableaux (𝑃

(0)
, 𝑄

(0)
), (𝑃(1)

, 𝑄
(1)
),

. . . , (𝑃
(𝑡)
, 𝑄

(𝑡)
), such that each (𝑃

(𝑖)
, 𝑄

(𝑖)
) is of even size, and

𝑃
(𝑖) is semistandard on 𝑏𝑖 for every 𝑖 = 1, . . . , 𝑡 as follows.
Let (𝑃(0)

, 𝑄
(0)
) = (0, 0), and let 𝑏0 = 𝑏1. Assume induc-

tively that we have formed (𝑃
(𝑖)
, 𝑄

(𝑖)
), such that the notched

bitableau (𝑃
(𝑖)
, 𝑄

(𝑖)
) is of even size, 𝑃(𝑖) is semistandard on 𝑏𝑖

and thus on 𝑏𝑖+1, since 𝑏𝑖+1 ≤ 𝑏𝑖.
Let us first fix some notation and terminology. Let 𝑝(𝑖)

𝑘𝑗

(resp., 𝑞(𝑖)
𝑘𝑗
) denote the entry in the 𝑘th row and 𝑗th column

of 𝑃(𝑖) (resp.,𝑄(𝑖)). Let 2𝑙(𝑖)
𝑘
denote the total number of entries

(note that it is always even) in the 𝑘th row of 𝑃(𝑖) (or 𝑄(𝑖)).
Given an arbitrary notched tableau 𝑃 and any row

number 𝑘 of 𝑃, we call the entry in the 𝑗th box (counting from
left to right) the forward 𝑗th entry of the 𝑘th row of 𝑃. Similarly,
we call the entry in the 𝑗th box (counting from right to left) of
𝑃 the backward 𝑗th entry of the 𝑘th row of 𝑃.

It is now easy to see that the backward 𝑗th entry of the 𝑘th
row of𝑄(𝑖) is actually equal to the forward (2𝑙(𝑖)

𝑘
+1−𝑗)th entry

of 𝑄(𝑖). We now describe the OBRSK correspondence for
the pair {𝜋1, 𝜋2} of negative skew-symmetric lexicographic
multisets on N2 as mentioned above in Section 5.

Perform the bounded insertion process 𝑃(𝑖)
𝑏
𝑖+1

← 𝑎𝑖+1 as in
[8]. In this finite-step process of bounded insertion, suppose
that 𝑎𝑖+1 had bumped the “forward 𝑗1th entry” of the 1st row
of 𝑃(𝑖)<𝑏

𝑖+1 (see Section 3 of [8] for the notation 𝑃
(𝑖)<𝑏
𝑖+1 , it
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comes in the paragraph right after Example 3.1 of [8]); the
“forward 𝑗1th entry” of the 1st row of 𝑃(𝑖)<𝑏

𝑖+1 has bumped
the “forward 𝑗2th entry” of the 2nd row of 𝑃(𝑖)<𝑏

𝑖+1 , . . . and
so on until, at some point, a number is placed in a new box
at the right end of some row of 𝑃(𝑖)<𝑏

𝑖+1 , say this happens at
the row number 𝐾(𝑖) of 𝑃

(𝑖)<𝑏
𝑖+1 . Say that the entry of the new

box (as mentioned in the previous statement) becomes the

forward 𝑗𝐾
(𝑖)

th entry of the𝐾(𝑖)th row of 𝑃(𝑖)
𝑏
𝑖+1

← 𝑎𝑖+1. We then
construct a new notched tableau as follows.

We let 𝑐𝑡−𝑖 bump the “backward 𝑗1th entry” of the 1st
row of 𝑄(𝑖); then we let the “backward 𝑗1th entry” of the
1st row of 𝑄(𝑖) bump the “backward 𝑗2th entry” of the 2nd
row of 𝑄(𝑖)

, . . . and so on until, at some point, a number is
placed in a new box at the backward 𝑗𝐾

(𝑖)

th position of the
𝐾(𝑖)th row of 𝑄(𝑖), shifting all entries in the backward 1st . . .
up to (and including) the backward (𝑗𝐾

(𝑖)

− 1)th positions
of the 𝐾(𝑖)th row of 𝑄(𝑖) to the right by one box. Essentially,
whatever we did for the bounded insertion process producing

𝑃
(𝑖)

𝑏
𝑖+1

← 𝑎𝑖+1, we do a dual version of the same process on 𝑄
(𝑖)

with the integer 𝑐𝑡−𝑖. We denote the resulting notched tableau
by 𝑄(𝑖) dual

← 𝑐𝑡−𝑖.

Note here that the tableaux 𝑃(𝑖)
𝑏
𝑖+1

← 𝑎𝑖+1 and 𝑄
(𝑖) dual

← 𝑐𝑡−𝑖

so constructed are of the same shape, but there exists one row
in both of them in which the total number of entries is odd.
We wanted to construct a notched bitableau (𝑃

(𝑖+1)
, 𝑄

(𝑖+1)
)

inductively from (𝑃
(𝑖)
, 𝑄

(𝑖)
) which should be of even size. We

make it possible in the following way.
Let 𝐾(𝑖) be the row number of 𝑃(𝑖) (or of 𝑄(𝑖)) at which

the above-mentioned insertion algorithm had stopped. Place
𝑑𝑡+1−(𝑖+1) (= 𝑑𝑡−𝑖) in a new box at the rightmost end of the

𝐾(𝑖)th row of 𝑃(𝑖)
𝑏
𝑖+1

← 𝑎𝑖+1. We denote the resulting notched
tableau by 𝑃

(𝑖+1). It is an easy exercise to see that 𝑃(𝑖+1) as
constructed above will be semistandard on 𝑏𝑖+1. After this,
we place 𝑏𝑖+1 in a new box at the leftmost end of the 𝐾(𝑖)th

row of 𝑄(𝑖) dual
← 𝑐𝑡−𝑖, shifting all previously existing entries in

the 𝐾(𝑖)th row of 𝑄(𝑖) dual
← 𝑐𝑡−𝑖 to the right by one box. We

denote the resulting notched tableau by 𝑄(𝑖+1). Clearly 𝑃(𝑖+1)

and 𝑄
(𝑖+1) have the same shape. Now we have got hold of a

notched bitableau (𝑃
(𝑖+1)

, 𝑄
(𝑖+1)

) which is of even size.
Then OBRSK ({𝜋1, 𝜋2}) is defined to be (𝑃(𝑡)

, 𝑄
(𝑡)
). In the

process above, we write (𝑃(𝑖+1)
, 𝑄

(𝑖+1)
) = (𝑃

(𝑖)
, 𝑄

(𝑖)
)

𝑏
𝑖+1

,𝑐
𝑡+1−(𝑖+1)

←

𝑎𝑖+1, 𝑑𝑡+1−(𝑖+1). In terms of this notation, OBRSK ({𝜋1, 𝜋2}) =

((0, 0)
𝑏
1
,𝑐
𝑡

← 𝑎1, 𝑑𝑡) ⋅ ⋅ ⋅
𝑏
𝑡
,𝑐
1

← 𝑎𝑡, 𝑑1.

Lemma 15. With notation as in the definition of the OBRSK
correspondence mentioned above, 𝑃(𝑖) is row strict for all 𝑖 ∈
{1, . . . , 𝑡}.

Proof. We will prove the lemma by induction on 𝑖. The base
case (i.e., when 𝑖 = 1) of induction is easy to see. Now let
𝑖 ∈ {1, . . . , 𝑡 − 1}. Assume inductively that 𝑃(𝑖) is row strict.

We will now prove that 𝑃(𝑖+1) is row strict. That 𝑃(𝑖)
𝑏
𝑖+1

← 𝑎𝑖+1 is
row strict follows in the same way as in [8]. Note that 𝑃(𝑖+1)

is obtained from 𝑃
(𝑖)

𝑏
𝑖+1

← 𝑎𝑖+1 by adding 𝑑𝑡−𝑖 at the rightmost

end of some rowof𝑃(𝑖)
𝑏
𝑖+1

← 𝑎𝑖+1, say the 𝑘th row. It now suffices
to ensure that 𝑑𝑡−𝑖 is strictly bigger than all entries in the 𝑘th

row of 𝑃(𝑖)
𝑏
𝑖+1

← 𝑎𝑖+1. It follows from the defining properties of
the pair of negative skew-symmetric lexicographic multisets
{𝜋1, 𝜋2} on N2 that 𝑑𝑡−𝑖 is bigger than or equal to all entries

of 𝑃(𝑖)
𝑏
𝑖+1

← 𝑎𝑖+1. But here we need to prove something sharper;
namely, 𝑑𝑡−𝑖 is strictly bigger than all entries in the 𝑘th row of

𝑃
(𝑖)

𝑏
𝑖+1

← 𝑎𝑖+1. We will prove this now.

Clearly all the entries of 𝑃(𝑖)
𝑏
𝑖+1

← 𝑎𝑖+1 are contained in
{𝑎1, . . . , 𝑎𝑖+1} ∪̇ {𝑑𝑡+1−𝑖, . . . , 𝑑𝑡} (see Section 4 of [8] for the
notation ∪̇). Also it is easy to observe that 𝑎𝑗 < 𝑑𝑡−𝑖 ∀𝑗 ∈

{1, . . . , 𝑖 + 1}. So if the rightmost element of the 𝑘th row of

𝑃
(𝑖)

𝑏
𝑖+1

← 𝑎𝑖+1 equals 𝑎𝑗 for some 𝑗 ∈ {1, . . . , 𝑖 + 1}, then we are
done. Otherwise, the element in the rightmost end of the 𝑘th

row of 𝑃(𝑖)
𝑏
𝑖+1

← 𝑎𝑖+1 is 𝑑𝑗 for some 𝑗 ∈ {𝑡 + 1 − 𝑖, . . . , 𝑡} (say 𝑗0).
If 𝑑𝑗

0

< 𝑑𝑡−𝑖, then we are done. If not, then clearly 𝑑𝑗
0

= 𝑑𝑡−𝑖.
It then follows from duality that 𝑏𝑡+1−𝑗

0

= 𝑏𝑖+1, and it is also
clear that 𝑡 + 1 − 𝑗0 < 𝑖 + 1.

But it is an easy exercise to check that if 𝑙, 𝑙 ∈ {1, . . . , 𝑡}

are such that 𝑙 < 𝑙
 and 𝑏𝑙 = 𝑏𝑙 , then the number of the row

in which 𝑑𝑡+1−𝑙 lies in 𝑃
(𝑙

) is strictly bigger than the number

of the row in which 𝑑𝑡+1−𝑙 lies in 𝑃
(𝑙

) (Here, the row number

is counted from top to bottom.). So 𝑑𝑗
0

and 𝑑𝑡−𝑖 cannot lie in
the same row of 𝑃(𝑖+1), a contradiction, hence proved.

The proof of the following lemma appears in Section 9.

Lemma 16. If {𝜋1, 𝜋2} is a pair of negative skew-symmetric
lexicographic multisets on N2, then OBRSK({𝜋1, 𝜋2}) is a
negative skew-symmetric notched bitableau.

Lemma 17. The map OBRSK is a degree-preserving bijection
from the set of all pairs of negative skew-symmetric lexi-
cographic multisets on N2 to the set of all negative skew-
symmetric notched bitableaux.

Proof. That OBRSK is degree preserving is obvious. To show
that OBRSK is a bijection, we define its inverse, which we call
the reverse of OBRSK or ROBRSK.

Note that the entire procedure used to form (𝑃
(𝑖+1)

, 𝑄
(𝑖+1)

)

from (𝑃
(𝑖)
, 𝑄

(𝑖)
), 𝑎𝑖+1, 𝑏𝑖+1, 𝑐𝑡−𝑖 and 𝑑𝑡−𝑖, 𝑖 = 1, . . . , 𝑡 − 1, is

reversible. In other words, by knowing only (𝑃(𝑖+1)
, 𝑄

(𝑖+1)
), we

can retrieve (𝑃(𝑖)
, 𝑄

(𝑖)
), 𝑎𝑖+1, 𝑏𝑖+1, 𝑐𝑡−𝑖, and 𝑑𝑡−𝑖. First, we obtain

𝑏𝑖+1; it is the minimum entry of 𝑄(𝑖+1). Look at the lowest
row in which 𝑏𝑖+1 appears in 𝑄

(𝑖+1), say it is row number 𝑠
(counting from top to bottom). In the same row (row number
𝑠, counting from top to bottom) of𝑃(𝑖+1), look at the rightmost
entry: this entry is precisely 𝑑𝑡−𝑖. Remove this entry (which is
𝑑𝑡−𝑖) from the 𝑠th row of 𝑃(𝑖+1), that will give us the notched
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tableau 𝑃
(𝑖)

𝑏
𝑖+1

← 𝑎𝑖+1. Similarly remove the leftmost entry
(which is 𝑏𝑖+1) from the 𝑠th row of𝑄(𝑖+1), and all other entries
in this row of 𝑄(𝑖+1) should be moved one box to the left: this
will give us the notched tableau 𝑄

(𝑖) dual
← 𝑐𝑡−𝑖.

Then, in the 𝑠th row of 𝑃(𝑖)
𝑏
𝑖+1

← 𝑎𝑖+1, select the greatest
entry which is less than 𝑏𝑖+1. This entry was the new box of
the bounded insertion. If we begin reverse bounded insertion
with this entry, we retrieve 𝑃(𝑖) and 𝑎𝑖+1. Look at the path in

𝑃
(𝑖)

𝑏
𝑖+1

← 𝑎𝑖+1 starting from the 𝑠th row to the topmost row,
along which this reverse bounded insertion had happened.
Trace the “dual path” in 𝑄

(𝑖) dual
← 𝑐𝑡−𝑖 and do a dual of the

reverse bounded insertion (which was done originally on

𝑃
(𝑖)

𝑏
𝑖+1

← 𝑎𝑖+1 to retrieve 𝑃
(𝑖) and 𝑎𝑖+1) on 𝑄

(𝑖) dual
← 𝑐𝑡−𝑖: that

will give us 𝑄(𝑖) and 𝑐𝑡−𝑖 out of 𝑄
(𝑖) dual

← 𝑐𝑡−𝑖.
We call this process of obtaining (𝑃

(𝑖)
, 𝑄

(𝑖)
), 𝑎𝑖+1, 𝑏𝑖+1,

𝑐𝑡−𝑖, and 𝑑𝑡−𝑖 from (𝑃
(𝑖+1)

, 𝑄
(𝑖+1)

) described in the para-
graphs above a reverse step and denote it by (𝑃

(𝑖)
, 𝑄

(𝑖)
) =

(𝑃
(𝑖+1)

, 𝑄
(𝑖+1)

)
𝑏
𝑖+1

,𝑐
𝑡−𝑖

→ 𝑎𝑖+1, 𝑑𝑡−𝑖. We call the process of apply-
ing all the reverse steps sequentially to retrieve {𝜋1, 𝜋2} from
(𝑃

(𝑡)
, 𝑄

(𝑡)
) the reverse of OBRSK or ROBRSK.

If (𝑃
(𝑡)
, 𝑄

(𝑡)
) is an arbitrary negative skew-symmetric

notched bitableau (which we do not assume to be OBRSK
({𝜋1, 𝜋2}) for some {𝜋1, 𝜋2}), then we can still apply a
sequence of reverse steps to (𝑃(𝑡)

, 𝑄
(𝑡)
), to sequentially obtain

(𝑃
(𝑖)
, 𝑄

(𝑖)
), 𝑎𝑖+1, 𝑏𝑖+1, 𝑐𝑡−𝑖, and 𝑑𝑡−𝑖, 𝑖 = 𝑡 − 1, . . . , 1. For

this process to be well defined, however, it must first be
checked that the successive (𝑃

(𝑖)
, 𝑄

(𝑖)
) are negative skew-

symmetric notched bitableaux. For this, it suffices to prove
a statement very similar to that proved in Lemma 16; namely,
“If (𝑃, 𝑄) is a negative skew-symmetric notched bitableau,
then (𝑃


, 𝑄


) := (𝑃, 𝑄)

𝑏,𝑐

→ 𝑎, 𝑑 is a negative skew-symmetric
notched bitableau, 𝑎 < 𝑏, 𝑑 < 𝑐, 𝑎 < 𝑑, 𝑏 < 𝑐 are positive
integers, 𝑑 is greater than or equal to all entries of 𝑃, and 𝑏 is
less than or equal to all entries of𝑄.”That 𝑎 < 𝑏, 𝑑 < 𝑐, 𝑎 < 𝑑,
and 𝑏 < 𝑐 are positive integers, 𝑑 is greater than or equal to
all entries of 𝑃, and 𝑏 is less than or equal to all entries of
𝑄 follows immediately from the definition of a reverse step.
That (𝑃

, 𝑄

) is a negative skew-symmetric notched bitableau

follows in much the same manner as the proof of Lemma 16;
we omit the details.

It remains to be shown that the pair of multisets on
N2 produced by applying this sequence of reverse steps to
the arbitrary skew-symmetric notched bitableau (𝑃

(𝑡)
, 𝑄

(𝑡)
)

is skew-symmetric lexicographic. The proof of this uses the
duality property of skew-symmetric notched bitableaux, the
facts mentioned in the preceding paragraph regarding the
integers 𝑎, 𝑏, 𝑐, and 𝑑, and the rest of the proof goes similarly
as in the proof of Lemma 6.3 of [8].

At each step, OBRSK and the reverse of ROBRSK are
inverse to each other. Thus they are inverse maps.

The map OBRSK can be extended to all pairs of
nonempty skew-symmetric lexicographic multisets on N2.

If {𝜋1, 𝜋2} is a pair of positive skew-symmetric lexico-
graphic multisets on N2, then define OBRSK({𝜋1, 𝜋2}) to be
𝜄(OBRSK(𝐿({𝜋1, 𝜋2}))), where the definition of the map 𝜄

is given at the end of Section 4. If {𝜋1, 𝜋2} is a pair of
nonempty skew-symmetric lexicographic multisets on N2,
with negative and positive parts {𝜋−

1
, 𝜋

−

2
} and {𝜋

+

1
, 𝜋

+

2
}, then

define OBRSK({𝜋1, 𝜋2}) to be the skew-symmetric notched
bitableau whose negative and positive parts are OBRSK
({𝜋

−

1
, 𝜋

−

2
}) and OBRSK ({𝜋

+

1
, 𝜋

+

2
}).

Example 18. Let 𝜋1 = {(4, 17), (3, 17), (3, 14), (7, 10), (4, 9)},
and 𝜋2 = {(20, 25), (19, 22), (15, 26), (12, 26), (12, 25)}. See
Figure 2.

Therefore.

3 4 12 19
3 7 12 20
4 15

,
10 17 25 26
9 17 22 26
14 25

).(OBRSK(𝜋1, 𝜋2) = (7)

7. Restricting the OBRSK Correspondence

7.1. Restricting by 𝛽. Let 𝛽 ∈ 𝐼(𝑑). We say that a skew-
symmetric notched bitableau (𝑃, 𝑄) is on 𝛽×𝛽, if all entries of
𝑃 are in 𝛽, all entries of 𝑄 are in 𝛽, and the sum of any entry
in 𝑃 (or in 𝑄) with its dual (with respect to (𝑃, 𝑄)) is 2𝑑 + 1.

Given any monomial 𝑈 in OR(𝛽), we can define a
monomial𝑈# inAR(𝛽) as follows:𝑈#

:= {(𝑐
∗
, 𝑟

∗
)|(𝑟, 𝑐) ∈ 𝑈}.

We say that a pair {𝑉1, 𝑉2} of skew-symmetric lexicographic
multisets on N2 is a pair of skew-symmetric lexicographic
multisets on 𝛽 × 𝛽, if 𝑉1 is a monomial in OR(𝛽), 𝑉2 is
a monomial in AR(𝛽), a number of elements (counting
multiplicities) in 𝑉1 and 𝑉2 are the same, and 𝑉2 = 𝑉

#
1
. It is

easy to see from the construction of OBRSK that, if {𝑈, 𝑈#
} is

a pair of nonempty skew-symmetric lexicographic multisets
on 𝛽 × 𝛽, then OBRSK ({𝑈, 𝑈

#
}) is a nonvanishing skew-

symmetric notched bitableau on 𝛽 × 𝛽, and vice versa. Thus
we obtain the following.

Corollary 19. ThemapOBRSK restricts to a degree-preserving
bijection from the set of all pairs of nonempty (resp., negative,
positive) skew-symmetric lexicographic multisets on 𝛽 × 𝛽 to
the set of all nonvanishing (resp., negative, positive) skew-
symmetric notched bitableaux on 𝛽 × 𝛽.

7.2. Restricting by 𝑇 and 𝑊. Let 𝑇 and 𝑊 be negative and
positive subsets of N2, respectively, satisfying the condition
that:

𝑇(1), 𝑇(2),𝑊(1), and 𝑊(2) are subsets of N, (8)

where the notation 𝑇(1), 𝑇(2),𝑊(1), and 𝑊(2) is explained in
Section 4 of [8]. In this subsection, we will define the bound-
edness of a nonempty pair of skew-symmetric lexicographic
multisets on N2 by 𝑇,𝑊, and this is given in Definition 26,
after some definitions which are necessary to understand it.

Definition 20. A dual pair of chains in N2 is a pair of subsets
{𝐶1 = {(𝑒1, 𝑓1), . . . , (𝑒𝑚, 𝑓𝑚)}, 𝐶2 = {(𝑔1, ℎ1), . . . , (𝑔𝑚, ℎ𝑚)}}
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4 25

4 12 17 25

4 12 3 12
4

17 25 17 26
25

3 12
4 12

17 26
17 25

3 12
4 12

3 12
3 12
4

17 26
17 25

17 26
17 26
25

3 12
3 12
4 15

17 26
17 26
14 25

3 12
3 12
4 15

3 7 12
3 12
4 15

17 26
17 26
14 25

17 22 26
17 26
14 25

3 7 12 19
3 12
4 15

10 17 22 26
17 26
14 25

3 7 12 19
3 12
4 15

3 4 12 19
3 7 12
4 15

10 17 22 26
17 26
14 25

10 17 25 26
17 22 26
14 25

3 4 12 19
3 7 12 20
4 15

10 17 25 26
9 17 22 26
14 25

𝑄(0) = ∅
𝑄(0) dual← 25 =𝑄(1) =
𝑄(1) dual← 26 = dual← 26 =
𝑄(2) =
𝑄(2) dual← 26 = dual← 26 =
𝑄(3) =

𝑄(3) dual← 22 = dual← 22 =

𝑄(4) =

𝑄(4) dual← 25 = dual← 25 =

𝑄(5) =

𝑃(0) = ∅
𝑃(0) 14← 4 =𝑃(1) =
𝑃(1) 17← 3 = 17← 3 =
𝑃(2) =
𝑃(2) 14← 3 = 14← 3 =
𝑃(3) =

𝑃(3) 10← 7 = 10← 7 =

𝑃(4) =

𝑃(4) 9← 4 = 9← 4 =

𝑃(5) =
Figure 2

such that 𝐶1 is a chain in N2 in the sense of Section 7 of
[8], and {𝜎1, 𝜎2} is a pair of skew-symmetric lexicographic
multisets on N2, where 𝜎1 = {(𝑒1, 𝑓1), . . . , (𝑒𝑚, 𝑓𝑚)} and 𝜎2 =

{(𝑔1, ℎ1), . . . , (𝑔𝑚, ℎ𝑚)}.

Definition 21. Let {𝑈1, 𝑈2} be a pair of skew-symmetric
lexicographic multisets on N2. Let {𝐶1, 𝐶2} be a dual pair of
chains inN2 such that𝐶𝑖 is contained in the underlying set of
𝑈𝑖 for all 𝑖 = 1, 2. Given any element in𝐶1 (say, the 𝑖th element
counting from left to right), look at the first (counting from
left to right) element in𝑈1 which is entrywise the same as the
𝑖th element of 𝐶1. Call this element of 𝑈1 the 𝑖minth element.
Let 𝑡 be the total number of elements in 𝑈1. One calls the
(𝑡 + 1 − 𝑖min)th element of 𝑈2 (counting from left to right)
the dual element in 𝑈2 corresponding to the 𝑖th element of
𝐶1.

Definition 22. Given any pair {𝜋1, 𝜋2} of skew-symmetric lex-
icographic multisets on N2, where 𝜋1 = {(𝑎1, 𝑏1), . . . , (𝑎𝑡, 𝑏𝑡)}

and 𝜋2 = {(𝑑1, 𝑐1), . . . , (𝑑𝑡, 𝑐𝑡)}, one says that the elements
(𝑎𝑖, 𝑏𝑖) and (𝑑𝑡+1−𝑖, 𝑐𝑡+1−𝑖) of 𝜋1 and 𝜋2, respectively, are dual
to each other with respect to {𝜋1, 𝜋2}.

Definition 23. Given a pair of {𝑈1, 𝑈2} of skew-symmetric
lexicographic multisets on N2, one says that a dual pair

{𝐶1, 𝐶2} of chains in N2 is a dual pair of chains in {𝑈1, 𝑈2},
if the following two conditions are satisfied simultaneously:
(i) 𝐶𝑖 is contained in the underlying set of 𝑈𝑖 for all 𝑖 = 1, 2.
(ii) Given any element of 𝐶1 (say, the 𝑖th element counting
from left to right), the dual element in𝑈2 corresponding to it
is entrywise the same as the dual element of the 𝑖th element
of 𝐶1 with respect to {𝐶1, 𝐶2}.

Definition 24. Given any row-strict notched bitableau (𝑃, 𝑄),
we associate with it 2 subsets of N2 as follows. Let 𝑃1 and
𝑄1 denote the topmost rows of 𝑃 and 𝑄, respectively. Let
𝑝11 < ⋅ ⋅ ⋅ < 𝑝1𝑘

1

and 𝑞11 < ⋅ ⋅ ⋅ < 𝑞1𝑘
1

denote the entries of 𝑃1
and 𝑄1, respectively. We denote by (𝑃, 𝑄)up the subset of N2

given by {(𝑝11, 𝑞11), . . . , (𝑝1𝑘
1

, 𝑞1𝑘
1

)}. We denote by (𝑃, 𝑄)down

the subset ofN2 obtained similarly if we work with the lower-
most rows of 𝑃 and 𝑄, instead of the topmost rows. See
Example 25 for an illustration.

Example 25. Consider the row-strict notched bitableau

,
𝐻 𝐽 𝑇 𝑄𝐺 𝐼 𝑆 𝑃𝐹 𝑅

𝐷 𝐴 𝐾 𝑀𝐸 𝐵 𝐿 𝑁𝐶 𝑂 )( (9)
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and call it (P,Q). Then (P,Q)
up

= {(𝐻,𝐷), (𝐽, 𝐴), (𝑇,𝐾),
(𝑄,𝑀)}, and (P,Q)

down
= {(𝐹, 𝐶), (𝑅, 𝑂)}.

Definition 26. A nonempty pair of skew-symmetric lexico-
graphicmultisets {𝑈1, 𝑈2} onN

2 is said to be bounded by𝑇,𝑊
if for every dual pair {𝐶1, 𝐶2} of chains in {𝑈1, 𝑈2} one has

𝑇 ≤ (𝑃𝐶−
1
,𝐶
−

2

, 𝑄𝐶
−

1
,𝐶
−

2

)
up
,

(𝑃𝐶+
1
,𝐶
+

2

, 𝑄𝐶
+

1
,𝐶
+

2

)
down

≤ 𝑊,

(10)

where one uses the order on multisets on N2 defined
in Section 4 of [8]; (𝑃𝐶−

1
,𝐶
−

2

, 𝑄𝐶
−

1
,𝐶
−

2

) is defined to be
OBRSK ({𝐶

−

1
, 𝐶

−

2
}), and (𝑃𝐶+

1
,𝐶
+

2

, 𝑄𝐶
+

1
,𝐶
+

2

) is defined as OBRSK
({𝐶

+

1
, 𝐶

+

2
}).

It is worthwhile to note that (𝑃𝐶−
1
,𝐶
−

2

, 𝑄𝐶
−

1
,𝐶
−

2

)
up, (𝑃𝐶+

1
,𝐶
+

2

,
𝑄𝐶
+

1
,𝐶
+

2

)
down, 𝑇, and 𝑊 are subsets of N2, and they are not

pairs of subsets!
With this definition, the OBRSK correspondence is a

bounded function, in the sense that it maps bounded sets to
bounded sets. More precisely, we have the following Lemma
(to understand the statement of this lemma, we need to
recall the notion of a semistandard notched bitableau being
bounded by 𝑇,𝑊 from Section 5 of [8]), whose proof appears
in Section 9.

Lemma 27. If a pair {𝑈1, 𝑈2} of nonempty skew-symmetric
lexicographic multisets on N2 is bounded by 𝑇,𝑊, then
OBRSK({𝑈1, 𝑈2}) is bounded by 𝑇,𝑊.

Definition 28. A dual pair {𝐶1, 𝐶2} of chains in N2 is called
a dual pair of chains in 𝛽 × 𝛽 if {𝐶1, 𝐶2} is a pair of skew-
symmetric lexicographic multisets on 𝛽 × 𝛽.

Remark 29. A general dual pair of chains in 𝛽 × 𝛽 will look
like {𝐶, 𝐶

#
} for some extended 𝛽-chain 𝐶 in OR(𝛽). Note

also that if {𝑈1, 𝑈2} is a pair of skew-symmetric lexicographic
multisets on 𝛽 × 𝛽, that is, if 𝑈2 = 𝑈

#
1
, then any dual pair of

chains {𝐶1, 𝐶2} in {𝑈1, 𝑈2} must be a dual pair of chains in
𝛽 × 𝛽; in other words, we must have 𝐶2 = 𝐶

#
1
, where 𝐶1 is an

extended 𝛽-chain inOR(𝛽).

Remark 30. Let 𝑇 and 𝑊 be negative and positive subsets
of N2, respectively, satisfying (8). A nonempty pair of skew-
symmetric lexicographic multisets {𝑈, 𝑈#

} on 𝛽 × 𝛽 is said to
be bounded by 𝑇,𝑊 if, for every dual pair of chains {𝐶, 𝐶#

} in
𝛽 × 𝛽 which is contained in the underlying set of {𝑈, 𝑈#

},

𝑇 ≤ (𝑃
𝐶−,𝐶−

# , 𝑄
𝐶− ,𝐶−

#)
up
,

(𝑃
𝐶+,𝐶+

# , 𝑄
𝐶+ ,𝐶+

#)
down

≤ 𝑊,

(11)

where we use the order on multisets onN2 defined in Section
4 of [8], and (𝑃

𝐶− ,𝐶−
# , 𝑄

𝐶− ,𝐶−
#) (resp., (𝑃

𝐶+ ,𝐶+
# , 𝑄

𝐶+ ,𝐶+
#))

is defined to be OBRSK ({𝐶
−
, 𝐶

−#
}) (resp., OBRSK

({𝐶
+
, 𝐶

+#
})). It is worthwhile to note that (𝑃

𝐶−,𝐶−
# , 𝑄

𝐶− ,𝐶−
#)
up,

(𝑃
𝐶+ ,𝐶+

# , 𝑄
𝐶+ ,𝐶+

#)
down, 𝑇, and 𝑊 are subsets of N2; they are

not pairs of subsets!

Let 𝑇 and 𝑊 be negative and positive subsets of 𝛽 ×

𝛽, respectively, satisfying (8). Combining Corollary 19 and
Lemma 27, we obtain the following.

Corollary 31. For any positive integer 𝑚, the number of pairs
of nonempty skew-symmetric lexicographic multisets on 𝛽 × 𝛽

bounded by 𝑇,𝑊 of degree 2𝑚 is less than or equal to the
number of nonvanishing skew-symmetric notched bitableaux
on 𝛽 × 𝛽 bounded by 𝑇,𝑊 of degree 2𝑚.

8. The Initial Ideal

In this section, we will prove themain result of the paper, that
is, Theorem 7.

Proof of Theorem 7. We wish to show that in⊳𝐼 =

⟨Chains𝛾
𝛼
(𝛽)⟩. Since we already know from Remark 12 that

𝑡𝑒𝑥𝑡𝐶ℎ𝑎𝑖𝑛𝑠
𝛾

𝛼
(𝛽) ⊆ in⊳𝐼, it follows that ⟨Chains

𝛾

𝛼
(𝛽)⟩ ⊆ in⊳𝐼.

Hence it suffices to show that in⊳𝐼 ⊆ ⟨Chains𝛾
𝛼
(𝛽)⟩ or

equivalently that, for any 𝑚 ≥ 1, cardinality of the set of
all degree 𝑚 monomials in 𝑃/⟨Chains𝛾

𝛼
(𝛽)⟩ is less than or

equal to cardinality of the set of all degree 𝑚 monomials in
𝑃/in⊳𝐼. Now since standard monomials on 𝑌

𝛾

𝛼,𝛽
(standard

monomials on 𝑌
𝛾

𝛼,𝛽
is defined in Definition 32) and the

monomials in 𝑃/in⊳𝐼 both induce homogeneous bases for
𝑃/𝐼, it suffices to show that, for any 𝑚 ≥ 1, cardinality of the
set of all degree𝑚monomials in 𝑃/⟨Chains𝛾

𝛼
(𝛽)⟩ is less than

or equal to cardinality of the set of all degree 𝑚 standard
monomials on 𝑌

𝛾

𝛼,𝛽
.

We wish to give a different indexing set for the standard
monomials on 𝑌

𝛾

𝛼,𝛽
. Let 𝐼𝛽(skew-symm) denote the set of

all pairs (𝑅, 𝑆) such that all of the following conditions are
satisfied.

(i) 𝑅 ⊂ 𝛽.
(ii) 𝑆 ⊂ 𝛽.
(iii) |𝑅| = |𝑆|, and this cardinality is even.
(iv) If 𝑅 = {𝑟1 < ⋅ ⋅ ⋅ < 𝑟2𝑙} and 𝑆 = {𝑠1 < ⋅ ⋅ ⋅ < 𝑠2𝑙}, then

𝑟𝑖 + 𝑠2𝑙+1−𝑖 = 2𝑑 + 1 ∀𝑖 ∈ {1, . . . , 2𝑙}.

Defining 𝑅 − 𝑆 := 𝑅 ∪̇ (𝛽 \ 𝑆) (see Section 4 of [8]), we
have the following fact, which is easily verified.

The map (𝑅, 𝑆) → 𝑅 − 𝑆 is a bijection from 𝐼𝛽 (skew-
symm) to 𝐼(𝑑), (Indeed, the inverse map is given by 𝜃 →

(𝜃 \ 𝛽, 𝛽 \ 𝜃).).
Note that under this bijection, (0, 0) maps to 𝛽. Let

(𝑅𝛼, 𝑆𝛼) and (𝑅𝛾, 𝑆𝛾) be the preimages of the elements 𝛼 and
𝛾 (of 𝐼(𝑑)), respectively. Define 𝑇𝛼 and 𝑊𝛾 to be any subsets
of 𝛽 × 𝛽 such that (𝑇𝛼)(1) = 𝑅𝛼, (𝑇𝛼)(2) = 𝑆𝛼, (𝑊𝛾)(1) = 𝑅𝛾,
and (𝑊𝛾)(2) = 𝑆𝛾. Observe that 𝑇𝛼 and𝑊𝛾 satisfy (8).

Under this identification of 𝐼𝛽 (skew-symm) with 𝐼(𝑑),
the inequalities which define nonvanishing skew-symmetric
notched bitableaux on 𝛽 × 𝛽 bounded by 𝑇𝛼,𝑊𝛾 are precisely
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the inequalities which define the standard monomials on
𝑌
𝛾

𝛼,𝛽
(the inequalities (12), (13), and (14) of this paper). Thus

we obtain that the degree 2𝑚 nonvanishing skew-symmetric
notched bitableaux on 𝛽 × 𝛽 bounded by 𝑇𝛼,𝑊𝛾 forms an
indexing set for the degree 𝑚 standard monomials on 𝑌

𝛾

𝛼,𝛽
.

Hence it suffices to show that, for any𝑚 ≥ 1, cardinality of the
set of all degree𝑚monomials in 𝑃/⟨Chains𝛾

𝛼
(𝛽)⟩ is less than

or equal to cardinality of the set of all nonvanishing skew-
symmetric notched bitableaux on 𝛽 × 𝛽 bounded by 𝑇𝛼,𝑊𝛾

of degree 2𝑚.
On the other hand, it is easy to see that the set Chains𝛾

𝛼
(𝛽)

can be rewritten in the following format: Chains𝛾
𝛼
(𝛽) is the

set of all 𝑋𝐶, where 𝐶 is any nonempty extended 𝛽-chain in
OR(𝛽) such that either (i) or (ii) below holds.

(i) The chain 𝐶
− is nonempty, and 𝑅𝛼 − 𝑆𝛼 ≰

(𝑃
𝐶−,𝐶−

# , 𝑄
𝐶− ,𝐶−

#)
up
(1)

− (𝑃
𝐶−,C−# , 𝑄𝐶− ,𝐶−

#)
up
(2)
.

(ii) The chain 𝐶
+ is nonempty, and

(𝑃
𝐶+,𝐶+

# , 𝑄
𝐶+ ,𝐶+

#)
down
(1)

− (𝑃
𝐶+,𝐶+

# , 𝑄
𝐶+ ,𝐶+

#)
down
(2)

≰

𝑅𝛾 − 𝑆𝛾.
It is now obvious that the pairs of nonempty skew-

symmetric lexicographic multisets on 𝛽 × 𝛽 bounded by
𝑇𝛼,𝑊𝛾 of degree 2𝑚 form an indexing set for the degree 𝑚
monomials of 𝑃/⟨Chains𝛾

𝛼
(𝛽)⟩. Hence we have that, for any

𝑚 ≥ 1, cardinality of the set of all degree 𝑚 monomials in
𝑃/⟨Chains𝛾

𝛼
(𝛽)⟩ is equal to cardinality of the set of all pairs of

nonempty skew-symmetric lexicographic multisets on 𝛽 × 𝛽

bounded by 𝑇𝛼,𝑊𝛾 of degree 2𝑚.
Again from Corollary 31, it follows that for any 𝑚 ≥ 1,

cardinality of the set of all pairs of nonempty skew-symmetric
lexicographic multisets on 𝛽 × 𝛽 bounded by 𝑇𝛼,𝑊𝛾 of
degree 2𝑚 is less than or equal to cardinality of the set of
all nonvanishing skew-symmetric notched bitableaux on 𝛽 ×

𝛽 bounded by 𝑇𝛼,𝑊𝛾 of degree 2𝑚. Thus ⟨Chains𝛾
𝛼
(𝛽)⟩ ⊇

in⊳𝐼.

Definition 32. Let 𝑃 = k[𝑋(𝑟,𝑐) | (𝑟, 𝑐) ∈ OR(𝛽)]. Recall the
concept of a Pfaffian (denoted by 𝑓𝜃,𝛽 for 𝜃 ∈ 𝐼(𝑑)) from
Section 3.3 of this paper. One calls 𝑓 = 𝑓𝜃

1
,𝛽 ⋅ ⋅ ⋅ 𝑓𝜃

𝑟
,𝛽 ∈ 𝑃 a

standard monomial if 𝜃1, . . . , 𝜃𝑟 ∈ 𝐼(𝑑),
𝜃1 ≤ ⋅ ⋅ ⋅ ≤ 𝜃𝑟 (12)

and for each 𝑖 ∈ {1, . . . , 𝑟}, either
𝜃𝑖 < 𝛽 or 𝜃𝑖 > 𝛽. (13)

If in addition, for 𝛼, 𝛾 ∈ 𝐼(𝑑),
𝛼 ≤ 𝜃1, 𝜃𝑟 ≤ 𝛾, (14)

then we say that 𝑓 is standard on 𝑌
𝛾

𝛼,𝛽
. We define the degree

of the standard monomial 𝑓𝜃
1
,𝛽 ⋅ ⋅ ⋅ 𝑓𝜃

𝑟
,𝛽 to be the sum of the

𝛽-degrees of 𝜃1, . . . , 𝜃𝑟, where for any 𝜃 ∈ 𝐼(𝑑); the 𝛽-degree
is defined to be one-half the cardinality of 𝜃 \ 𝛽.

Remark 33. In general, a standard monomial is not a mono-
mial in the affine coordinates𝑋(𝑟,𝑐), (𝑟, 𝑐) ∈ OR(𝛽); rather, it
is a polynomial. It is only a monomial in the 𝑓𝜃,𝛽’s.

9. Proofs

In this section, we give proofs of Lemmas 16 and 27. To give
a proof of Lemma 16, we need Lemma 34 mentioned below
whose proof is left to the reader as an exercise.

Lemma 34. If 𝐴 and 𝐵 are two finite multisets on N of the
same degree such that 𝐴 ≤ 𝐵 (where the termwise order ≤ on
multisets on N and the degree of a multiset on N are as defined
in Section 4 of [8]) and 𝑝, 𝑞 are natural numbers such that 𝑝 ≤

𝑞, then 𝐴 ∪̇ {𝑝} ≤ 𝐵 ∪̇ {𝑞}.

9.1. Proof of Lemma 16

Proof. The proof is by induction. The base case of induction
is easy to see, and hence we omit the details. Let {𝜋(𝑡−1)

1
, 𝜋

(𝑡−1)

2
}

be a pair of negative skew-symmetric lexicographic multisets
on N2, where 𝜋(𝑡−1)

1
= {(𝑎1, 𝑏1), . . . , (𝑎𝑡−1, 𝑏𝑡−1)} and 𝜋

(𝑡−1)

2
=

{(𝑑2, 𝑐2), . . . , (𝑑𝑡, 𝑐𝑡)}. Let (𝑃, 𝑄) = OBRSK ({𝜋
(𝑡−1)

1
, 𝜋

(𝑡−1)

2
}).

Assume inductively that (𝑃, 𝑄) is a negative skew-symmetric
notched bitableau. Now let {𝜋(𝑡)

1
, 𝜋

(𝑡)

2
} be a pair of negative

skew-symmetric lexicographic multisets on N2 such that
𝜋
(𝑡)

1
= 𝜋1 and 𝜋

(𝑡)

2
= 𝜋2, where 𝜋1 and 𝜋2 are given by

𝜋1 = {(𝑎1, 𝑏1), . . . , (𝑎𝑡, 𝑏𝑡)} and 𝜋2 = {(𝑑1, 𝑐1), . . . , (𝑑𝑡, 𝑐𝑡)}. Let
(𝑃


, 𝑄


) = OBRSK ({𝜋

(𝑡)

1
, 𝜋

(𝑡)

2
}). It suffices to show that (𝑃

, 𝑄

)

is also a negative skew-symmetric notched bitableau.
Wewill first prove that (𝑃

, 𝑄

) is a negative semistandard

notched bitableau. The fact that 𝑃 is row strict follows from
Lemma 15. It then follows from duality that 𝑄 is also row
strict. Hence (𝑃

, 𝑄

) is row strict. Let 𝑟 be the total number

of rows of𝑃
(𝑜𝑟 𝑄


). Let𝑃

𝑖
, 𝑄



𝑖
, 𝑃𝑖, and𝑄𝑖 denote themultiset

consisting of all elements in the 𝑖th row of 𝑃
, 𝑄


, 𝑃, and 𝑄,

respectively. In fact, these multisets (𝑃

𝑖
, 𝑄



𝑖
, 𝑃𝑖, 𝑄𝑖) happen to

be sets because 𝑃
, 𝑄


, 𝑃, and 𝑄 are row strict. It needs to be

shown that 𝑃

𝑖
− 𝑄



𝑖
≤ 𝑃



𝑖+1
− 𝑄



𝑖+1
for 1 ≤ 𝑖 ≤ 𝑟


− 1, and

𝑃


𝑟
− 𝑄



𝑟
⋖ 0 (see Section 4 of [8] for the notation ⋖). We

will prove the former statement first. To prove that 𝑃

𝑖
− 𝑄



𝑖
≤

𝑃


𝑖+1
− 𝑄



𝑖+1
for 1 ≤ 𝑖 ≤ 𝑟


− 1, there will be three nontrivial

possibilities which will be registered below as Cases 1, 2, and
3, respectively.

Case 1. 𝑎𝑡 and 𝑑1 are added to the first row of 𝑃, and 𝑐1 and
𝑏𝑡 are added to the first row of 𝑄. All rows other than the 1st
row of 𝑃 and 𝑄 remain unchanged.

In this case, it suffices to show that 𝑃1 ∪̇ 𝑄2 ∪̇ {𝑎𝑡, 𝑑1} ≤

𝑃2 ∪̇ 𝑄1 ∪̇ {𝑐1, 𝑏𝑡}. It follows from induction hypothesis that
𝑃1 ∪̇ 𝑄2 ≤ 𝑃2 ∪̇ 𝑄1. Since {𝜋

(𝑡)

1
, 𝜋

(𝑡)

2
} is a pair of negative

skew-symmetric lexicographic multisets on N2, we have 𝑎𝑡 <
𝑏𝑡 and 𝑑1 < 𝑐1. Therefore 𝑎𝑡 ≤ 𝑏𝑡 and 𝑑1 ≤ 𝑐1. These facts
together with Lemma 34 (applied twice) imply easily that
𝑃1 ∪̇ 𝑄2 ∪̇ {𝑎𝑡, 𝑑1} ≤ 𝑃2 ∪̇ 𝑄1 ∪̇ {𝑐1, 𝑏𝑡}. Hence we are done
in this case.

Case 2. 𝑥𝑝 bumps 𝑦𝑝 from 𝑃𝑖, 𝑦𝑝 bumps 𝑧𝑝 from 𝑃𝑖+1, and the
dual bumping happens on𝑄𝑖 and𝑄𝑖+1. Let us express the dual
bumping by saying that 𝑥𝑞 bumps 𝑦𝑞 from 𝑄𝑖 and 𝑦𝑞 bumps
𝑧𝑞 from 𝑄𝑖+1.
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Clearly then, 𝑥𝑝 ≤ 𝑦𝑝 ≤ 𝑧𝑝 < 𝑏𝑡, and hence 𝑥𝑞 ≥ 𝑦𝑞 ≥

𝑧𝑞 by the property (ii) in the definition of a skew-symmetric
notched bitableau. Again since all entries in𝑄 are ≥ 𝑏𝑡, we get
that 𝑥𝑞 ≥ 𝑦𝑞 ≥ 𝑧𝑞 ≥ 𝑏𝑡.

We need to show that 𝑃

𝑖
− 𝑄



𝑖
≤ 𝑃



𝑖+1
− 𝑄



𝑖+1
, or, in

other words, 𝑃

𝑖
∪̇ 𝑄



𝑖+1
≤ 𝑃



𝑖+1
∪̇ 𝑄



𝑖
. Note that 𝑃

𝑖
∪̇ 𝑄



𝑖+1
=

[(𝑃𝑖 ∪̇ 𝑄𝑖+1)\{𝑦𝑝, 𝑧𝑞}] ∪̇ {𝑥𝑝, 𝑦𝑞} and𝑃


𝑖+1
∪̇ 𝑄



𝑖
= [(𝑃𝑖+1∪̇𝑄𝑖)\

{𝑧𝑝, 𝑦𝑞}] ∪̇ {𝑥𝑞, 𝑦𝑝}. It suffices to show that (𝑃𝑖 ∪̇ 𝑄𝑖+1) \

{𝑦𝑝, 𝑧𝑞} ≤ (𝑃𝑖+1 ∪̇ 𝑄𝑖) \ {𝑧𝑝, 𝑦𝑞} because if we can prove this
much, then since 𝑥𝑝 ≤ 𝑦𝑝 and 𝑥𝑞 ≥ 𝑦𝑞 we can apply
Lemma 34 and get done with the proof as in Case 1.

We will now prove that (𝑃𝑖 ∪̇ Q𝑖+1) \ {𝑦𝑝, 𝑧𝑞} ≤ (𝑃𝑖+1 ∪̇

𝑄𝑖) \ {𝑧𝑝, 𝑦𝑞}. Since 𝑧𝑝 < 𝑏𝑡 and all entries of𝑄𝑖 are ≥𝑏𝑡, there-
fore 𝑧𝑝 is the smallest element in 𝑃𝑖+1 ∪̇ 𝑄𝑖 which is ≥ 𝑦𝑝. It
then follows from duality that 𝑧𝑞 is the biggest element in
𝑃𝑖 ∪̇ 𝑄𝑖+1, that is, ≤ 𝑦𝑞. Also since 𝑦𝑝 < 𝑏𝑡 ≤ 𝑧𝑞, we have
𝑦𝑝 < 𝑧𝑞, and hence by duality 𝑦𝑞 > 𝑧𝑝. Also by induction
hypothesis,𝑃𝑖 ∪̇ 𝑄𝑖+1 ≤ 𝑃𝑖+1 ∪̇ 𝑄𝑖. All these facts put together
prove the required thing easily, and we are done in this case.

Case 3. 𝑥𝑝 bumps 𝑦𝑝 from 𝑃𝑖, and 𝑦𝑝 along with 𝑑1 are added
to 𝑃𝑖+1. The dual phenomenon happens with 𝑄𝑖 and 𝑄𝑖+1; we
express the dual phenomenon by saying that 𝑥𝑞 bumps 𝑦𝑞
from 𝑄𝑖, and 𝑦𝑞 along with 𝑏𝑡 are added to 𝑄𝑖+1.

Clearly then, 𝑥𝑝 ≤ 𝑦𝑝 < 𝑏𝑡, and hence 𝑥𝑞 ≥ 𝑦𝑞 by the
property (ii) in the definition of a Skew-symmetric notched
bitableau. Again since all entries in 𝑄 are ≥ 𝑏𝑡, we get that
𝑥𝑞 ≥ 𝑦𝑞 ≥ 𝑏𝑡. Also 𝑦𝑝 < 𝑑1 since the position of 𝑑1 is at
the rightmost end of that row of 𝑃𝑖+1 in which 𝑦𝑝 is placed.
Hence by duality, we have 𝑦𝑞 > 𝑏𝑡.

We need to show that 𝑃

𝑖
− 𝑄



𝑖
≤ 𝑃



𝑖+1
− 𝑄



𝑖+1
, or, in

other words, 𝑃

𝑖
∪̇ 𝑄



𝑖+1
≤ 𝑃



𝑖+1
∪̇ 𝑄



𝑖
. Note that 𝑃

𝑖
∪̇ 𝑄



𝑖+1
=

(𝑃𝑖 ∪̇ 𝑄𝑖+1 \ {𝑦𝑝}) ∪̇ {𝑏𝑡} ∪̇ {𝑥𝑝, 𝑦𝑞}, and 𝑃


𝑖+1
∪̇𝑄



𝑖
= (𝑃𝑖+1 ∪̇

𝑄𝑖 \ {𝑦𝑞}) ∪̇ {𝑑1} ∪̇ {𝑥𝑞, 𝑦𝑝}. Using Lemma 34, it is enough to
prove that (𝑃𝑖 ∪̇ 𝑄𝑖+1\{𝑦𝑝}) ∪̇ {𝑏𝑡} ≤ (𝑃𝑖+1 ∪̇ 𝑄𝑖\{𝑦𝑞}) ∪̇ {𝑑1},
which we will do now.

Let 𝑃𝑖 ∪̇ 𝑄𝑖+1 be given by 𝑋1 ≤ ⋅ ⋅ ⋅ ≤ 𝑋2𝑛, and let
𝑃𝑖+1 ∪̇ 𝑄𝑖 be given by 𝑌1 ≤ ⋅ ⋅ ⋅ ≤ 𝑌2𝑛 (since the bitableau
(𝑃, 𝑄) is of even size, the cardinality of 𝑃𝑖 ∪̇ 𝑄𝑖+1 or of
𝑃𝑖+1 ∪̇ 𝑄𝑖 is even). Note that there are no elements of 𝑃𝑖+1
which are ≥ 𝑦𝑝 and < 𝑏𝑡. Also since 𝑏𝑡 is ≤ all elements of
𝑄𝑖, therefore we can conclude that there are no elements of
𝑃𝑖+1 ∪̇ 𝑄𝑖 which are ≥𝑦𝑝 and <𝑏𝑡. It follows from duality that
there are no elements of 𝑃𝑖 ∪̇ 𝑄𝑖+1 which are ≤ 𝑦𝑞 as well as
>𝑑1. Let (𝑃𝑖 ∪̇ 𝑄𝑖+1 \ {𝑦𝑝}) ∪̇ {𝑏𝑡} be given by

𝑋1 ≤ ⋅ ⋅ ⋅ ≤ 𝑋𝑖−1 ≤ 𝑋𝑖+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑋𝑗

≤ 𝑏𝑡 ≤ 𝑋𝑗+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑋2𝑛

(15)

and let (𝑃𝑖+1 ∪̇ 𝑄𝑖 \ {𝑦𝑞}) ∪̇ {𝑑1} be given by

𝑌1 ≤ ⋅ ⋅ ⋅ ≤ 𝑌2𝑛−𝑗 ≤ 𝑑1 ≤ 𝑌2𝑛−𝑗+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑌2𝑛−𝑖

≤ 𝑌2𝑛−𝑖+2 ≤ ⋅ ⋅ ⋅ ≤ 𝑌2𝑛.

(16)

This means that 𝑦𝑝 = 𝑋𝑖 and its dual 𝑦q = 𝑌2𝑛−𝑖+1 (the 𝑖th
element counting from right to left in the ordered sequence

𝑌1 ≤ ⋅ ⋅ ⋅ ≤ 𝑌2𝑛). Also since 𝑦𝑝 = 𝑋𝑖 and 𝑦𝑝 < 𝑏𝑡, it follows that
𝑖 < 𝑗. Observe that 𝑏𝑡 is the 𝑗th element (counting from left
to right) in the ordered sequence 𝑋1 ≤ ⋅ ⋅ ⋅ ≤ 𝑋𝑖−1 ≤ 𝑋𝑖+1 ≤

⋅ ⋅ ⋅ ≤ 𝑋𝑗 ≤ 𝑏𝑡 ≤ 𝑋𝑗+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑋2𝑛 of integers and 𝑑1 (the dual
of 𝑏𝑡 with respect to the pair {𝜋1, 𝜋2} of multisets) is the 𝑗th
element (counting from right to left) in the ordered sequence
𝑌1 ≤ ⋅ ⋅ ⋅ ≤ 𝑌2𝑛−𝑗 ≤ 𝑑1 ≤ 𝑌2𝑛−𝑗+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑌2𝑛−𝑖 ≤ 𝑌2𝑛−𝑖+2 ≤

⋅ ⋅ ⋅ ≤ 𝑌2𝑛 of integers. Consider any element in (𝑃𝑖 ∪̇ 𝑄𝑖+1 \

{𝑦𝑝}) ∪̇ {𝑏𝑡}. It can either be 𝑋𝑘 for some 𝑘 ̸= 𝑖 or 𝑏𝑡. If it is
𝑋𝑘 for some 𝑘 ̸= 𝑖, then we either need to show that 𝑋𝑘 ≤ 𝑌𝑘,
𝑋𝑘 ≤ 𝑑1, or 𝑋𝑘 ≤ 𝑌𝑘−1 (these are the only 3 possibilities; the
last possibility𝑋𝑘 ≤ 𝑌𝑘−1 happens if and only if 𝑘 ∈ {2𝑛 − 𝑗 +

2, . . . , 2𝑛 − 𝑖 + 1}). If it is 𝑏𝑡, then we need to show that 𝑏𝑡 ≤
the 𝑗th element (counting from left to right) of (𝑃𝑖+1 ∪̇ 𝑄𝑖 \

{𝑦𝑞}) ∪̇ {𝑑1}, which can either be 𝑌𝑗, 𝑑1, or 𝑌𝑗−1.
After all these observation(s), the proof follows easily

using the inequalities 𝑖 < 𝑗, 𝑥𝑝 ≤ 𝑦𝑝 < 𝑏𝑡, 𝑥𝑞 ≥ 𝑦𝑞 ≥ 𝑏𝑡,
𝑦𝑝 < 𝑑1, and 𝑦𝑞 > 𝑏𝑡 and the facts that there are no elements
of𝑃𝑖+1 ∪̇ 𝑄𝑖 which lie in the interval [𝑦𝑝, 𝑏𝑡) and that there are
no elements of 𝑃𝑖 ∪̇ 𝑄𝑖+1 which lie in the interval (𝑑1, 𝑦𝑞].

We have now proved that (𝑃

, 𝑄


) is a semistandard

notched bitableau. To prove that the semistandard notched
bitableau (𝑃


, 𝑄


) is negative, it is enough to prove that 𝑃

𝑟
−

𝑄


𝑟
⋖ 0, where 𝑟

 denotes the total number of rows of
𝑃

(𝑜𝑟 𝑄


). If 𝑃

𝑟
= 𝑃𝑟 and 𝑄



𝑟
= 𝑄𝑟 , then since (𝑃, 𝑄) is

assumed to be a negative skew-symmetric notched bitableau,
it follows immediately that 𝑃

𝑟
− 𝑄



𝑟
⋖ 0. Otherwise, we do

the following: let 𝑃

𝑟
and 𝑄



𝑟
be given by 𝜆1 < ⋅ ⋅ ⋅ < 𝜆𝑠

and 𝛿1 < ⋅ ⋅ ⋅ < 𝛿𝑠 , respectively. It follows easily from the
way the OBRSK algorithm works that there exists at least one
entry in 𝑃



𝑟
which is <𝑏𝑡. Let 𝜆𝑙 denote the largest entry in

𝑃


𝑟
which is < 𝑏𝑡. Since 𝑏𝑡 ≤ 𝛿1, it now follows easily that

𝜆𝑗 < 𝛿𝑗 ∀𝑗 ∈ {1, . . . , 𝑙}. Since 𝜆𝑙 is the largest entry in 𝑃


𝑟

which is <𝑏𝑡, therefore 𝑙 ≥ 1, and it follows from duality that
𝛿𝑠+1−𝑙 = 𝛿𝑠−(𝑙−1) > 𝑑1. Hence 𝛿𝑠 ≥ 𝛿𝑠−(𝑙−1) > 𝑑1 = 𝜆𝑠 . It
only remains to show that if 𝑙 + 1 < 𝑠

, then 𝜆𝑗 < 𝛿𝑗 ∀𝑗 ∈

{𝑙 + 1, . . . , 𝑠

− 1}. Clearly since 𝑙 ≥ 1 and 𝑙 + 1 < 𝑠

, it follows
that, in this case, the last row of 𝑃 (resp., 𝑄) is the 𝑟th row,
namely 𝑃𝑟 (resp.,𝑄𝑟), and 𝛿𝑠−(𝑙−1) is the new box of the dual
insertion in𝑄𝑟 . Since 𝜆𝑠 = 𝑑1, 𝛿𝑠−(𝑙−1) > 𝑑1, 𝑃𝑟 −𝑄𝑟 ⋖ 0 by
induction hypothesis and 𝜆𝑗 < 𝜆𝑠 ∀𝑗 ∈ {𝑙 + 1, . . . , 𝑠


− 1}, it

is now easy to see that 𝜆𝑗 < 𝛿𝑗 ∀𝑗 ∈ {𝑙 + 1, . . . , 𝑠

− 1}.

Hence we have proved that (𝑃
, 𝑄


) is a negative semi-

standard notched bitableau. The fact that (𝑃
, 𝑄


) is skew-

symmetric is easy to see from the very construction of the
OBRSK algorithm and from the fact that the pair {𝜋(𝑡)

1
, 𝜋

(𝑡)

2
}

of multisets is skew-symmetric, lexicographic.

9.2. Proof of Lemma 27

Proof (proof of Lemma 27). Let 𝑇 be a negative subset of N2

such that 𝑇(1), 𝑇(2) are subsets of N. Suppose that {𝑈1 =

{(𝑎1, 𝑏1), . . . , (𝑎𝑡, 𝑏𝑡)}, 𝑈2 = {(𝑑1, 𝑐1), . . . , (𝑑𝑡, 𝑐𝑡)}} is a pair of
negative skew-symmetric lexicographic multisets on N2. For
each 𝑚 = 1, . . . , 𝑡, let 𝑈(𝑚)

1
:= {(𝑎1, 𝑏1), . . . , (𝑎𝑚, 𝑏𝑚)} and

𝑈
(𝑚)

2
:= {(𝑑𝑡+1−𝑚, 𝑐𝑡+1−𝑚), . . . , (𝑑𝑡, 𝑐𝑡)}. Let (𝑃

(𝑚)
, 𝑄

(𝑚)
) :=
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OBRSK({𝑈(𝑚)

1
, 𝑈

(𝑚)

2
}). For proving Lemma 27, it suffices to

show that if {𝑈1, 𝑈2} is bounded by 𝑇, 0, then (𝑃
(𝑚)

, 𝑄
(𝑚)

) is
bounded by 𝑇, 0 for all 𝑚 = 1, . . . , 𝑡 because then the proof
of Lemma 27 will follow similarly as the proofs of parts (iii),
(iv), and (v) of Lemma 11.1 in [8].

Assume that {𝑈1, 𝑈2} is bounded by 𝑇, 0. For every 𝑚 ∈

{1, . . . , 𝑡}, let𝑃(𝑚)

1
(resp.,𝑄(𝑚)

1
) denote the topmost row of𝑃(𝑚)

(resp., 𝑄(𝑚)). We need to show that 𝑇(1) − 𝑇(2) ≤ 𝑃
(𝑚)

1
− 𝑄

(𝑚)

1
.

Equivalently, we need to show that for all positive integers
𝑧, |(𝑇(1) − 𝑇(2))

≤𝑧
| ≥ |(𝑃

(𝑚)

1
− 𝑄

(𝑚)

1
)
≤𝑧
|, where we use the

definition 𝐴 − 𝐵 := 𝐴 ∪̇ (N \ 𝐵) for any two subsets 𝐴 and
𝐵 of N (see Section 4 of [8]). We will prove this by induction
on𝑚. Let us first see the base case of induction.When𝑚 = 1,
𝑈

(𝑚)

1
= {(𝑎1, 𝑏1)} and 𝑈

(𝑚)

2
= {(𝑑𝑡, 𝑐𝑡)}. Let 𝐶1 = {(𝑎1, 𝑏1)} and

𝐶2 = {(𝑑𝑡, 𝑐𝑡)}. Since {𝑈1, 𝑈2} is bounded by 𝑇, 0, it follows
that for the dual pair {𝐶1, 𝐶2} of chains in {𝑈1, 𝑈2}, we have
𝑇 ≤ (𝑃𝐶−

1
,𝐶
−

2

, 𝑄𝐶
−

1
,𝐶
−

2

)
up

≤ 0. But it can be easily seen that
(𝑃𝐶−
1
,𝐶
−

2

, 𝑄𝐶
−

1
,𝐶
−

2

)
up

= {(𝑎1, 𝑏1), (𝑑𝑡, 𝑐𝑡)}. This proves the base
case of induction. Fix an integer 𝑘 ∈ {1, . . . , 𝑡−1}, and assume
that (𝑃(𝑚)

, 𝑄
(𝑚)

) is bounded by𝑇, 0 for all𝑚 ≤ 𝑘. We will now
show that (𝑃(𝑘+1)

, 𝑄
(𝑘+1)

) is bounded by 𝑇, 0.
Before we begin the proof, let us fix some notation for

the rest of this subsection. Define {𝑝
(𝑘)

1
, . . . , 𝑝

(𝑘)

2𝑐
𝑘

} to be the
topmost row of 𝑃

(𝑘) and {𝑞
(𝑘)

1
, . . . , 𝑞

(𝑘)

2𝑐
𝑘

} the topmost row
of 𝑄(𝑘), both listed in increasing order. Let (𝑃, 𝑄) = (𝑃

(𝑘),
𝑄

(𝑘)
), 𝑎 = 𝑎𝑘+1, 𝑏 = 𝑏𝑘+1, 𝑐 = 𝑐𝑡−𝑘, 𝑑 = 𝑑𝑡−𝑘,

(𝑃
, 𝑄

) = (𝑃
(𝑘+1)

, 𝑄
(𝑘+1)

), {𝑝1, . . . , 𝑝2�̂�} = {𝑝
(𝑘)

1
, . . . , 𝑝

(𝑘)

2𝑐
𝑘

}, and
{𝑞1, . . . , 𝑞2�̂�} = {𝑞

(𝑘)

1
, . . . , 𝑞

(𝑘)

2𝑐
𝑘

}. Note that {𝑝1, . . . , 𝑝2�̂�} ⊂ {𝑎1,
. . . , 𝑎𝑘} ∪̇ {𝑑𝑡+1−𝑘, . . . , 𝑑𝑡} and {𝑞1, . . . , 𝑞2�̂�} ⊂ {𝑏1, . . . , 𝑏𝑘} ∪̇

{𝑐𝑡+1−𝑘, . . . , 𝑐𝑡}. Let 𝑃1 (resp., 𝑄1) denote the topmost row of
𝑃 (resp., 𝑄). Similarly let 𝑃

1
(resp., 𝑄

1
) denote the topmost

row of 𝑃 (resp.,𝑄). We consider two cases corresponding to
the two ways in which (𝑃

1
, 𝑄



1
) can be obtained from (𝑃1, 𝑄1).

Case 1. 𝑃

1
is obtained by 𝑎 bumping 𝑝𝑙 in 𝑃1, for some 1 ≤

𝑙 ≤ 2�̂�, that is, 𝑃

1
= (𝑃1 \ {𝑝𝑙}) ∪̇ {𝑎} and 𝑄



1
= (𝑄1 \

{𝑞2�̂�+1−𝑙}) ∪̇ {𝑐}.
Since 𝑏 is less than or equal to all elements of {𝑏1, . . . , 𝑏𝑘}

and 𝑏𝑖 < 𝑐𝑡+1−𝑖 ∀𝑖 ∈ {1, . . . , 𝑡}, it follows that 𝑏 ≤ all elements of
{𝑏1, . . . , 𝑏𝑘} ∪̇ {𝑐𝑡+1−𝑘, . . . , 𝑐𝑡}. Therefore 𝑎 < 𝑏 ≤ 𝑞1, and hence
by duality 𝑐 > 𝑑 ≥ 𝑝2�̂�. The fact that 𝑎 bumps 𝑝𝑙 implies that
𝑎 ≤ 𝑝𝑙 and 𝑝𝑙 < 𝑏. Hence 𝑎 ≤ 𝑝𝑙 < 𝑏 ≤ 𝑞1, and therefore by
duality, we have 𝑐 ≥ 𝑞2�̂�+1−𝑙 > 𝑑 ≥ 𝑝2�̂�. For 𝑧 < 𝑎, 𝑝𝑙 ≤ 𝑧 <

𝑞2ĉ+1−𝑙, or 𝑧 ≥ 𝑐,

(𝑇(1) − 𝑇(2))

≤𝑧
≥

(𝑃1 − 𝑄1)

≤𝑧

=

(𝑃



1
− 𝑄



1
)
≤𝑧

,

(17)

where the first inequality follows from induction hypoth-
esis, and second equality follows from the facts that
𝑝𝑙−1 < 𝑎 ≤ 𝑝𝑙 < 𝑏 ≤ 𝑞1 ≤ 𝑞2�̂�+1−𝑙 ≤ 𝑐 and 𝑝2�̂� ≤ 𝑑 < 𝑐. If 𝑎 =
𝑝𝑙, then we are done. Thus we assume that 𝑎 < 𝑝𝑙 (and hence
by duality that 𝑐 > 𝑞2�̂�+1−𝑙). We now need to consider only
two possible positions of 𝑧, namely, 𝑎 ≤ 𝑧 < 𝑝𝑙 and

𝑞2�̂�+1−𝑙 ≤ 𝑧 < 𝑐. We claim that, for 𝑧 such that
𝑎 ≤ 𝑧 < 𝑝𝑙 or 𝑞2�̂�+1−𝑙 ≤ 𝑧 < 𝑐, there exists a dual pair
of chains {𝐶

(1)

𝑘+1
, 𝐶

(2)

𝑘+1
} in {𝑈

(𝑘+1)

1
, 𝑈

(𝑘+1)

2
} such that

|((𝑃
𝐶
(1)−

𝑘+1
,𝐶
(2)−

𝑘+1

, 𝑄
𝐶
(1)−

𝑘+1
,𝐶
(2)−

𝑘+1

)
up
(1)

− (𝑃
𝐶
(1)−

𝑘+1
,𝐶
(2)−

𝑘+1

, 𝑄
𝐶
(1)−

𝑘+1
,𝐶
(2)−

𝑘+1

)
up
(2)
)
≤𝑧
| ≥

|(𝑃


1
− 𝑄



1
)
≤𝑧
|. Assuming the claim and using the fact that

𝑇 ≤ (𝑃
𝐶
(1)−

𝑘+1
,𝐶
(2)−

𝑘+1

, 𝑄
𝐶
(1)−

𝑘+1
,𝐶
(2)−

𝑘+1

)
up (which is because {𝑈1, 𝑈2}

is bounded by 𝑇, 0), we are done. The claim follows from
Lemmas 41 and 42.

Case 2. 𝑃

1
is obtained by adding 𝑎 to 𝑃1 in position 𝑙 from

the left and adding 𝑑 to 𝑃1 at the rightmost end (after 𝑝2�̂�);
𝑄



1
is obtained from 𝑄1 by adding 𝑏 to the leftmost end of 𝑄1

and adding 𝑐 at the backward 𝑙th position of𝑄1. That is, 𝑃

1
=

𝑃1 ∪̇ {𝑎, 𝑑} = {𝑝1 < ⋅ ⋅ ⋅ < 𝑝𝑙−1 < 𝑎 < 𝑝𝑙 < ⋅ ⋅ ⋅ < 𝑝2�̂� < 𝑑}, and
𝑄



1
= 𝑄1 ∪̇ {𝑏, 𝑐} = {𝑏 < 𝑞1 < ⋅ ⋅ ⋅ < 𝑞2�̂�+1−𝑙 < 𝑐 < 𝑞2�̂�+1−(𝑙−1) <

⋅ ⋅ ⋅ < 𝑞2�̂�}.
Note that 𝑝𝑙−1 < 𝑎 < 𝑏 < 𝑞1, 𝑎 < 𝑏 ≤ 𝑝𝑙 (since 𝑏 >

𝑝𝑙 would require that 𝑎 bumps 𝑝𝑙 in the bounded insertion
process), and 𝑎 < 𝑏 < 𝑑 < 𝑐. For 𝑧 < 𝑎,


(𝑇(1) − 𝑇(2))

≤𝑧
≥

(𝑃1 − 𝑄1)

≤𝑧
=

(𝑃



1
− 𝑄



1
)
≤𝑧

, (18)

where the first inequality follows from induction hypothesis
and the second equality follows from the facts that 𝑝𝑙−1 < 𝑎 <

𝑝𝑙 and 𝑎 < 𝑏 < 𝑞1. For 𝑧 such that 𝑏 ≤ 𝑧 < 𝑑, note that


(𝑃



1
− 𝑄



1
)
≤𝑧

=

(𝑃



1
∪̇ (N \ 𝑄



1
))

≤𝑧

=

(𝑃



1
)
≤𝑧

+

(N \ 𝑄



1
)
≤𝑧

= (

(𝑃1)

≤𝑧
+ 1) + (


(N \ 𝑄1)

≤𝑧
− 1)

=

(𝑃1)

≤𝑧
+

(N \ 𝑄1)

≤𝑧

=

(𝑃1 − 𝑄1)

≤𝑧
.

(19)

Hence for 𝑏 ≤ 𝑧 < 𝑑, we have


(𝑇(1) − 𝑇(2))

≤𝑧
≥

(𝑃1 − 𝑄1)

≤𝑧
=

(𝑃



1
− 𝑄



1
)
≤𝑧

. (20)

For 𝑧 ≥ 𝑐,

(𝑃



1
− 𝑄



1
)
≤𝑧

=

(𝑃



1
∪̇ (N \ 𝑄



1
))

≤𝑧

=

(𝑃



1
)
≤𝑧

+

(N \ 𝑄



1
)
≤𝑧

= (

(𝑃1)

≤𝑧
+ 2) + (


(N \ 𝑄1)

≤𝑧
− 2)

=

(𝑃1)

≤𝑧
+

(N \ 𝑄1)

≤𝑧

=

(𝑃1 − 𝑄1)

≤𝑧
.

(21)

Hence for 𝑧 ≥ 𝑐, we have


(𝑇(1) − 𝑇(2))

≤𝑧
≥

(𝑃1 − 𝑄1)

≤𝑧
=

(𝑃



1
− 𝑄



1
)
≤𝑧

. (22)
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It now remains to show that for 𝑧 such that 𝑎 ≤ 𝑧 < 𝑏 or
𝑑 ≤ 𝑧 < 𝑐,


(𝑇(1) − 𝑇(2))

≤𝑧
≥

(𝑃



1
− 𝑄



1
)
≤𝑧

. (23)

We claim that for 𝑧 such that 𝑎 ≤ 𝑧 < 𝑏 or 𝑑 ≤ 𝑧 < 𝑐, there
exists a dual pair of chains {𝑆(1)

𝑘+1
, 𝑆

(2)

𝑘+1
} in {𝑈

(𝑘+1)

1
, 𝑈

(𝑘+1)

2
} such

that

({topmost row of 𝑃

𝑆
(1)

𝑘+1
,𝑆
(2)

𝑘+1

}

∪̇ (N \ {topmost row of 𝑄
𝑆
(1)

𝑘+1
,𝑆
(2)

𝑘+1

}))

≤𝑧

≥

(𝑃



1
− 𝑄



1
)
≤𝑧

.

(24)

Assuming the claim, we are done as in Case 1. But the proof
of the claim is similar to the proof of the claim made in Case
1, so we omit it.

Hence we are done with the required proof modulo, the
proof of the claim made in Case 1. As mentioned in Case 1,
the claim follows from Lemmas 41 and 42.

It now remains to prove Lemmas 41 and 42. But before
we go to prove these two lemmas, let us have a close
look at their statements and try to understand the reason
behind generating such complicated lemmas for the purpose
of proving the claim. It is clear that once we understand
the reason behind the statement of Lemma 41 being so
complicated, Lemma 42 is a natural thing to be proved for
finishing the proof of the claim. Observe that Lemma 41 looks
like a Generalization of Lemma 11.1 (i) of [8] in the present
case of the Orthogonal grassmannian. In Lemma 11.1 (i) of
[8], Kreiman says that, for 1 ≤ 𝑗 ≤ 𝑚(𝑘), there exists a
chain 𝐶𝑘,𝑗 in 𝑈

(𝑘) which has 𝑗 elements, the last of which has
first component 𝑝(𝑘)

𝑗
. We need to compare this statement of

Kreiman with the statement of Lemma 41 here. The fact that
we need a dual pair of chains here (in Lemma 41) instead
of “a chain” (as mentioned in Lemma 11.1 (i) of [8]) is quite
natural to believe. But it is not apparently clear as to why we
need the dual pair of chains in Lemma 41 to satisfy a “strange”
condition which is condition (##) (this condition is explained
in Definition 40). We will now illustrate by an example (see
Example 35 and the illustration associated to it below) that
asking for the dual pair of chains in Lemma 41 to satisfy
condition (##) is not at all strange, in fact it is the only natural
thing to be asked for in the present case of the Orthogonal
grassmannian. Another explanation for the same is provided
in Remark 36.

Example 35. Let 𝑑 = 5 and 𝛽 = (5, 7, 8, 9, 10). Consider the
multiset𝑈 = {(1, 9), (3, 7)} inN2 contained in the underlying
set of 𝛽 × 𝛽. Applying the map BRSK (which is defined in
Section 6 of [8]) to the multiset 𝑈, we get BRSK (𝑈) =

( 1 3 , 7 9 ) . Set 𝐶1,1 = 𝐶2,1 = {(1, 9)} and 𝐶2,2 = 𝑈. It
is easy to see that the chains 𝐶1,1, 𝐶2,1, and 𝐶2,2 satisfy the
required conditions of lemma 11.1 (i) of [8].

On the other hand, let us take the pair of negative skew-
symmetric lexicographic multisets on N2 given by 𝑈1, 𝑈2,

where 𝑈1 = 𝑈 and 𝑈2 = 𝑈
#

= {(4, 8), (2, 10)}. Observe
that OBRSK ({𝑈, 𝑈

#
}) =

( 1 2 3 4 , 7 8 9 )𝑋 , where
𝑋 = 10 (we have denoted 10 by the alphabet 𝑋 here because
the young tableau package used here does not work with 2-
digit integers). Set 𝐶(1)

1,1
= {(1, 9)}, 𝐶

(2)

1,1
= {(2, 10)}, 𝐶(1)

1,2
=

{(1, 9)}, 𝐶
(2)

1,2
= {(2, 10)}, 𝐶(1)

2,1
= {(1, 9)}, 𝐶

(2)

2,1
= {(2, 10)},

𝐶
(1)

2,2
= {(1, 9)}, 𝐶

(2)

2,2
= {(2, 10)}, 𝐶(1)

2,3
= 𝑈1, 𝐶

(2)

2,3
= 𝑈2, and

𝐶
(1)

2,4
= 𝑈1, 𝐶

(2)

2,4
= 𝑈2. It is easy to see that according to

the notation of Lemma 41, we have 𝑚(𝑘) = 2 for 𝑘 = 1

and 𝑚(𝑘) = 4 for 𝑘 = 2. It can also be easily verified that,
for each 𝑘 ∈ {1, 2} and each 𝑗 ∈ {1, . . . , 𝑚(𝑘)}, the dual
pair {𝐶(1)

𝑘,𝑗
, 𝐶

(2)

𝑘,𝑗
} of chains (as mentioned above) satisfies the

required condition (which is condition (##) with respect to
the bitableau (𝑃

(𝑘)
, 𝑄

(𝑘)
) and the integer 𝑗) of Lemma 41. In

fact, more is true; these dual pairs of chains satisfy condition
(##)-strong (this condition is explained inDefinition 39) with
respect to the bitableau (𝑃(𝑘)

, 𝑄
(𝑘)
) and the integer 𝑗 for every

𝑘 ∈ {1, 2} and 𝑗 ∈ {1, . . . , 𝑚(𝑘)}.

Illustration Associated to Example 35. A possible analog of
Lemma 11.1 (i) of [8] in the present case of the Orthogonal
grassmannian would be to demand for the dual pair of chains
{𝐶

(1)

𝑘,𝑗
, 𝐶

(2)

𝑘,𝑗
} in Lemma 41 to have exactly 𝑗 elements in 𝐶

(1)

𝑘,𝑗

(as well as in 𝐶
(2)

𝑘,𝑗
) and the last element of 𝐶(1)

𝑘,𝑗
to have first

coordinate 𝑝
(𝑘)

𝑗
. But it is easy to see from Example 35 that

such a demand is meaningless. Instead, it would be natural
and meaningful to demand for the dual pair {𝐶(1)

𝑘,𝑗
, 𝐶

(2)

𝑘,𝑗
} of

chains in Lemma 41 to satisfy condition (##)-strong (this is
introduced in Definition 39) with respect to the bitableau
(𝑃

(𝑘)
, 𝑄

(𝑘)
) and the integer 𝑗. But in Lemma41, we demand the

dual pair of chains {𝐶(1)

𝑘,𝑗
, 𝐶

(2)

𝑘,𝑗
} to satisfy condition (##) (this is

introduced inDefinition 40)which is littleweaker a condition
to be satisfied than condition (##)-strong.The reason behind
this is that if we demand for the dual pair {𝐶

(1)

𝑘,𝑗
, 𝐶

(2)

𝑘,𝑗
} of

chains to satisfy condition (##)-strong instead of condition
(##), then the proof of Lemma 41 becomesmore difficult.This
difficulty (in the proof of Lemma 41) arises at the point(s)
where we need to show that the dual pair {𝐶

(1)

𝑘+1,𝑙
, 𝐶

(2)

𝑘+1,𝑙
}

of chains in {𝑈
(𝑘+1)

1
, 𝑈

(𝑘+1)

2
} satisfies condition (##)-strong.

It is easier to show that the dual pair {𝐶
(1)

𝑘+1,𝑙
, 𝐶

(2)

𝑘+1,𝑙
} of

chains satisfies condition (##).This completes the explanation
behind the statement of Lemma 41 being so complicated.

Remark 36. Note that the properties of the dual pair
{𝐶

(1)

𝑘,𝑗
, 𝐶

(2)

𝑘,𝑗
} of chains in Lemma 41 are a Generalization of the

properties of the chain 𝐶𝑘,𝑗 of Lemma 11.1 of [8]. In fact,
this Generalization precisely reveals the difference between
the OBRSK algorithm (when applied to a dual pair of chains)
in the present case of the Orthogonal Grassmannian and
the BRSK algorithm of [8] (when applied to a chain) in
the case of the ordinary Grassmannian. Equivalently, this
Generalization reveals the difference between the concept of
“O-domination of a chain by an element of 𝐼(𝑑)” in the case
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of the Orthogonal Grassmannian (as in Section 2.4.4 of [9])
and the concept of “domination of a chain by an element of
𝐼(𝑑, 2𝑑)” in the case of the ordinary Grassmannian as in [6].

Let us now prove Lemmas 41 and 42, but for the proofs
we need some definitions which are the following.

Definition 37. Let (𝑃, 𝑄) and 𝑘1 be as in Definition 24. Let
𝑗 ∈ {1, . . . , 𝑘1}. With notation as in Definition 24, one
calls (𝑝1𝑗, 𝑞1𝑗) the jth element of (𝑃, 𝑄)up, and we denote by
(𝑃, 𝑄)

up
≤𝑗

the subset {(𝑝11, 𝑞11), . . . , (𝑝1𝑗, 𝑞1𝑗)} of (𝑃, 𝑄)
up. See

Example 38 for an illustration.

Example 38. Consider the row-strict notched bitableau
(P,Q) of Example 25. If we take 𝑗 = 3, then the 𝑗th element of
(P,Q)

up is (𝑇,𝐾) and (P,Q)
up
≤𝑗
equals {(𝐻,𝐷), (𝐽, 𝐴), (𝑇,𝐾)}.

We can work out similarly for other possible values of 𝑗.

Definition 39. Let (𝑃, 𝑄) be a negative skew-symmetric
notched bitableau. Let {𝑝1, . . . , 𝑝2𝑐} and {𝑞1, . . . , 𝑞2𝑐} be the
topmost row of𝑃 and𝑄, respectively, both listed in increasing
order. Let 𝑗 ∈ {1, . . . , 2𝑐}. We say that a dual pair {𝐶1, 𝐶2}

of chains in N2 satisfies condition (##)-strong with respect
to the bitableau (𝑃, 𝑄) and the integer 𝑗 if all the following
conditions are satisfied simultaneously.

(i) |𝐶1|, |𝐶2| ≤ 𝑗.
(ii) The first coordinate of the 𝑗th element of (𝑃𝐶−

1
,𝐶
−

2

,
𝑄𝐶
−

1
,𝐶
−

2

)
up is 𝑝𝑗.

(iii) All the entries which occur as first coordinates of
elements of 𝐶1 form a subset of the set of all
entries which occur as first coordinates of elements
of (𝑃𝐶−

1
,𝐶
−

2

, 𝑄𝐶
−

1
,𝐶
−

2

)
up
≤𝑗
.

Definition 40. Let (𝑃, 𝑄) be a negative skew-symmetric
notched bitableau. Let {𝑝1, . . . , 𝑝2𝑐} and {𝑞1, . . . , 𝑞2𝑐} be
the topmost row of 𝑃 and 𝑄, respectively, both listed in
increasing order. Let 𝑗 ∈ {1, . . . , 2𝑐}. One says that a dual pair
{𝐶1, 𝐶2} of chains in N2 satisfies condition (##) with respect
to the bitableau (𝑃, 𝑄) and the integer 𝑗 if all the following
conditions are satisfied simultaneously.

(i) |𝐶1|, |𝐶2| ≤ 𝑗.
(ii) There exists an integer 𝜒𝑗 which is ≥ 𝑗 such

that the first coordinate of the 𝜒𝑗th element of
(𝑃𝐶−
1
,𝐶
−

2

, 𝑄𝐶
−

1
,𝐶
−

2

)
up is 𝑝𝑗.

(iii) All the entries which occur as first coordinates of
elements of 𝐶1 form a subset of the set of all
entries which occur as first coordinates of elements
of (𝑃C−

1
,𝐶
−

2

, 𝑄𝐶
−

1
,𝐶
−

2

)
up
≤𝜒
𝑗

.

Lemma 41. Let {𝑈1 = {(𝑎1, 𝑏1), . . . , (𝑎𝑡, 𝑏𝑡)}, 𝑈2 = {(𝑑1, 𝑐1),
. . . , (𝑑𝑡, 𝑐𝑡)}} be a pair of negative skew-symmetric lexico-
graphic multisets on N2. For 𝑘 = 1, . . . , 𝑡, let 𝑈

(𝑘)

1
:=

{(𝑎1, 𝑏1), . . . , (𝑎𝑘, 𝑏𝑘)} and𝑈
(𝑘)

2
:= {(𝑑𝑡+1−𝑘, 𝑐𝑡+1−𝑘), . . . , (𝑑𝑡, 𝑐𝑡)}.

Let (𝑃(𝑘)
, 𝑄

(𝑘)
) := OBRSK({𝑈(𝑘)

1
, 𝑈

(𝑘)

2
}). Define {𝑝(𝑘)

1
, . . . , 𝑝

(𝑘)

2𝑐
𝑘

}

to be the topmost row of 𝑃(𝑘) and {𝑞
(𝑘)

1
, . . . , 𝑞

(𝑘)

2𝑐
𝑘

} the topmost

row of 𝑄
(𝑘), both listed in increasing order. Let 𝑚(𝑘) :=

max{𝑚 ∈ {1, . . . , 2𝑐𝑘} | 𝑝
(𝑘)

𝑚
< 𝑞

(𝑘)

1
} = |(𝑃

(𝑘)

1
)
<𝑞
(𝑘)

1 |. Then for
1 ≤ 𝑗 ≤ 𝑚(𝑘), there exists a dual pair of chains {𝐶(1)

𝑘,𝑗
, 𝐶

(2)

𝑘,𝑗
}

in {𝑈
(𝑘)

1
, 𝑈

(𝑘)

2
} which satisfies condition (##) with respect to the

bitableau (𝑃
(𝑘)
, 𝑄

(𝑘)
) and the integer 𝑗. Let one denote by 𝜒𝑘,𝑗

the integer corresponding to condition (##) (item number (ii),
which is ≥𝑗).

Proof. We prove this by induction on 𝑘, with 𝑘 = 1 the
starting point of induction. When 𝑘 = 1, 𝑈(1)

1
= {(𝑎1, 𝑏1)}

and 𝑈
(1)

2
= {(𝑑𝑡, 𝑐𝑡)}. There are two possible cases, namely,

when 𝑚(𝑘) = 1 and 𝑚(𝑘) = 2. In both the cases, for every
𝑗 ∈ {1, . . . , 𝑚(𝑘)}, take 𝐶(1)

1,𝑗
= {(𝑎1, 𝑏1)} and 𝐶

(2)

1,𝑗
= {(𝑑𝑡, 𝑐𝑡)}.

This proves the base case of induction.
Let (𝑃, 𝑄) = (𝑃

(𝑘)
, 𝑄

(𝑘)
), 𝑎 = 𝑎𝑘+1, 𝑏 = 𝑏𝑘+1, 𝑐 =

𝑐𝑡−𝑘, 𝑑 = 𝑑𝑡−𝑘, (𝑃

, 𝑄


) = (𝑃

(𝑘+1)
, 𝑄

(𝑘+1)
), {𝑝1, . . . , 𝑝2�̂�} =

{𝑝
(𝑘)

1
, . . . , 𝑝

(𝑘)

2𝑐
𝑘

}, and {𝑞1, . . . , 𝑞2�̂�} = {𝑞
(𝑘)

1
, . . . , 𝑞

(𝑘)

2𝑐
𝑘

}. Note
that {𝑝1, . . . , 𝑝2�̂�} ⊂ {𝑎1, . . . , 𝑎𝑘} ∪̇ {𝑑𝑡+1−𝑘, . . . , 𝑑𝑡} and
{𝑞1, . . . , 𝑞2�̂�} ⊂ {𝑏1, . . . , 𝑏𝑘} ∪̇ {𝑐𝑡+1−𝑘, . . . , 𝑐𝑡}. Let 𝑃1 (resp., 𝑄1)
denote the topmost row of 𝑃 (resp.,𝑄). Similarly let 𝑃

1
(resp.,

𝑄


1
) denote the topmost row of 𝑃 (resp., 𝑄).
Since 𝑏 is less than or equal to all elements of {𝑏1, . . . , 𝑏𝑘}

and 𝑏𝑖 < 𝑐𝑡+1−𝑖 ∀𝑖 ∈ {1, . . . , 𝑡}, it follows that 𝑏≤ all elements of
{𝑏1, . . . , 𝑏𝑘} ∪̇ {𝑐𝑡+1−𝑘, . . . , 𝑐𝑡}. Therefore 𝑎 < 𝑏 ≤ 𝑞1, and hence
by duality 𝑐 > 𝑑 ≥ 𝑝2�̂�. We consider two cases corresponding
to the two ways in which (𝑃



1
, 𝑄



1
) can be obtained from

(𝑃1, 𝑄1).

Case 1. 𝑃

1
is obtained by 𝑎 bumping 𝑝𝑙 in 𝑃1, for some 1 ≤

𝑙 ≤ 2�̂�; that is, 𝑃

1
= (𝑃1 \ {𝑝𝑙}) ∪̇ {𝑎} and 𝑄



1
= (𝑄1 \

{𝑞2�̂�+1−𝑙}) ∪̇ {𝑐}.
The fact that 𝑎 bumps 𝑝𝑙 implies that 𝑎 ≤ 𝑝𝑙 and 𝑝𝑙 < 𝑏.

Hence 𝑎 ≤ 𝑝𝑙 < 𝑏 ≤ 𝑞1, and therefore, by duality, we have
𝑐 ≥ 𝑞2�̂�+1−𝑙 > 𝑑 ≥ 𝑝2�̂�. This implies that 𝑚(𝑘 + 1) = 𝑚(𝑘).
For 𝑗 ∈ {1, . . . , 𝑚(𝑘)} \ {𝑙}, set 𝐶(1)

𝑘+1,𝑗
= 𝐶

(1)

𝑘,𝑗
and 𝐶

(2)

𝑘+1,𝑗
= 𝐶

(2)

𝑘,𝑗

(Note that in these cases 𝑝(𝑘)

𝑗
= 𝑝

(𝑘+1)

𝑗
.). We now consider

the case when 𝑗 = 𝑙. If 𝑙 = 1, then set 𝐶(1)

𝑘+1,𝑙
= {(𝑎, 𝑏)}

and 𝐶
(2)

𝑘+1,𝑙
= {(𝑑, 𝑐)}. Otherwise consider the dual pair of

chains {𝐶
(1)

𝑘,𝑙−1
, 𝐶

(2)

𝑘,𝑙−1
} in {𝑈

(𝑘)

1
, 𝑈

(𝑘)

2
}. Let 𝐶(1)

𝑘+1,𝑙
:= 𝐶

(1)

𝑘,𝑙−1
∪

{(𝑎, 𝑏)} and 𝐶
(2)

𝑘+1,𝑙
:= 𝐶

(2)

𝑘,𝑙−1
∪ {(𝑑, 𝑐)}. Note that the dual

pair {𝐶(1)

𝑘+1,𝑙
, 𝐶

(2)

𝑘+1,𝑙
} of chains in {𝑈

(𝑘+1)

1
, 𝑈

(𝑘+1)

2
} satisfies the

required conditions.

Case 2. 𝑃

1
is obtained by adding 𝑎 to 𝑃1 in position 𝑙 from

the left and adding 𝑑 to 𝑃1 at the rightmost end (after 𝑝2�̂�);
𝑄



1
is obtained from 𝑄1 by adding 𝑏 to the leftmost end of 𝑄1

and adding 𝑐 at the backward 𝑙th position of𝑄1. That is, 𝑃

1
=

𝑃1 ∪̇ {𝑎, 𝑑} = {𝑝1 < ⋅ ⋅ ⋅ < 𝑝𝑙−1 < 𝑎 < 𝑝𝑙 < ⋅ ⋅ ⋅ < 𝑝2�̂� < 𝑑}, and
𝑄



1
∪̇ {𝑏, 𝑐} = {𝑏 < 𝑞1 < ⋅ ⋅ ⋅ < 𝑞2�̂�+1−𝑙 < 𝑐 < 𝑞2�̂�+1−(𝑙−1) < ⋅ ⋅ ⋅ <

𝑞2�̂�}.
Since 𝑝𝑙−1 < 𝑎 < 𝑏 < 𝑞1, it follows that 𝑚(𝑘) ≥ (𝑙 − 1).

Note that 𝑎 < 𝑏 ≤ 𝑝𝑙 (since 𝑏 > 𝑝𝑙 would require that 𝑎
bumps 𝑝𝑙 in the bounded insertion process).Thus𝑚(𝑘+1) =

𝑙. For 𝑗 ∈ {1, . . . , 𝑙 − 1}, set 𝐶(1)

𝑘+1,𝑗
= 𝐶

(1)

𝑘,𝑗
and 𝐶

(2)

𝑘+1,𝑗
= 𝐶

(2)

𝑘,𝑗
.
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Consider the dual pair {𝐶(1)

𝑘,𝑙−1
, 𝐶

(2)

𝑘,𝑙−1
} of chains in {𝑈(𝑘)

1
, 𝑈

(𝑘)

2
}.

Let𝐶(1)

𝑘+1,𝑙
:= 𝐶

(1)

𝑘,𝑙−1
∪{(𝑎, 𝑏)} and𝐶(2)

𝑘+1,𝑙
:= 𝐶

(2)

𝑘,𝑙−1
∪{(𝑑, 𝑐)}. Note

that the dual pair {𝐶(1)

𝑘+1,𝑙
, 𝐶

(2)

𝑘+1,𝑙
} of chains in {𝑈

(𝑘+1)

1
, 𝑈

(𝑘+1)

2
}

satisfies the required conditions.

Lemma 42. Let (𝑃, 𝑄) be a negative skew-symmetric notched
bitableau. Let 𝑎, 𝑏, 𝑐, and 𝑑 be integers such that (𝑃, 𝑄) 𝑏,𝑐

←

𝑎, 𝑑 is well defined. Let (𝑃
, 𝑄


) := (𝑃, 𝑄)

𝑏,𝑐

← 𝑎, 𝑑. Let 𝑃1
(resp., 𝑄1) denote the topmost row of 𝑃 (resp., 𝑄). Similarly
let 𝑃

1
(resp., 𝑄

1
) denote the topmost row of 𝑃 (resp., 𝑄).

Let {𝑝1, . . . , 𝑝2�̂�} (resp., {𝑞1, . . . , 𝑞2�̂�}) denote 𝑃1 (resp., 𝑄1),
both listed in increasing order. Suppose 𝑃



1
is obtained by 𝑎

bumping 𝑝𝑙 in 𝑃1, for some 1 ≤ 𝑙 ≤ 2�̂�; that is, suppose
𝑃


1
= (𝑃1 \ {𝑝𝑙}) ∪̇ {𝑎} and 𝑄



1
= (𝑄1 \ {𝑞2�̂�+1−𝑙}) ∪̇ {𝑐}.

Let {𝐶1, 𝐶2} be a dual pair of negative chains in N2 which
satisfies condition (##) with respect to the bitableau (𝑃


, 𝑄


)

and the integer 𝑙. Let 𝐶1 = {(𝑒1, 𝑓1), . . . , (𝑒𝑟, 𝑓𝑟), (𝑎, 𝑏)} and
𝐶2 = {(𝑑, 𝑐), (𝑔𝑟, ℎ𝑟), . . . , (𝑔1, ℎ1)}, where 𝑒1 < ⋅ ⋅ ⋅ < 𝑒𝑟 <

𝑎 < 𝑝𝑙 < 𝑏 < 𝑓𝑟 < ⋅ ⋅ ⋅ < 𝑓1 and ℎ1 > ⋅ ⋅ ⋅ > ℎ𝑟 > 𝑐 >

𝑞2�̂�+1−𝑙 > 𝑑 > 𝑔𝑟 > ⋅ ⋅ ⋅ > 𝑔1. Then for 𝑧 such that 𝑎 ≤ 𝑧 < 𝑝𝑙 or
𝑞2�̂�+1−𝑙 ≤ 𝑧 < 𝑐, one has


((𝑃𝐶

1
,𝐶
2

, 𝑄𝐶
1
,𝐶
2

)
up

(1)
− (𝑃𝐶

1
,𝐶
2

, 𝑄𝐶
1
,𝐶
2

)
up

(2)
)

≤𝑧
≥

(𝑃



1
− 𝑄



1
)
≤𝑧

.

(25)

Proof. Note that for 𝑎 ≤ 𝑧 < 𝑝𝑙, we have |((𝑃𝐶
1
,𝐶
2

,
𝑄𝐶
1
,𝐶
2

)
up
(1)

– (𝑃𝐶
1
,𝐶
2

, 𝑄𝐶
1
,𝐶
2

)
up
(2)
)
≤𝑧
| = |({topmost row of

𝑃𝐶
1
,𝐶
2

} − {topmost row of 𝑄𝐶
1
,𝐶
2

})
≤𝑧
| = |({topmost row

of 𝑃𝐶
1
,𝐶
2

} ∪̇ (N \ {topmost row of 𝑄𝐶
1
,𝐶
2

}))
≤𝑧
| =

|{topmost row of 𝑃𝐶
1
,𝐶
2

}
≤𝑧

∪̇ {N}
≤𝑧
| ≥ 𝜒𝑙 + 𝑧 ≥ 𝑙 + 𝑧,

where the last equality (not inequality!) is because 𝑏 ≤

all entries in 𝑄𝐶
1
,𝐶
2

and 𝑎 ≤ 𝑧 < 𝑝𝑙 < 𝑏 (All the other
inequalities and equalities being obvious.).

Also, 𝑝1 < ⋅ ⋅ ⋅ < 𝑝𝑙−1 < 𝑎 < 𝑝𝑙 < 𝑏 ≤ 𝑞1 < ⋅ ⋅ ⋅ < 𝑞2�̂�, and
𝑏 < 𝑐.Thus for 𝑎 ≤ 𝑧 < 𝑝𝑙, |(𝑃



1
−𝑄



1
)
≤𝑧
| = |(𝑃



1
∪̇ (N\𝑄

1
))

≤𝑧
| =

|(𝑃


1
∪̇ N)

≤𝑧
| = 𝑙 + 𝑧.

Hence we are done in the case 𝑎 ≤ 𝑧 < 𝑝𝑙. Now for 𝑧 such
that 𝑞2�̂�+1−𝑙 ≤ 𝑧 < 𝑐, we need to show that


({topmost row of 𝑃𝐶

1
,𝐶
2

}

∪̇ (N \ {topmost row of 𝑄𝐶
1
,𝐶
2

}))
≤𝑧

≥

(𝑃



1
∪̇ (N \ 𝑄



1
))

≤𝑧
.

(26)

Recall that 𝑃

1
= (𝑃1 \ {𝑝𝑙}) ∪̇ {𝑎} and 𝑄



1
= (𝑄1 \

{𝑞2�̂�+1−𝑙}) ∪̇ {𝑐}. Since (𝑃
, 𝑄


) = (𝑃, 𝑄)

𝑏,𝑐

← 𝑎, 𝑑, therefore 𝑑≥
all entries of𝑃. Hence𝑑≥ all entries of𝑃

1
. On the other hand,

since 𝑎 < 𝑝𝑙 < 𝑏, it follows from duality that 𝑐 > 𝑞2�̂�+1−𝑙 > 𝑑.
So we have 𝑝1 < ⋅ ⋅ ⋅ < 𝑝𝑙−1 < 𝑎 < 𝑝𝑙+1 < ⋅ ⋅ ⋅ < 𝑝2�̂� ≤ 𝑑 <

𝑞2�̂�+1−𝑙 < 𝑐 < 𝑞2�̂�+1−(𝑙−1) < ⋅ ⋅ ⋅ < 𝑞2�̂�. It is now easy to observe
that for 𝑧 such that 𝑞2�̂�+1−𝑙 ≤ 𝑧 < 𝑐, the number of elements
in 𝑄



1
which are ≤ 𝑧 is 2�̂� − 𝑙. Hence the number of elements

in N \ 𝑄


1
which are ≤𝑧 will be 𝑧 − (2�̂� − 𝑙).

It is also clear that all the elements of 𝑃

1
are ≤𝑧, and there

are 2�̂�many elements in 𝑃


1
. Therefore,


(𝑃



1
∪̇ (N \ 𝑄



1
))

≤𝑧
= 2�̂� + (𝑧 − (2�̂� − 𝑙))

= 2�̂� + 𝑧 − 2�̂� + 𝑙 = 𝑧 + 𝑙.

(27)

Let 𝛼1 < ⋅ ⋅ ⋅ < 𝛼2�̃� and 𝛽1 < ⋅ ⋅ ⋅ < 𝛽2�̃� denote the topmost
rows of 𝑃𝐶

1
,𝐶
2

and 𝑄𝐶
1
,𝐶
2

, respectively. It follows from the
algorithm of OBRSK applied on {𝐶1, 𝐶2} that 𝑑 ≥ 𝛼2�̂� >

⋅ ⋅ ⋅ > 𝛼1. On the other hand, since 𝑎 < 𝑝𝑙 < 𝑏, it follows
from duality that 𝑐 > 𝑞2�̂�+1−𝑙 > 𝑑. Hence combining all these,
we have 𝑐 > 𝑞2ĉ+1−𝑙 > 𝑑 ≥ 𝛼2�̃� > 𝛼1. So for 𝑧 such that
𝑞2�̂�+1−𝑙 ≤ 𝑧 < 𝑐, the number of elements in the topmost row
of 𝑃𝐶

1
,𝐶
2

which are ≤𝑧 is 2�̃�.
Since {𝐶1, 𝐶2} satisfies condition (##) with respect to the

bitableau (𝑃
, 𝑄


) and the integer 𝑙, it follows that there exists

an integer 𝜒𝑙(≥ 𝑙) such that the 𝜒𝑙th entry (counting from left
to right) of the topmost row of 𝑃𝐶

1
,𝐶
2

is 𝑎. Hence it follows
from duality that the backward 𝜒𝑙th entry (i.e., the 𝜒𝑙th entry
counting from right to left) of the topmost row of 𝑄𝐶

1
,𝐶
2

is
𝑐. Therefore for 𝑧 such that 𝑞2�̂�+1−𝑙 ≤ 𝑧 < 𝑐, the number of
elements in the topmost row of 𝑄𝐶

1
,𝐶
2

which are ≤𝑧 is equal
to 𝑋0, where 𝑋0 is some nonnegative integer such that 𝑋0 ≤

2�̃�−𝜒𝑙. But𝜒𝑙 ≥ 𝑙, hence−𝜒𝑙 ≤ −𝑙, and therefore𝑋0 ≤ 2�̃�−𝜒𝑙 ≤

2�̃� − 𝑙.
Therefore, the number of elements in (N \

{topmost row of 𝑄𝐶
1
,𝐶
2

}) which are ≤ 𝑧 is 𝑧 − 𝑋0.
Hence |({topmost row of 𝑃𝐶

1
,𝐶
2

} ∪̇ (N \ {topmost row of
𝑄𝐶
1
,𝐶
2

}))
≤𝑧
| = 2�̃� + 𝑧 − 𝑋0 ≥ 2�̃� + 𝑧 − (2�̃� − 𝑙) = 𝑧 + 𝑙 =

|(𝑃


1
∪̇ (N \ 𝑄



1
))

≤𝑧
|.
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