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The domination number of a graph G is the smallest number of vertices which dominate all remaining vertices by edges of G. The
bondage number of a nonempty graphG is the smallest number of edges whose removal fromG results in a graph with domination
number greater than the domination number of G. The concept of the bondage number was formally introduced by Fink et al. in
1990. Since then, this topic has received considerable research attention and made some progress, variations, and generalizations.
This paper gives a survey on the bondage number, including known results, conjectures, problems, and some comments, also
selectively summarizes other types of bondage numbers.

1. Introduction

For terminology andnotation on graph theory not given here,
the reader is referred to Xu [1]. Let 𝐺 = (𝑉, 𝐸) be a finite,
undirected, and simple graph. We call |𝑉| and |𝐸| the order
and size of 𝐺 and denote them by 𝜐 = 𝜐(𝐺) and 𝜀 = 𝜀(𝐺),
respectively, unless otherwise specified. Through this paper,
the notations 𝑃

𝑛
, 𝐶

𝑛
, and 𝐾

𝑛
always denote a path, a cycle,

and a complete graph of order 𝑛, respectively, the notation
𝐾
𝑛
1
,𝑛
2
,...,𝑛
𝑡

denotes a complete 𝑡-partite graph with 𝑛
1
⩽ 𝑛

2
⩽

⋅ ⋅ ⋅ ⩽ 𝑛
𝑡
and 𝑛

𝑡
> 1, 𝐾

𝑡
(𝑚) = 𝐾

𝑛
1
,𝑛
2
,...,𝑛
𝑡

with 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

𝑡
=

𝑚, and𝐾
1,𝑛−1

is a star. For two vertices 𝑥 and 𝑦 in a connected
graph 𝐺, we use 𝑑

𝐺
(𝑥, 𝑦) to denote the distance between 𝑥

and 𝑦 in 𝐺.
For a vertex 𝑥 in 𝐺, let𝑁

𝐺
(𝑥) be the open set of neighbors

of 𝑥 and 𝑁
𝐺
[𝑥] = 𝑁[𝑥] = 𝑁

𝐺
(𝑥) ∪ {𝑥} the closed

set of neighbors of 𝑥. For a subset 𝑋 ⊂ 𝑉(𝐺), 𝑁
𝐺
(𝑋) =

(∪
𝑥∈𝑋
𝑁

𝐺
(𝑥)) ∩ 𝑋, and 𝑁

𝐺
[𝑋] = 𝑁

𝐺
(𝑋) ∪ 𝑋, where 𝑋 =

𝑉(𝐺) \ 𝑋. Let 𝐸
𝑥
be the set of edges incident with 𝑥 in 𝐺;

that is, 𝐸
𝑥
= {𝑥𝑦 ∈ 𝐸(𝐺) : 𝑦 ∈ 𝑁

𝐺
(𝑥)}. We denote the

degree of𝑥 by𝑑
𝐺
(𝑥) = |𝐸

𝑥
|.Themaximumand theminimum

degrees of 𝐺 are denoted by Δ(𝐺) and 𝛿(𝐺), respectively. A
vertex of degree zero is called an isolated vertex. An edge
incident with a vertex of degree one is called a pendant
edge.

The bondage number is an important parameter of graphs
which is based upon the well-known domination number.

A subset 𝑆 ⊆ 𝑉(𝐺) is called a dominating set of 𝐺 if
𝑁

𝐺
[𝑆] = 𝑉(𝐺); that is, every vertex 𝑥 in 𝑆 has at least one

neighbor in 𝑆.The domination number of𝐺, denoted by 𝛾(𝐺),
is the minimum cardinality among all dominating sets; that
is,

𝛾 (𝐺) = min {|𝑆| : 𝑆 ⊆ 𝑉 (𝐺) ,𝑁
𝐺
[𝑆] = 𝑉 (𝐺)} . (1)

A dominating set 𝑆 is called a 𝛾-set of 𝐺 if |𝑆| = 𝛾(𝐺).
The domination is such an important and classic concep-

tion that it has become one of the most widely studied topics
in graph theory and also is frequently used to study property
of networks. The domination, with many variations and
generalizations, is now well studied in graph and networks
theory. The early vast literature on domination includes the
bibliography compiled by Hedetniemi and Laskar [2] and
a thorough study of domination appears in the books by
Haynes et al. [3, 4]. However, the problem determining the
domination number for general graphs was early proved to
be NP-complete (see GT2 in Appendix in Garey and Johnson
[5], 1979).

Among various problems related with the domination
number, some focus on graph alterations and their effects
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on the domination number. Here, we are concerned with
a particular graph alternation, the removal of edges from a
graph.

Graphs with domination numbers changed upon the
removal of an edge were first investigated by Walikar and
Acharya [6] in 1979. A graph is called edge-domination-
critical graph if 𝛾(𝐺 − 𝑒) > 𝛾(𝐺) for every edge 𝑒 in 𝐺. The
edge-domination-critical graph was characterized by Bauer
et al. [7] in 1983; that is, a graph is edge-domination-critical
if and only if it is the union of stars.

However, for lots of graphs, the domination number is out
of the range of one-edge removal. It is immediate that 𝛾(𝐻) ⩾
𝛾(𝐺) for any spanning subgraph 𝐻 of 𝐺. Every graph 𝐺 has
a spanning forest 𝑇 with 𝛾(𝐺) = 𝛾(𝑇), and so, in general, a
graph has a nonempty subset 𝐹 ⊆ 𝐸(𝐺) for which 𝛾(𝐺 − 𝐹) =
𝛾(𝐺).

Then it is natural for the alternation to be generalized to
the removal of several edges, which is just enough to enlarge
the domination number. That is the idea of the bondage
number.

Ameasure of the efficiency of a domination in graphs was
first given by Bauer et al. [7] in 1983, who called this measure
as domination line-stability, defined as theminimumnumber
of lines (i.e., edges) which when removed from𝐺 increases 𝛾.

In 1990, Fink et al. [8] formally introduced the bondage
number as a parameter for measuring the vulnerability of the
interconnection network under link failure. The minimum
dominating set of sites plays an important role in the network
for it dominates the whole network with the minimum cost.
Sowemust consider whether its function remains goodwhen
the network is attacked. Suppose that someone such as a
saboteur does not know which sites in the network take part
in the dominating role, but does know that the set of these
special sites corresponds to aminimumdominating set in the
related graph. Then how many links does he has to attack so
that the cost cannot remains the same in order to dominate
thewhole network?Thatminimumnumber of links is just the
bondage number.

The bondage number 𝑏(𝐺) of a nonempty undirected
graph 𝐺 is the minimum number of edges whose removal
from𝐺 results in a graphwith larger domination number.The
precise definition of the bondage number is as follows:

𝑏 (𝐺) = min {|𝐵| : 𝐵 ⊆ 𝐸 (𝐺) , 𝛾 (𝐺 − 𝐵) > 𝛾 (𝐺)} . (2)

Since the domination number of every spanning subgraph of
a nonempty graph 𝐺 is at least as great as 𝛾(𝐺), the bondage
number of a nonempty graph is well defined.

We call such an edge-set 𝐵 with 𝛾(𝐺 − 𝐵) > 𝛾(𝐺)

the bondage set and the minimum one the minimum
bondage set. In fact, if 𝐵 is a minimum bondage set, then
𝛾(𝐺 − 𝐵) = 𝛾(𝐺) + 1 because the removal of one single edge
cannot increase the domination number by more than one.
If 𝑏(𝐺) does not exist, for example, empty graphs, we define
𝑏(𝐺) = ∞.

It is quite difficult to compute the exact value of the
bondage number for general graphs since it strongly depends
on the domination number of the graphs.Muchwork focused
on the bounds on the bondage number aswell as the restraints

on some particular classes of graphs or networks. The
purpose of this paper is to give a survey of results and research
methods related to these topics for graphs and digraphs.
For some results and research methods, we will make some
comments to develop our further study.

The rest of the paper is organized as follows. Section 2
gives some preliminary results and complexity. Sections
3 and 4 survey some upper bounds and lower bounds,
respectively. The results for some special classes of graphs
and planar graphs are stated in Sections 5 and 6, respectively.
In Section 7, we introduce some results on crossing number
restraints. In Sections 8 and 9, we are concerned about other
and generalized types of bondage numbers, respectively. In
Section 10, we introduce some results for digraphs. In the
last section, we introduce some results for vertex-transitive
graphs by applying efficient dominating sets.

2. Simplicity and Complexity

As we have known from Introduction, the bondage number
is an important parameter for measuring the stability or
the vulnerability of a domination in a graph or a network.
Our aim is to compute the bondage number for any given
graphs or networks. One has determined the exact value of
the bondage number for some graphs with simple structure.
For arbitrarily given graph, however, it has been proved that
determining its bondage number is NP-hard.

2.1. Exact Values for Ordinary Graphs. We begin our inves-
tigation of the bondage number by computing its value for
several well-known classes of graphs with simple structure.
In 1990, Fink et al. [8] proposed the concept of the bondage
number and completely determined the exact values of
bondage numbers of some ordinary graphs, such as complete
graphs, paths, cycles, and complete multipartite graphs.

Theorem 1 (Fink et al. [8], 1990). The exact values of bondage
numbers of the following class of graphs are completely deter-
mined:

𝑏 (𝐾
𝑛
) = ⌈

𝑛

2
⌉ ;

𝑏 (𝑃
𝑛
) = {

2 𝑖𝑓 𝑛 ≡ 1 (mod 3) ,
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏 (𝐶
𝑛
) = {

3 𝑖𝑓 𝑛 ≡ 1 (mod 3) ,
2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏 (𝐾
𝑛
1
,𝑛
2
,...,𝑛
𝑡

)

=

{{{{{{{{

{{{{{{{{

{

⌈
𝑗

2
⌉ 𝑖𝑓 𝑛

𝑗
= 1 𝑎𝑛𝑑 𝑛

𝑗+1
⩾ 2, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑗,

1 ⩽ 𝑗 < 𝑡,

2𝑡 − 1 𝑖𝑓 𝑛
1
= 𝑛

2
= ⋅ ⋅ ⋅ = 𝑛

𝑡
= 2,

𝑡−1

∑

𝑖=1

𝑛
𝑖

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3)

The complete graph𝐾
𝑛
is the unique (𝑛−1)-regular graph

of order 𝑛 ⩾ 2, 𝑏(𝐾
𝑛
) = ⌈𝑛/2⌉ by Theorem 1. The 𝑡-partite
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graph 𝐾
𝑡
(2) with 𝑡 = 𝑛/2 is an (𝑛 − 2)-regular graph 𝐺 of

order 𝑛 ⩾ 2, and not unique, 𝑏(𝐺) = 𝑛 − 1 by Theorem 1
for an even integer 𝑛 ⩾ 4. For an (𝑛 − 3)-regular graph
𝐺 of order 𝑛 ⩾ 4, Hu and Xu [9] obtained the following
result.

Theorem 2 (Hu and Xu [9]). 𝑏(𝐺) = 𝑛 − 3 for any (𝑛 − 3)-
regular graph 𝐺 of order 𝑛 ⩾ 4.

Up to the present, no results have been known for 𝑘-
regular graphs with 3 ⩽ 𝑘 ⩽ 𝑛 − 4. For general graphs, there
are the following two results.

Theorem 3 (Teschner [10], 1997). If 𝐺 is a nonempty graph
with a unique minimum dominating set, then 𝑏(𝐺) = 1.

Theorem4 (Bauer et al. [7], 1983). If any vertex of a graph𝐺 is
adjacent with two ormore vertices of degree one, then 𝑏(𝐺) = 1.

Bauer et al. [7] observed that the star is the unique
graph with the property that the bondage number is 1 and
the deletion of any edge results in the domination number
increasing. Motivated by this fact, Hartnell and Rall [11]
proposed the concept of uniformly bonded graphs. A graph is
called to be uniformly bonded if it has bondage number 𝑏 and
the deletion of any 𝑏 edges results in a graph with increased
domination number. Unfortunately, there are a few uniformly
bonded graphs.

Theorem 5 (Hartnell and Rall [11], 1999). The only uniformly
bonded graphs with bondage number 2 are 𝐶

3
and 𝑃

4
. The

unique uniformly bonded graph with bondage number 3 is 𝐶
4
.

There are no such graphs for bondage number greater than 3.

As we mentioned, to compute the exact value of bondage
number for a graph strongly depends upon its domination
number. In this sense, studying the bondage number can
greatly inspire one’s research concerned with dominations.
However, determining the exact value of domination number
for a given graph is quite difficult. In fact, even if the
exact value of the domination number for some graph is
determined, it is still very difficulty to compute the value
of the bondage number for that graph. For example, for the
hypercube 𝑄

𝑛
, we have 𝛾(𝑄

𝑛
) = 2

𝑛−1, but we have not yet
determined 𝑏(𝑄

𝑛
) for any 𝑛 ⩾ 2.

Perhaps Theorems 3 and 4 provide an approach to
compute the exact value of bondage number for some graphs
by establishing some sufficient conditions for 𝑏(𝐺) = 𝑏.
In fact, we will see later that Theorem 3 plays an important
role in determining the exact values of the bondage numbers
for some graphs. Thus, to study the bondage number, it is
important to present various characterizations of graphs with
a unique minimum dominating set.

2.2. Characterizations of Trees. For trees, Bauer et al. [7] in
1983 from the point of view of the domination line-stability,
independently and Fink et al. [8] in 1990 from the point
of view of the domination edge-vulnerability obtained the
following result.

𝑤

Figure 1: Tree 𝐹
𝑡
.

Theorem 6. For any nontrivial tree 𝑇, 𝑏(𝑇) ⩽ 2.

By Theorem 6, it is natural to classify all trees according
to their bondage numbers. Fink et al. [8] proved that a
forbidden subgraph characterization to classify trees with
different bondage numbers is impossible, since they proved
that if 𝐹 is a forest, then 𝐹 is an induced subgraph of a tree 𝑇
with 𝑏(𝑇) = 1 and a tree 𝑇 with 𝑏(𝑇) = 2. However, they
pointed out that the complexity of calculating the bondage
number of a tree of order 𝑛 is at most 𝑂(𝑛2) by methodically
removing each pair of edges.

Even so, some characterizations, whether a tree has
bondage number 1 or 2, have been found by several authors;
see, for example, [10, 12, 13].

First we describe the method due to Hartnell and Rall
[12], by which all trees with bondage number 2 can be con-
structed inductively. An important tree𝐹

𝑡
in the construction

is shown in Figure 1. To characterize this construction, we
need some terminologies:

(1) attach a path 𝑃
𝑛
to a vertex 𝑥 of a tree, which means

to link 𝑥 and one end-vertex of the 𝑃
𝑛
by an edge.

(2) attach 𝐹
𝑡
to a vertex 𝑥, which means to link 𝑥 and a

vertex 𝑦 of 𝐹
𝑡
by an edge.

The following are four operations on a tree 𝑇:

Type 1: attach a 𝑃
2
to 𝑥 ∈ 𝑉(𝑇), where 𝛾(𝑇 − 𝑥) = 𝛾(𝑇) and 𝑥

belongs to at least one 𝛾-set of 𝑇 (such a vertex exists,
say, one end-vertex of 𝑃

5
).

Type 2: attach a 𝑃
3
to 𝑥 ∈ 𝑉(𝑇), where 𝛾(𝑇 − 𝑥) < 𝛾(𝑇).

Type 3: attach 𝐹
1
to 𝑥 ∈ 𝑉(𝑇), where 𝑥 belongs to at least one

𝛾-set of 𝑇.
Type 4: attach 𝐹

𝑡
, 𝑡 ⩾ 2, to 𝑥 ∈ 𝑉(𝑇), where 𝑥 can be any

vertex of 𝑇.

LetC = {𝑇 : 𝑇 is a tree, and 𝑇 = 𝐾
1
, 𝑇 = 𝑃

4
, and 𝑇 = 𝐹

𝑡

for some 𝑡 ⩾ 2, or 𝑇 can be obtained from 𝑃
4
or 𝐹

𝑡
(𝑡 ⩾ 2) by

a finite sequence of operations of Types 1, 2, 3, 4}.

Theorem 7 (Hartnell and Rall [12], 1992). A tree has bondage
number 2 if and only if it belongs toC.

Looking at different minimum dominating sets of a tree,
Teschner [10] presented a totally different characterization
of the set of trees having bondage number 1. They defined
a vertex to be universal if it belongs to each minimum
dominating set, and to be idle if it does not belong to any
minimum dominating set.
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Theorem 8 (Teschner [10], 1997). A tree 𝑇 has bondage
number 1 if and only if 𝑇 has a universal vertex or an edge
𝑥𝑦 satisfying

(1) 𝑥 and 𝑦 are neither universal nor idle; and

(2) all neighbors of 𝑥 and 𝑦 (except for 𝑥 and 𝑦) are idle.

For a positive integer 𝑘, a subset 𝐼 ⊆ 𝑉(𝐺) is called a 𝑘-
independent set (also called a 𝑘-packing) if 𝑑

𝐺
(𝑥, 𝑦) > 𝑘 for

any two distinct vertices 𝑥 and 𝑦 in 𝐼. When 𝑘 = 1, 1-set is the
normal independent set.Themaximumcardinality among all
𝑘-independent sets is called the 𝑘-independence number (or
𝑘-packing number) of 𝐺, denoted by 𝛼

𝑘
(𝐺). A 𝑘-independent

set 𝐼 is called an 𝛼
𝑘
-set if |𝐼| = 𝛼

𝑘
(𝐺). A graph 𝐺 is said to be

𝛼
𝑘
-stable if 𝛼

𝑘
(𝐺) = 𝛼

𝑘
(𝐺 − 𝑒) for every edge 𝑒 of 𝐺. There are

two important results on 𝑘-independent sets.

Proposition 9 (Topp and Vestergaard [13], 2000). A tree 𝑇 is
𝛼
𝑘
-stable if and only if 𝑇 has a unique 𝛼

𝑘
-set.

Proposition 10 (Meir and Moon [14], 1975). 𝛼
2
(𝐺) ⩽ 𝛾(𝐺)

for any connected graph 𝐺 with equality for any tree.

Hartnell et al. [15], independently and Topp and Vester-
gaard [13] also gave a constructive characterization of trees
with bondage number 2 and, applying Proposition 10, pre-
sented another characterization of those trees.

Theorem 11 (Hartnell et al. [15], 1998; Top and Vestergaard
[13], 2000). 𝑏(𝑇) = 2 for a tree 𝑇 if and only if 𝑇 has a unique
𝛼
2
-set.

According to this characterization, Hartnell et al. [15]
presented a linear algorithm for determining the bondage
number of a tree.

In this subsection, we introduce three characterizations
for trees with bondage number 1 or 2. The characterization
in Theorem 7 is constructive, constructing all trees with
bondage number 2, a natural and straightforward method,
by a series of graph-operations. The characterization in
Theorem 8 is a little advisable, by describing the inherent
property of trees with bondage number 1. The characteriza-
tion in Theorem 11 is wonderful, by using a strong graph-
theoretic concept, 𝛼

𝑘
-set. In fact, this characterization is a

byproduct of some results related to 𝛼
𝑘
-sets for trees. It is

that this characterization closed the relation between two
concepts, the bondage number and the 𝑘-independent set,
and hence is of research value and important significance.

2.3. Complexity for General Graphs. Asmentioned above, the
bondage number of a tree can be determined by a linear time
algorithm. According to this algorithm, we can determine
within polynomial time the domination number of any tree
by removing each edge and verifyingwhether the domination
number is enlarged according to the known linear time
algorithm for domination numbers of trees.

However, it is impossible to find a polynomial time
algorithm for bondage numbers of general graphs. If such
an algorithm 𝐴 exists, then the domination number of any

nonempty undirected graph 𝐺 can be determined within
polynomial time by repeatedly using 𝐴. Let 𝐺

0
= 𝐺 and

𝐺
𝑖+1
= 𝐺

𝑖
−𝐵

𝑖
, where 𝐵

𝑖
is the minimum edge set of 𝐺

𝑖
found

by 𝐴 such that 𝛾(𝐺
𝑖
− 𝐵

𝑖
) = 𝛾(𝐺

𝑖−1
) + 1 for each 𝑖 = 0, 1, . . .;

we can always find the minimum 𝐵
𝑖
whose removal from 𝐺

𝑖

enlarges the domination number, until 𝐺
𝑘
= 𝐺

𝑘−1
− 𝐵

𝑘−1

is empty for some 𝑘 ⩾ 1, though 𝐵
𝑘−1

is not empty. Then
𝛾(𝐺) = 𝛾(𝐺

𝑘
) − 𝑘 = 𝜐(𝐺) − 𝑘. As known to all, if NP ̸= 𝑃,

the minimum dominating set problem is NP-complete, and
so polynomial time algorithms for the bondage number do
not exist unless NP = 𝑃.

In fact, Hu and Xu [16] have recently shown that the
problem determining the bondage number of general graphs
is NP-hard.

Problem 1. Consider the decision problem:
Bondage Problem
Instance: a graph 𝐺 and a positive integer 𝑏 (⩽ 𝜀(𝐺)).
Question: is 𝑏(𝐺) ⩽ 𝑏?

Theorem 12 (Hu and Xu [16], 2012). The bondage problem is
NP-hard.

Thebasicway of the proof is to followGarey and Johnson’s
techniques for proving NP-hardness [5] by describing a
polynomial transformation from the known NP-complete
problem: 3-satisfiability problem.

Theorem 12 shows that we are unable to find a polynomial
time algorithm to determine bondage numbers of general
graphs unless NP = 𝑃. At the same time, this result also
shows that the following study on the bondage number is of
important significance.

(i) Find approximation polynomial algorithms with per-
formance ratio as small as possible.

(ii) Find the lower and upper bounds with difference as
small as possible.

(iii) Determine exact values for some graphs, specially
well-known networks.

Unfortunately, we cannot provewhether or not determin-
ing the bondage number is NP-problem since for any subset
𝐵 ⊂ 𝐸(𝐺) it is not clear that there is a polynomial algorithm
to verify 𝛾(𝐺 − 𝐵) > 𝛾(𝐺). Since the problem of determining
the domination number is NP-complete, we conjecture that
it is not in NP.This is a worthwhile task to be studied further.

Motivated by the linear time algorithm of Hartnell et al.
to compute the bondage number of a tree, we can make
an attempt to consider whether there is a polynomial time
algorithm to compute the bondage number for some special
classes of graphs such as planar graphs, Cayley graphs, or
graphs with some restrictions of graph-theoretical parame-
ters such as degree, diameter, connectivity, and domination
number.

3. Upper Bounds

ByTheorem 12, since we cannot find a polynomial time algo-
rithm for determining the exact values of bondage numbers
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of general graphs, it is weightily significative to establish
some sharp bounds on the bondage number of a graph. In
this section, we survey several known upper bounds on the
bondage number in terms of some other graph-theoretical
parameters.

3.1. Most Basic Upper Bounds. We start this subsection with
a simple observation.

Observation 1 (Teschner [10], 1997). Let 𝐻 be a spanning
subgraph obtained from a graph𝐺 by removing 𝑘 edges.Then
𝑏(𝐺) ⩽ 𝑏(𝐻) + 𝑘.

If we select a spanning subgraph 𝐻 such that 𝑏(𝐻) = 1,
thenObservation 1 yields some upper bounds on the bondage
number of a graph 𝐺. For example, take𝐻 = 𝐺 − 𝐸

𝑥
+ 𝑒 and

𝑘 = 𝑑
𝐺
(𝑥) − 1, where 𝑒 ∈ 𝐸

𝑥
, the following result can be

obtained.

Theorem 13 (Bauer et al. [7], 1983). If there exists at least one
vertex 𝑥 in a graph 𝐺 such that 𝛾(𝐺 − 𝑥) ⩾ 𝛾(𝐺), then 𝑏(𝐺) ⩽
𝑑
𝐺
(𝑥) ⩽ Δ(𝐺).

The following early result obtained can be derived from
Observation 1 by taking𝐻 = 𝐺−𝐸

𝑥𝑦
and 𝑘 = 𝑑(𝑥)+𝑑(𝑦)−2.

Theorem 14 (Bauer et al. [7], 1983; Fink et al. [8], 1990).
𝑏(𝐺) ⩽ 𝑑(𝑥) + 𝑑(𝑦) − 1 for any two adjacent vertices 𝑥 and
𝑦 in a graph 𝐺; that is,

𝑏 (𝐺) ⩽ min
𝑥𝑦∈𝐸(𝐺)

{𝑑
𝐺
(𝑥) + 𝑑

𝐺
(𝑦) − 1} . (4)

This theorem gives a natural corollary obtained by several
authors.

Corollary 15 (Bauer et al. [7], 1983; Fink et al. [8], 1990). If 𝐺
is a graphwithout isolated vertices, then 𝑏(𝐺) ⩽ Δ(𝐺)+𝛿(𝐺)−1.

In 1999, Hartnell and Rall [11] extended Theorem 14 to
the following more general case, which can be also derived
from Observation 1 by taking𝐻 = 𝐺 − 𝐸

𝑥
− 𝐸

𝑦
+ (𝑥, 𝑧, 𝑦) if

𝑑
𝐺
(𝑥, 𝑦) = 2, where (𝑥, 𝑧, 𝑦) is a path of length 2 in 𝐺.

Theorem 16 (Hartnell and Rall [11], 1999). 𝑏(𝐺) ⩽ 𝑑(𝑥) +
𝑑(𝑦)−1 for any distinct two vertices 𝑥 and 𝑦 in a graph𝐺with
𝑑
𝐺
(𝑥, 𝑦) ⩽ 2; that is,

𝑏 (𝐺) ⩽ min
𝑑
𝐺
(𝑥,𝑦)⩽2

{𝑑
𝐺
(𝑥) + 𝑑

𝐺
(𝑦) − 1} . (5)

Corollary 17 (Fink et al. [8], 1990). If a vertex of a graph 𝐺 is
adjacent with two ormore vertices of degree one, then 𝑏(𝐺) = 1.

We remark that the bounds stated in Corollary 15 and
Theorem 16 are sharp. As indicated byTheorem 1, one class of
graphs in which the bondage number achieves these bounds
is the class of cycles whose orders are congruent to 1 modulo
3.

On the other hand, Hartnell and Rall [17] sharpened the
upper bound in Theorem 14 as follows, which can be also
derived from Observation 1.

𝑇2(𝑥, 𝑦)

𝑇4(𝑥, 𝑦)

𝑇3(𝑥, 𝑦)

𝑇1(𝑥, 𝑦)

𝑥

𝑦

Figure 2: Illustration of 𝑇
𝑖
(𝑥, 𝑦) for 𝑖 = 1, 2, 3, 4.

Theorem 18 (Hartnell and Rall [17], 1994). 𝑏(𝐺) ⩽ 𝑑
𝐺
(𝑥) +

𝑑
𝐺
(𝑦) − 1 − |𝑁

𝐺
(𝑥) ∩ 𝑁

𝐺
(𝑦)| for any two adjacent vertices 𝑥

and 𝑦 in a graph 𝐺; that is,

𝑏 (𝐺) ⩽ min
𝑥𝑦∈𝐸(𝐺)

{𝑑
𝐺
(𝑥) + 𝑑

𝐺
(𝑦) − 1 −

𝑁𝐺
(𝑥) ∩ 𝑁

𝐺
(𝑦)
} .

(6)

These results give simple but important upper bounds on
the bondage number of a graph, and is also the foundation
of almost all results on bondage numbers upper bounds
obtained till now.

By careful consideration of the nature of the edges from
the neighbors of𝑥 and𝑦,Wang [18] further refined the bound
in Theorem 18. For any edge 𝑥𝑦 ∈ 𝐸(𝐺), 𝑁

𝐺
(𝑦) contains the

following four subsets:

(1) 𝑇
1
(𝑥, 𝑦) = 𝑁

𝐺
[𝑥] ∩ 𝑁

𝐺
(𝑦);

(2) 𝑇
2
(𝑥, 𝑦) = {𝑤 ∈ 𝑁

𝐺
(𝑦) : 𝑁

𝐺
(𝑤) ⊆ 𝑁

𝐺
(𝑦) − 𝑥};

(3) 𝑇
3
(𝑥, 𝑦) = {𝑤 ∈ 𝑁

𝐺
(𝑦) : 𝑁

𝐺
(𝑤) ⊆ 𝑁

𝐺
(𝑧)−𝑥 for some

𝑧 ∈ 𝑁
𝐺
(𝑥) ∩ 𝑁

𝐺
(𝑦)};

(4) 𝑇
4
(𝑥, 𝑦) = 𝑁

𝐺
(𝑦) \ (𝑇

1
(𝑥, 𝑦) ∪ 𝑇

2
(𝑥, 𝑦) ∪ 𝑇

3
(𝑥, 𝑦)).

The illustrations of 𝑇
1
(𝑥, 𝑦), 𝑇

2
(𝑥, 𝑦), 𝑇

3
(𝑥, 𝑦), and

𝑇
4
(𝑥, 𝑦) are shown in Figure 2 (corresponding vertices

pointed by dashed arrows).

Theorem 19 (Wang [18], 1996). For any nonempty graph 𝐺,

𝑏 (𝐺) ⩽ min
𝑥𝑦∈𝐸(𝐺)

{𝑑
𝐺
(𝑥) +

𝑇4 (𝑥, 𝑦)
} . (7)

The graph in Figure 2 shows that the upper bound given
in Theorem 19 is better than that in Theorems 16 and 18,
for the upper bounds obtained from these two theorems are
𝑑
𝐺
(𝑥)+𝑑

𝐺
(𝑦)−1 = 11 and 𝑑

𝐺
(𝑥)+𝑑

𝐺
(𝑦)−|𝑁

𝐺
(𝑥)∩𝑁

𝐺
(𝑦)| =

9, respectively, while the upper bound given byTheorem 19 is
𝑑
𝐺
(𝑥) + |𝑇

4
(𝑥, 𝑦)| = 6.

The following result is also an improvement of
Theorem 14, in which 𝑡 = 2.
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Theorem 20 (Teschner [10], 1997). If 𝐺 contains a complete
subgraph 𝐾

𝑡
with 𝑡 ⩾ 2, then 𝑏(𝐺) ⩽ min

𝑥𝑦∈𝐸(𝐾
𝑡
)
{𝑑

𝐺
(𝑥) +

𝑑
𝐺
(𝑦) − 𝑡 + 1}.

Following Fricke et al. [19], a vertex 𝑥 of a graph 𝐺 is 𝛾-
good if 𝑥 belongs to some 𝛾-set of𝐺 and 𝛾-bad if 𝑥 belongs to
no 𝛾-set of 𝐺. Let 𝐴(𝐺) be the set of 𝛾-good vertices, and let
𝐵(𝐺) be the set of 𝛾-bad vertices in 𝐺. Clearly, {𝐴(𝐺), 𝐵(𝐺)}
is a partition of𝑉(𝐺). Note there exists some 𝑥 ∈ 𝐴 such that
𝛾(𝐺 − 𝑥) = 𝛾(𝐺), say, one end-vertex of 𝑃

5
. Samodivkin [20]

presented some sharp upper bounds for 𝑏(𝐺) in terms of 𝛾-
good and 𝛾-bad vertices of 𝐺.

Theorem 21 (Samodivkin [20], 2008). Let 𝐺 be a graph.

(a) Let 𝐶(𝐺) = {𝑥 ∈ 𝑉(𝐺) : 𝛾(𝐺−𝑥) ⩾ 𝛾(𝐺)}. If 𝐶(𝐺) ̸= 0,
then

𝑏 (𝐺) ⩽ min {𝑑
𝐺
(𝑥) + 𝛾 (𝐺) − 𝛾 (𝐺 − 𝑥) : 𝑥 ∈ 𝐶 (𝐺)} .

(8)

(b) If 𝐵 ̸= 0, then

𝑏 (𝐺) ⩽ min {𝑁𝐺
(𝑥) ∩ 𝐴

 : 𝑥 ∈ 𝐵 (𝐺)} . (9)

Theorem 22 (Samodivkin [20], 2008). Let 𝐺 be a graph. If
𝐴
+

(𝐺) = {𝑥 ∈ 𝐴(𝐺) : 𝑑
𝐺
(𝑥) ⩾ 1 and 𝛾(𝐺 − 𝑥) < 𝛾(𝐺)} ̸= 0,

then

𝑏 (𝐺) ⩽ min
𝑥∈𝐴
+
(𝐺),𝑦∈𝐵(𝐺−𝑥)

{𝑑
𝐺
(𝑥) +

𝑁𝐺
(𝑦) ∩ 𝐴 (𝐺 − 𝑥)

} .

(10)

Proposition 23 (Samodivkin [20], 2008). Under the notation
of Theorem 19, if 𝑥 ∈ 𝐴+

(𝐺), then (𝑇
1
(𝑥, 𝑦) − {𝑥}) ∪ 𝑇

2
(𝑥, 𝑦) ∪

𝑇
3
(𝑥, 𝑦) ⊆ 𝑁

𝐺
(𝑦) \ 𝐵(𝐺 − 𝑥).

By Proposition 23, if 𝑥 ∈ 𝐴+

(𝐺), then

𝑑
𝐺
(𝑥) + min

𝑦∈𝑁
𝐺
(𝑥)

{
𝑇4 (𝑥, 𝑦)

}

⩾ 𝑑
𝐺
(𝑥) + min

𝑦∈𝑁
𝐺(𝑥)

{
𝑁𝐺

(𝑦) ∩ 𝐴 (𝐺 − 𝑥)
}

⩾ 𝑑
𝐺
(𝑥) + min

𝑦∈𝐵(𝐺−𝑥)

{
𝑁𝐺

(𝑦) ∩ 𝐴 (𝐺 − 𝑥)
} .

(11)

Hence, Theorem 19 can be seen to follow from Theorem 22.
Any graph 𝐺 with 𝑏(𝐺) achieving the upper bound in
Theorem 19 can be used to show that the bound in
Theorem 22 is sharp.

Let 𝑡 ⩾ 2 be an integer. Samodivkin [20] con-
structed a very interesting graph 𝐺

𝑡
to show that the upper

bound in Theorem 22 is better than the known bounds. Let
𝐻

0
, 𝐻

1
, 𝐻

2
, . . . , 𝐻

𝑡+1
be mutually vertex-disjoint graphs such

that 𝐻
0
≅ 𝐾

2
, 𝐻

𝑡+1
≅ 𝐾

𝑡+3
and 𝐻

𝑖
≅ 𝐾

𝑡+3
− 𝑒 for each

𝑖 = 1, 2, . . . , 𝑡. Let 𝑉(𝐻
0
) = {𝑥, 𝑦}, 𝑥

𝑡+1
∈ 𝑉(𝐻

𝑡+1
) and

𝐻1

𝐻2

𝐻3

𝑥11

𝑥12

𝑥21 𝑥22

𝑥3

𝑥

𝑦

Figure 3: The graph 𝐺
2
.

𝑥
𝑖1
, 𝑥

𝑖2
∈ 𝑉(𝐻

𝑖
), 𝑥

𝑖1
𝑥
𝑖2
∉ 𝐸(𝐻

𝑖
) for each 𝑖 = 1, 2, . . . , 𝑡. The

graph 𝐺
𝑡
is defined as follows:

𝑉 (𝐺
𝑡
) =

𝑡+1

⋃

𝑘=0

𝑉 (𝐻
𝑘
) ,

𝐸 (𝐺
𝑡
)=(

𝑡+1

⋃

𝑘=0

𝐸 (𝐻
𝑘
))∪(

𝑡

⋃

𝑖=1

{𝑥𝑥
𝑖1
, 𝑥𝑥

𝑖2
})∪{𝑥𝑥

𝑡+1
} .

(12)

Such a constructed graph𝐺
𝑡
is shown in Figure 3 when 𝑡 = 2.

Observe that 𝛾(𝐺
𝑡
) = 𝑡 + 2, 𝐴(𝐺

𝑡
) = 𝑉(𝐺

𝑡
), 𝑑

𝐺
𝑡

(𝑥) =

2𝑡 + 2, 𝑑
𝐺
𝑡

(𝑥
𝑡+1
) = 𝑡 + 3, 𝑑

𝐺
𝑡

(𝑦) = 1, and 𝑑
𝐺
𝑡

(𝑧) = 𝑡 + 2

for each 𝑧 ∈ 𝑉(𝐺
𝑡
− {𝑥, 𝑦, 𝑥

𝑡+1
}). Moreover, 𝛾(𝐺 − 𝑦) < 𝛾(𝐺)

and 𝛾(𝐺
𝑡
−𝑧) = 𝛾(𝐺

𝑡
) for any 𝑧 ∈ 𝑉(𝐺

𝑡
) − {𝑦}. Hence, each of

the bounds stated inTheorems 13–20 is greater than or equals
𝑡 + 2.

Consider the graph 𝐺
𝑡
− 𝑥𝑦. Clearly, 𝛾(𝐺

𝑡
− 𝑥𝑦) = 𝛾(𝐺

𝑡
)

and

𝐵 (𝐺
𝑡
− 𝑥𝑦) = 𝐵 (𝐺

𝑡
− 𝑦)

= {𝑥} ∪ 𝑉 (𝐻
𝑡+1
− 𝑥

𝑡+1
) ∪ (

𝑡

⋃

𝑘=1

{𝑥
𝑘
1

, 𝑥
𝑘
2

}) .

(13)

Therefore, 𝑁
𝐺
𝑡

(𝑥) ∩ 𝐺(𝐺
𝑡
− 𝑦) = {𝑥

𝑡+1
} which implies that

the upper bound stated in Theorem 22 is equal to 𝑑
𝐺
𝑡

(𝑦) +

|{𝑥
𝑡+1
}| = 2. Clearly, 𝑏(𝐺

𝑡
) = 2, and hence this bound is sharp

for 𝐺
𝑡
.

From the graph 𝐺
𝑡
, we obtain the following statement

immediately.

Proposition 24. For every integer 𝑡 ⩾ 2, there is a graph 𝐺
such that the difference between any upper bound stated in
Theorems 13–20 and the upper bound in Theorem 22 is equal
to 𝑡.

Although Theorem 22 supplies us with the upper bound
that is closer to 𝑏(𝐺) for some graph 𝐺 than what any one of
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Theorems 13–20 provides, it is not easy to determine the sets
𝐴
+

(𝐺) and 𝐵(𝐺) mentioned in Theorem 22 for an arbitrary
graph 𝐺. Thus, the upper bound given in Theorem 22 is of
theoretical importance, but not applied since, until now, we
have not found a new class of graphswhose bondage numbers
are determined byTheorem 22.

The above-mentioned upper bounds on the bondage
number are involved in only degrees of two vertices. Hartnell
and Rall [11] established an upper bound on 𝑏(𝐺) in terms of
the numbers of vertices and edges of 𝐺 with order 𝑛. For any
connected graph 𝐺, let 𝛿(𝐺) represent the average degree of
vertices in 𝐺; that is, 𝛿(𝐺) = (1/𝑛)∑

𝑥∈𝑉
𝑑
𝐺
(𝑥). Hartnell and

Rall first discovered the following proposition.

Proposition 25. For any connected graph 𝐺, there exist two
vertices 𝑥 and 𝑦 with distance at most two and with the
property that 𝑑

𝐺
(𝑥) + 𝑑

𝐺
(𝑦) ⩽ 2𝛿(𝐺).

Using Proposition 25 and Theorem 16, Hartnell and Rall
gave the following bound.

Theorem 26 (Hartnell and Rall [11], 1999). 𝑏(𝐺) ⩽ 2𝛿(𝐺) − 1
for any connected graph 𝐺.

Note that 2𝜀 = 𝑛𝛿(𝐺) for any graph 𝐺 with order 𝑛 and
size 𝜀. Theorem 26 implies the following bound in terms of
order 𝑛 and size 𝜀.

Corollary 27. 𝑏(𝐺) ⩽ (4𝜀/𝑛) − 1 for any connected graph 𝐺
with order 𝑛 and size 𝜀.

A lower bound on 𝜀 in terms of order 𝑛 and the bondage
number is obtained from Corollary 28 immediately.

Corollary 28. 𝜀 ⩾ (𝑛/4)(𝑏(𝐺) + 1) for any connected graph 𝐺
with order 𝑛 and size 𝜀.

Hartnell and Rall [11] gave some graphs 𝐺 with order 𝑛
to show that for each value of 𝑏(𝐺); the lower bound on 𝜀(𝐺)
given in the Corollary 28 is sharp for some values of 𝑛.

3.2. Bounds Implied by Connectivity. Use 𝜅(𝐺) and 𝜆(𝐺) to
denote the vertex-connectivity and the edge-connectivity of
a connected graph 𝐺, respectively, which are the minimum
numbers of vertices and edges whose removal result in 𝐺
disconnected. The famous Whitney inequality is stated as
𝜅(𝐺) ⩽ 𝜆(𝐺) ⩽ 𝛿(𝐺) for any graph or digraph 𝐺. Corollary 15
is improved by several authors as follows.

Theorem 29 (Hartnell and Rall [17], 1994; Teschner [10],
1997). If 𝐺 is a connected graph, then 𝑏(𝐺) ⩽ 𝜆(𝐺)+Δ(𝐺)− 1.

The upper bound given in Theorem 29 can be attained.
For example, a cycle 𝐶

3𝑘+1
with 𝑘 ⩾ 1, 𝑏(𝐶

3𝑘+1
) = 3 by

Theorem 1. Since 𝜅(𝐶
3𝑘+1
) = 𝜆(𝐶

3𝑘+1
) = 2, we have 𝜅(𝐶

3𝑘+1
)+

𝜆(𝐶
3𝑘+1
) − 1 = 2 + 2 − 1 = 3 = 𝑏(𝐶

3𝑘+1
).

Motivated byCorollary 15,Theorems 29, and theWhitney
inequality, Dunbar et al. [21] naturally proposed the following
conjecture.

Figure 4: A graph𝐻 with 𝛾(𝐻) = 3 and 𝑏(𝐻) = 5.

Conjecture 30. If𝐺 is a connected graph, then 𝑏(𝐺) ⩽ Δ(𝐺)+
𝜅(𝐺) − 1.

However, Liu and Sun [22] presented a counterexample
to this conjecture. They first constructed a graph 𝐻 showed
in Figure 4 with 𝛾(𝐻) = 3 and 𝑏(𝐻) = 5. Then, let 𝐺 be the
disjoint union of two copies of𝐻 by identifying two vertices
of degree two. They proved that 𝑏(𝐺) ⩾ 5. Clearly, 𝐺 is a 4-
regular graph with 𝜅(𝐺) = 1 and 𝜆(𝐺) = 2, and so 𝑏(𝐺) ⩽ 5
byTheorem 29. Thus, 𝑏(𝐺) = 5 > 4 = Δ(𝐺) + 𝜅(𝐺) − 1.

With a suspicion of the relationship between the bondage
number and the vertex-connectivity of a graph, the following
conjecture is proposed.

Conjecture 31 (Liu and Sun [22], 2003). For any positive
integer 𝑟, there exists a connected graph 𝐺 such that 𝑏(𝐺) ⩾
Δ(𝐺) + 𝜅(𝐺) + 𝑟.

To the knowledge of the author, until now no results have
been known about this conjecture.

We conclude this subsection with the following remarks.
FromTheorem 29, if Conjecture 31 holds for some connected
graph𝐺, then 𝜆(𝐺) > 𝜅(𝐺)+𝑟, which implies that𝐺 is of large
edge-connectivity and small vertex-connectivity. Use 𝜉(𝐺) to
denote the minimum edge-degree of 𝐺; that is,

𝜉 (𝐺) = min
𝑥𝑦∈𝐸(𝐺)

{𝑑
𝐺
(𝑥) + 𝑑

𝐺
(𝑦) − 2} . (14)

Theorem 14 implies the following result.

Proposition 32. 𝑏(𝐺) ⩽ 𝜉(𝐺) + 1 for any graph 𝐺.

Use 𝜆(𝐺) to denote the restricted edge-connectivity of
a connected graph 𝐺, which is the minimum number of
edgeswhose removal result in𝐺 disconnected and no isolated
vertices.

Proposition 33 (Esfahanian and Hakimi [23], 1988). If 𝐺 is
neither 𝐾

1,𝑛
nor 𝐾

3
, then 𝜆(𝐺) ⩽ 𝜉(𝐺).

Combining Propositions 32 and 33, we propose a conjec-
ture.

Conjecture 34. If a connected 𝐺 is neither 𝐾
1,𝑛

nor 𝐾
3
, then

𝑏(𝐺) ⩽ 𝛿(𝐺) + 𝜆


(𝐺) − 1.
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A cycle 𝐶
3𝑘+1

also satisfies 𝑏(𝐶
3𝑘+1
) = 3 = 𝛿(𝐶

3𝑘+1
) +

𝜆


(𝐶
3𝑘+1
) − 1 since 𝜆(𝐶

3𝑘+1
) = 𝛿(𝐶

3𝑘+1
) = 2 for any integer

𝑘 ⩾ 1.
For the graph𝐻 shown in Figure 4,𝜆(𝐻) = 4 and 𝛿(𝐻) =

2, and so 𝑏(𝐻) = 5 = 𝛿(𝐻) + 𝜆(𝐻) − 1.
For the 4-regular graph𝐺 constructed by Liu and Sun [22]

obtained from the disjoint union of two copies of the graph
𝐻 showed in Figure 4 by identifying two vertices of degree
two, we have 𝑏(𝐺) ⩾ 5. Clearly, 𝜆(𝐺) = 2. Thus, 𝑏(𝐺) = 5 =
𝛿(𝐺) + 𝜆



(𝐺) − 1.
For the 4-regular graph 𝐺

𝑡
constructed by Samodivkin

[20], see Figure 3 for 𝑡 = 2, 𝑏(𝐺
𝑡
) = 2. Clearly, 𝛿(𝐺

𝑡
) = 1

and 𝜆(𝐺) = 2. Thus, 𝑏(𝐺) = 2 = 𝛿(𝐺) + 𝜆(𝐺) − 1.
These examples show that if Conjecture 34 is true then the

given upper bound is tight.

3.3. Bounds Implied by Degree Sequence. Now let us return to
Theorem 16, from which Teschner [10] obtained some other
bounds in terms of the degree sequences.The degree sequence
𝜋(𝐺) of a graph 𝐺 with vertex-set 𝑉 = {𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
} is the

sequence 𝜋 = (𝑑
1
, 𝑑

2
, . . . , 𝑑

𝑛
) with 𝑑

1
⩽ 𝑑

2
⩽ ⋅ ⋅ ⋅ ⩽ 𝑑

𝑛
, where

𝑑
𝑖
= 𝑑

𝐺
(𝑥

𝑖
) for each 𝑖 = 1, 2, . . . , 𝑛. The following result is

essentially a corollary of Theorem 16.

Theorem35 (Teschner [10], 1997). Let𝐺 be a nonempty graph
with degree sequence𝜋(𝐺). If𝛼

2
(𝐺) = 𝑡, then 𝑏(𝐺) ⩽ 𝑑

𝑡
+𝑑

𝑡+1
−

1.

CombiningTheorem 35with Proposition 10 (i.e., 𝛼
2
(𝐺) ⩽

𝛾(𝐺)), we have the following corollary.

Corollary 36 (Teschner [10], 1997). Let 𝐺 be a nonempty
graph with the degree sequence 𝜋(𝐺). If 𝛾(𝐺) = 𝛾, then 𝑏(𝐺) ⩽
𝑑
𝛾
+ 𝑑

𝛾+1
− 1.

In [10], Teschner showed that these two bounds are sharp
for arbitrarily many graphs. Let𝐻 = 𝐶

3𝑘+1
+ {𝑥

1
𝑥
4
, 𝑥

1
𝑥
3𝑘−1
},

where 𝐶
3𝑘+1

is a cycle (𝑥
1
, 𝑥

2
, . . . , 𝑥

3𝑘+1
, 𝑥

1
) for any integer

𝑘 ⩾ 2. Then 𝛾(𝐻) = 𝑘 + 1 and so 𝑏(𝐻) ⩽ 2 + 2 − 1 = 3
by Corollary 36. Since𝐶

3𝑘+1
is a spanning subgraph of𝐻 and

𝛾(𝐺) = 𝛾(𝐻), Observation 1 yields that 𝑏(𝐻) ⩾ 𝑏(𝐶
3𝑘+1
) = 3,

and so 𝑏(𝐻) = 3.
Although various upper bounds have been established

as the above, we find that the appearance of these bounds
is essentially based upon the local structures of a graph,
precisely speaking, the structures of the neighborhoods of
two vertices within distance 2. Even if these bounds can be
achieved by some special graphs, it is more often not the case.
The reason lies essentially in the definition of the bondage
number, which is theminimumvalue among all bondage sets,
an integral property of a graph. While it easy to find upper
bounds just by choosing some bondage set, the gap between
the exact value of the bondage number and such a bound
obtained only from local structures of a graph is often large.
For example, a star 𝐾

1,Δ
, however large Δ is, 𝑏(𝐾

1,Δ
) = 1.

Therefore, one has been longing for better bounds upon some
integral parameters. However, as what we will see below, it is
difficult to establish such upper bounds.

3.4. Bounds in 𝛾-Critical Graphs. A graph𝐺 is called a vertex
domination-critical graph (vc-graph or 𝛾-critical for short) if
𝛾(𝐺 − 𝑥) < 𝛾(𝐺) for any 𝑥 ∈ 𝑉(𝐺), proposed by Brigham
et al. [24] in 1988. Several families of graphs are known to be
𝛾-critical. From definition, it is clear that if 𝐺 is a 𝛾-critical
graph, then 𝛾(𝐺) ⩾ 2.The class of 𝛾-critical graphs with 𝛾 = 2
is characterized as follows.

Proposition 37 (Brigham et al. [24], 1988). A graph 𝐺 with
𝛾(𝐺) = 2 is a 𝛾-critical graph if and only if 𝐺 is a complete
graph 𝐾

2𝑡
(𝑡 ⩾ 2) with a perfect matching removed.

A more interesting family is composed of the 𝑛-critical
graphs 𝐺

𝑚,𝑛
defined for 𝑚, 𝑛 ⩾ 2 by the circulant undirected

graph 𝐺(𝑁, ±𝑆), where 𝑁 = (𝑚 + 1)(𝑛 − 1) + 1 and
𝑆 = {1, 2, . . . , ⌊𝑚/2⌋}, in which 𝑉(𝐺(𝑁, ±𝑆)) = 𝑁 and
𝐸(𝐺(𝑁, ±𝑆)) = {𝑖𝑗 : |𝑗 − 𝑖| ≡ 𝑠 (mod 𝑁), 𝑠 ∈ 𝑆}.

The reason why 𝛾-critical graphs are of special interest in
this context is easy to see that they play an important role in
study of the bondage number. For instance, it immediately
follows from Theorem 13 that if 𝑏(𝐺) > Δ(𝐺) then 𝐺 is a 𝛾-
critical graph.The 𝛾-critical graphs are defined exactly in this
way. In order to find graphs 𝐺 with a high bondage number
(i.e., higher than Δ(𝐺)) and beyond its general upper bounds
for the bondage number, we, therefore, have to look at 𝛾-
critical graphs.

The bondage numbers of some 𝛾-critical graphs have
been examined by several authors; see, for example, [10,
20, 25, 26]. From Theorem 13, we know that the bondage
number of a graph 𝐺 is bounded from above by Δ(𝐺)
if 𝐺 is not a 𝛾-critical graph. For 𝛾-critical graphs, it is
more difficult to find an upper bound. We will see that the
bondage numbers of 𝛾-critical graphs in general are not
even bounded from above by Δ + 𝑐 for any fixed natural
number 𝑐.

In this subsection, we introduce some upper bounds for
the bondage number of a 𝛾-critical graph. By Proposition 37,
we easily obtain the following result.

Theorem 38. If 𝐺 is a 𝛾-critical graph with 𝛾(𝐺) = 2, then
𝑏(𝐺) ⩽ Δ + 1.

In Section 4, by Theorem 59, we will see that the equality
in Theorem 38 holds; that is, 𝑏(𝐺) = Δ + 1 if 𝐺 is a 𝛾-critical
graph with 𝛾(𝐺) = 2.

Theorem 39 (Teschner [10], 1997). Let𝐺 be a 𝛾-critical graph
with degree sequence 𝜋(𝐺). Then 𝑏(𝐺) ⩽ max{Δ(𝐺) + 1, 𝑑

1
+

𝑑
2
+ ⋅ ⋅ ⋅ + 𝑑

𝛾−1
}, where 𝛾 = 𝛾(𝐺).

As we mentioned above, if 𝐺 is a 𝛾-critical graph with
𝛾(𝐺) = 2, then 𝑏(𝐺) = Δ + 1, which shows that the
bound given in Theorem 39 can be attained for 𝛾 = 2.
However, we have not known whether this bound is tight
for general 𝛾 ⩾ 3. Theorem 39 gives the following corollary
immediately.

Corollary 40 (Teschner [10], 1997). Let 𝐺 be a 𝛾-critical
graph with degree sequence 𝜋(𝐺). If 𝛾(𝐺) = 3, then 𝑏(𝐺) ⩽
max{Δ(𝐺) + 1, 𝛿(𝐺) + 𝑑

2
}.
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From Theorem 38 and Corollary 40, we have 𝑏(𝐺) ⩽
2Δ(𝐺) if 𝐺 is a 𝛾-critical graph with 𝛾(𝐺) ⩽ 3. The following
result shows that this bound is not tight.

Theorem 41 (Teschner [26], 1995). Let𝐺 be a 𝛾-critical graph
graph with 𝛾(𝐺) ⩽ 3. Then 𝑏(𝐺) ⩽ (3/2)Δ(𝐺).

Until now, we have not known whether the bound given
in Theorem 41 is tight or not. We state two conjectures on
𝛾-critical graphs proposed by Samodivkin [20]. The first of
them is motivated byTheorems 22 and 19.

Conjecture 42 (Samodivkin [20], 2008). For every connected
nontrivial 𝛾-critical graph 𝐺,

min
𝑥∈𝐴
+
(𝐺),𝑦∈𝐵(𝐺−𝑥)

{𝑑
𝐺
(𝑥) +

𝑁𝐺
(𝑦) ∩ 𝐴 (𝐺 − 𝑥)

} ⩽
3

2
Δ (𝐺) .

(15)

To state the second conjecture, we need the following
result on 𝛾-critical graphs.

Proposition 43. If𝐺 is a 𝛾-critical graph, then 𝜐(𝐺) ⩽ (Δ(𝐺)+
1)(𝛾(𝐺)−1)+1; moreover, if the equality holds, then𝐺 is regular.

The upper bound in Proposition 43 is sharp in the
sense that equality holds for the infinite class of 𝛾-critical
graphs 𝐺

𝑚,𝑛
defined in the beginning of this subsection. In

Proposition 43, the first result is due to Brigham et al. [24] in
1988; the second is due to Fulman et al. [27] in 1995.

For a 𝛾-critical graph 𝐺 with 𝛾 = 3, by Proposition 43,
𝜐(𝐺) ⩽ 2Δ(𝐺) + 3.

Theorem 44 (Teschner [26], 1995). If 𝐺 is a 𝛾-critical graph
with 𝛾 = 3 and 𝜐(𝐺) = 2Δ(𝐺) + 3, then 𝑏(𝐺) ⩽ Δ + 1.

We have not known yet whether the equality in
Theorem 44holds or not.However, Samodivkin proposed the
following conjecture.

Conjecture 45 (Samodivkin [20], 2008). If 𝐺 is a 𝛾-critical
graph with (Δ(𝐺)+1)(𝛾−1)+1 vertices, then 𝑏(𝐺) = Δ(𝐺)+1.

In general, based on Theorem 41, Teschner proposed the
following conjecture.

Conjecture 46 (Teschner [26], 1995). If𝐺 is a 𝛾-critical graph,
then 𝑏(𝐺) ⩽ (3/2)Δ(𝐺) for 𝛾 ⩾ 4.

We conclude this subsection with some remarks. Graphs
which are minimal or critical with respect to a given prop-
erty or parameter frequently play an important role in the
investigation of that property or parameter. Not only are such
graphs of considerable interest in their own right, but also a
knowledge of their structure often aids in the development
of the general theory. In particular, when investigating any
finite structure, a great number of results are proven by
induction. Consequently, it is desirable to learn as much as
possible about those graphs that are critical with respect to
a given property or parameter so as to aid and abet such
investigations.

In this subsection, we survey some results on the bondage
number for 𝛾-critical graphs. Although these results are not
very perfect, they provides a feasible method to approach the
bondage number from different viewpoints. In particular, the
methods given in Teschner [26] worth further exploration
and development.

The following proposition is maybe useful for us to
further investigate the bondage number of a 𝛾-critical graph.

Proposition 47 (Brigham et al. [24], 1988). If 𝐺 has a
nonisolated vertex 𝑥 such that the subgraph induced by𝑁

𝐺
(𝑥)

is a complete graph, then 𝐺 is not 𝛾-critical.

This simple fact shows that any 𝛾-critical graph contains
no vertices of degree one.

3.5. Bounds Implied by Domination. In the preceding sub-
section, we introduced some upper bounds on the bondage
numbers for 𝛾-critical graphs by consideration of domina-
tions. In this subsection, we introduce related results for a
general graph with given domination number.

Theorem 48 (Fink et al. [8], 1990). For any connected graph
𝐺 of order 𝑛 (⩾2),

(a) 𝑏(𝐺) ⩽ 𝑛 − 1;

(b) 𝑏(𝐺) ⩽ Δ(𝐺) + 1 if 𝛾(𝐺) = 2;

(c) 𝑏(𝐺) ⩽ 𝑛 − 𝛾(𝐺) + 1.

While the upper bound of 𝑛−1 on 𝑏(𝐺) is not particularly
good for many classes of graphs (e.g., trees and cycles), it is
an attainable bound. For example, if 𝐺 is a complete 𝑡-partite
graph 𝐾

𝑡
(2) for 𝑡 = 𝑛/2 and 𝑛 ⩽ 4 an even integer, then the

three bounds on 𝑏(𝐺) in Theorem 48 are sharp.
Teschner [26] consider a graphwith 𝛾(𝐺) = 1 or 𝛾(𝐺) = 2.

The next result is almost trivial but useful.

Lemma 49. Let 𝐺 be a graph with order 𝑛 and 𝛾(𝐺) = 1, 𝑡 the
number of vertices of degree 𝑛 − 1. Then 𝑏(𝐺) = ⌈𝑡/2⌉.

Since 𝑡 ⩽ Δ(𝐺) clearly, Lemma 49 yields the following
result immediately.

Theorem 50 (Teschner [26], 1995). 𝑏(𝐺) ⩽ (1/2)Δ+1 for any
graph 𝐺 with 𝛾(𝐺) = 1.

For a complete graph𝐾
2𝑘+1

, 𝑏(𝐾
2𝑘+1
) = 𝑘+1 = (1/2)Δ+1,

which shows that the upper bound given in Theorem 50 can
be attained. For a graph𝐺with 𝛾(𝐺) = 2, byTheorem 59 later,
the upper bound given inTheorem 48 (b) can be also attained
by a 2-critical graph (see Proposition 37).

3.6. Two Conjectures. In 1990, when Fink et al. [8] introduced
the concept of the bondage number; they proposed the
following conjecture.

Conjecture 51. 𝑏(𝐺) ⩽ Δ(𝐺) + 1 for any nonempty graph 𝐺.
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Although some results partially support Conjecture 51,
Teschner [28] in 1993 found a counterexample to this con-
jecture, the cartesian product 𝐾

3
× 𝐾

3
, which shows that

𝑏(𝐺) = Δ(𝐺) + 2.
If a graph 𝐺 is a counterexample to Conjecture 51, it

must be a 𝛾-critical graph by Theorem 13. That is why the
vertex domination-critical graphs are of special interest in the
literature.

Now, we return to Conjecture 51. Hartnell and Rall [17]
and Teschner [29], independently, proved that 𝑏(𝐺) can be
much greater than Δ(𝐺) by showing the following result.

Theorem 52 (Hartnell and Rall [17], 1994; Teschner [29].
1996). For an integer 𝑛 ⩾ 3, let 𝐺

𝑛
be the cartesian product

𝐾
𝑛
× 𝐾

𝑛
. Then 𝑏(𝐺

𝑛
) = 3(𝑛 − 1) = (3/2)Δ(𝐺

𝑛
).

This theorem shows that there exist no upper bounds
of the form 𝑏(𝐺) ⩽ Δ(𝐺) + 𝑐 for any integer 𝑐. Teschner
[26] proved that 𝑏(𝐺) ⩽ (3/2)Δ(𝐺) for any graph 𝐺 with
𝛾(𝐺) ⩽ 2 (see Theorems 50 and 48) and for 𝛾-critical graphs
with 𝛾(𝐺) = 3 and proposed the following conjecture.

Conjecture 53 (Teschner [26], 1995). 𝑏(𝐺) ⩽ (3/2)Δ(𝐺) for
any graph 𝐺.

We believe that this conjecture is true, but so far no much
work about it has been known.

4. Lower Bounds

Since the bondage number is defined as the smallest number
of edges whose removal results in an increase of domination
number, each constructive method that creates a concrete
bondage set leads to an upper bound on the bondage number.
For that reason, it is hard to find lower bounds. Nevertheless,
there are still a few lower bounds.

4.1. Bounds Implied by Subgraphs. The first lower bound
on the bondage number is gotten in terms of its spanning
subgraph.

Theorem 54 (Teschner [10], 1997). Let 𝐻 be a spanning
subgraph of a nonempty graph𝐺. If 𝛾(𝐻) = 𝛾(𝐺), then 𝑏(𝐻) ⩽
𝑏(𝐺).

By Theorem 1, 𝑏(𝐶
𝑛
) = 3 if 𝑛 ≡ 1 (mod 3) and 𝑏(𝐶

𝑛
) =

2, otherwise 𝑏(𝑃
𝑛
) = 2 if 𝑛 ≡ 1 (mod 3) and 𝑏(𝑃

𝑛
) = 1

otherwise. From these results and Theorem 54, we get the
following two corollaries.

Corollary 55. If𝐺 is hamiltonianwith order 𝑛 ⩾ 3 and 𝛾(𝐺) =
⌈𝑛/3⌉, then 𝑏(𝐺) ⩾ 2 and in addition 𝑏(𝐺) ⩾ 3 if 𝑛 ≡ 1 (mod
3).

Corollary 56. If 𝐺 with order 𝑛 ⩾ 2 has a hamiltonian path
and 𝛾(𝐺) = ⌈𝑛/3⌉, then 𝑏(𝐺) ⩾ 2 if 𝑛 ≡ 1 (mod 3).

4.2. Other Bounds. The vertex covering number 𝛽(𝐺) of 𝐺 is
the minimum number of vertices that are incident with all

Figure 5: A 𝛾-critical graph with 𝛽 = 𝛾 = 4, 𝛿 = 2, and 𝑏 = 3.

edges in 𝐺. If 𝐺 has no isolated vertices, then 𝛾(𝐺) ⩽ 𝛽(𝐺)
clearly. In [30], Volkmann gave a lot of graphs with 𝛽 = 𝛾.

Theorem 57 (Teschner [10], 1997). Let𝐺 be a graph. If 𝛾(𝐺) =
𝛽(𝐺), then

(a) 𝑏(𝐺) ⩾ 𝛿(𝐺);

(b) 𝑏(𝐺) ⩾ 𝛿(𝐺) + 1 if 𝐺 is a 𝛾-critical graph.

The graph shown in Figure 5 shows that the bound given
in Theorem 57(b) is sharp. For the graph 𝐺, it is a 𝛾-critical
graph and 𝛾(𝐺) = 𝛽(𝐺) = 4. By Theorem 57, we have 𝑏(𝐺) ⩾
3. On the other hand, 𝑏(𝐺) ⩽ 3 by Theorem 16. Thus, 𝑏(𝐺) =
3.

Proposition 58 (Sanchis [31], 1991). Let 𝐺 be a graph 𝐺 of
order 𝑛 (⩾ 6) and size 𝜀. If 𝐺 has no isolated vertices and
3 ⩽ 𝛾(𝐺) ⩽ 𝑛/2, then 𝜀 ⩽ ( 𝑛−𝛾(𝐺)+1

2
).

Using the idea in the proof of Theorem 57, every upper
bound for 𝛾(𝐺) can lead to a lower bound for 𝑏(𝐺). In
this way, Teschner [10] obtained another lower bound from
Proposition 58.

Theorem59 (Teschner [10], 1997). Let𝐺 be a graph𝐺 of order
𝑛 (⩾6) and size 𝜀. If 2 ⩽ 𝛾(𝐺) ⩽ 𝑛/2 − 1, then

(a) 𝑏(𝐺) ⩾ min{𝛿(𝐺), 𝜀 − ( 𝑛−𝛾(𝐺)
2
)};

(b) 𝑏(𝐺) ⩾ min{𝛿(𝐺) + 1, 𝜀 − ( 𝑛−𝛾(𝐺)
2
)} if 𝐺 is a 𝛾-critical

graph.

The lower bound in Theorem 59(b) is sharp for a class
of 𝛾-critical graphs with domination number 2. Let 𝐺 be the
graph obtained from complete graph𝐾

2𝑡
(𝑡 ⩾ 2) by removing

a perfect matching. By Proposition 37, 𝐺 is a 𝛾-critical graph
with 𝛾(𝐺) = 2. Then 𝑏(𝐺) ⩾ 𝛿(𝐺) + 1 = Δ(𝐺) + 1 by
Theorem 59 and 𝑏(𝐺) ⩽ Δ(𝐺) + 1 by Theorem 38, and so
𝑏(𝐺) = Δ(𝐺) + 1 = 2𝑡 − 1.

As far as the author knows, there are no more lower
bounds in the present literature. In view of applications of
the bondage number, a network is vulnerable if its bondage
number is small while it is stable if its bondage number is
large.Therefore, better lower bounds let us learn better about
the stability of networks from this point of view. Thus, it is
of great significance to seek more lower bounds for various
classes of graphs.
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5. Results on Graph Operations

Generally speaking, it is quite difficult to determine the exact
value of the bondage number for a given graph since it
strongly depends on the dominating number of the graph.
Thus, determining bondage numbers for some special graphs
is interesting if the dominating numbers of those graphs are
known or can be easily determined. In this section, we will
introduce some known results on bondage numbers for some
special classes of graphs obtained by some graph operations.

5.1. Cartesian Product Graphs. Let 𝐺
1
= (𝑉

1
, 𝐸

1
) and 𝐺

2
=

(𝑉
2
, 𝐸

2
) be two graphs. The Cartesian product of 𝐺

1
and 𝐺

2

is an undirected graph, denoted by 𝐺
1
× 𝐺

2
, where 𝑉(𝐺

1
×

𝐺
2
) = 𝑉

1
× 𝑉

2
; two distinct vertices 𝑥

1
𝑥
2
and 𝑦

1
𝑦
2
, where

𝑥
1
, 𝑦

1
∈ 𝑉(𝐺

1
) and 𝑥

2
, 𝑦

2
∈ 𝑉(𝐺

2
), are linked by an edge in

𝐺
1
× 𝐺

2
if and only if either 𝑥

1
= 𝑦

1
and 𝑥

2
𝑦
2
∈ 𝐸(𝐺

2
), or

𝑥
2
= 𝑦

2
and 𝑥

1
𝑦
1
∈ 𝐸(𝐺

1
). The Cartesian product is a very

effective method for constructing a larger graph from several
specified small graphs.

Theorem 60 (Dunbar et al. [21], 1998). For 𝑛 ⩾ 3,

𝑏 (𝐶
𝑛
× 𝐾

2
) =

{{

{{

{

2 𝑖𝑓 𝑛 ≡ 0 𝑜𝑟 1 (mod 4) ,
3 𝑖𝑓 𝑛 ≡ 3 (mod 4) ,
4 𝑖𝑓 𝑛 ≡ 2 (mod 4) .

(16)

For the Cartesian product 𝐶
𝑛
× 𝐶

𝑚
of two cycles 𝐶

𝑛
and

𝐶
𝑚
, where 𝑛 ⩾ 4 and 𝑚 ⩾ 3, Klavžar and Seifter [32]

determined 𝛾(𝐶
𝑛
× 𝐶

𝑚
) for some 𝑛 and 𝑚. For example,

𝛾(𝐶
𝑛
×𝐶

4
) = 𝑛 for 𝑛 ⩾ 3 and 𝛾(𝐶

𝑛
×𝐶

3
) = 𝑛−⌊𝑛/4⌋ for 𝑛 ⩾ 4.

Kim [33] determined 𝑏(𝐶
3
× 𝐶

3
) = 6 and 𝑏(𝐶

4
× 𝐶

4
) = 4. For

a general 𝑛 ⩾ 4, the exact values of the bondage numbers of
𝐶
𝑛
× 𝐶

3
and 𝐶

𝑛
× 𝐶

4
are determined as follows.

Theorem 61 (Sohn et al. [34], 2007). For 𝑛 ⩾ 4,

𝑏 (𝐶
𝑛
× 𝐶

3
) =

{{

{{

{

2 𝑖𝑓 𝑛 ≡ 0 (mod 4) ,
4 𝑖𝑓 𝑛 ≡ 1 𝑜𝑟 2 (mod 4) ,
5 𝑖𝑓 𝑛 ≡ 3 (mod 4) .

(17)

Theorem62 (Kang et al. [35], 2005). 𝑏(𝐶
𝑛
×𝐶

4
) = 4 for 𝑛 ⩾ 4.

For larger 𝑚 and 𝑛, Huang and Xu [36] obtained the
following result; see Theorem 197 for more details.

Theorem 63 (Huang and Xu [36], 2008). 𝑏(𝐶
5𝑖
×𝐶

5𝑗
) = 3 for

any positive integers 𝑖 and 𝑗.

Xiang et al. [37] determined that for 𝑛 ⩾ 5,

𝑏 (𝐶
𝑛
× 𝐶

5
)

{{

{{

{

= 3 if 𝑛 ≡ 0 or 1 (mod 5) ,
= 4 if 𝑛 ≡ 2 or 4 (mod 5) ,
⩽ 7 if 𝑛 ≡ 3 (mod 5) .

(18)

For the Cartesian product 𝑃
𝑛
×𝑃

𝑚
of two paths 𝑃

𝑛
and 𝑃

𝑚
,

Jacobson and Kinch [38] determined 𝛾(𝑃
𝑛
×𝑃

2
) = ⌈(𝑛+1)/2⌉,

𝛾(𝑃
𝑛
× 𝑃

3
) = 𝑛 − ⌊(𝑛 − 1)/4⌋, and 𝛾(𝑃

𝑛
× 𝑃

4
) = 𝑛 + 1 if 𝑛 =

1, 2, 3, 5, 6, 9, and 𝑛 otherwise.The bondage number of𝑃
𝑛
×𝑃

𝑚

for 𝑛 ⩾ 4 and 2 ⩽ 𝑚 ⩽ 4 is determined as follows (Li [39] also
determined 𝑏(𝑃

𝑛
× 𝑃

2
)).

Theorem 64 (Hu and Xu [40], 2012). For 𝑛 ⩾ 4,

𝑏 (𝑃
𝑛
× 𝑃

2
) = {

1, 𝑖𝑓 𝑛 ≡ 1 (mod 2)
2, 𝑖𝑓 𝑛 ≡ 0 (mod 2) ;

𝑏 (𝑃
𝑛
× 𝑃

3
) = {

1, 𝑖𝑓 𝑛 ≡ 1 𝑜𝑟 2 (mod 4)
2, 𝑖𝑓 𝑛 ≡ 0 𝑜𝑟 3 (mod 4) ,

𝑏 (𝑃
𝑛
× 𝑃

4
) = 1 𝑓𝑜𝑟 𝑛 ⩾ 14.

(19)

From the proof of Theorem 64, we find that if 𝑃
𝑛
=

{0, 1, . . . , 𝑛 − 1} and 𝑃
𝑚
= {0, 1, . . . , 𝑚 − 1}, then the removal

of the vertex (0, 0) in 𝑃
𝑛
×𝑃

𝑚
does not change the domination

number. If𝑚 increases, the effect of (0, 0) for the domination
number will be smaller and smaller from the probability.
Therefore, we expect it is possible that 𝛾(𝑃

𝑛
× 𝑃

𝑚
− (0, 0)) =

𝛾(𝑃
𝑛
× 𝑃

𝑚
) for𝑚 ⩾ 5 and give the following conjecture.

Conjecture 65. 𝑏(𝑃
𝑛
× 𝑃

𝑚
) ⩽ 2 for𝑚 ⩾ 5 and 𝑛 ⩾ 4.

5.2. Block Graphs and Cactus Graphs. In this subsection, we
introduce some results for corona graphs, block graphs, and
cactus graphs.

The corona𝐺
1
∘ 𝐺

2
, proposed by Frucht and Harary [41],

is the graph formed from a copy of 𝐺
1
and 𝜐(𝐺

1
) copies of

𝐺
2
by joining the 𝑖th vertex of 𝐺

1
to the 𝑖th copy of 𝐺

2
. In

particular, we are concernedwith the corona𝐻∘𝐾
1
, the graph

formed by adding a new vertex V
𝑖
, and a new edge 𝑢

𝑖
V
𝑖
for

every vertex 𝑢
𝑖
in𝐻.

Theorem 66 (Carlson and Develin [42], 2006). 𝑏(𝐻 ∘ 𝐾
1
) =

𝛿(𝐻) + 1.

This is a very important result, which is often used to
construct a graph with required bondage number. In other
words, this result implies that for any given positive integer 𝑏
there is a graph 𝐺 such that 𝑏(𝐺) = 𝑏.

A block graph is a graph whose blocks are complete
graphs. Each block in a cactus graph is either a cycle or a𝐾

2
.

If each block of a graph is either a complete graph or a cycle,
then we call this graph a block-cactus graph.

Theorem67 (Teschner [43], 1997). 𝑏(𝐺) ≤ Δ(𝐺) for any block
graph 𝐺.

Teschner [43] characterized all block graphs with 𝑏(𝐺) =
Δ(𝐺). In the same paper, Teschner found that 𝛾-critical
graphs are instrumental in determining bounds for the
bondage number of cactus and block graphs and obtained the
following result.

Theorem 68 (Teschner [43], 1997). 𝑏(𝐺) ⩽ 3 for any
nontrivial cactus graph 𝐺.

This bound can be achieved by 𝐻 ∘ 𝐾
1
where 𝐻 is

a nontrivial cactus graph without vertices of degree one
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by Theorem 66. In 1998, Dunbar et al. [21] proposed the
following problem.

Problem 2. Characterize all cactus graphs with bondage
number 3.

Some upper bounds for block-cactus graphs were also
obtained.

Theorem 69 (Dunbar et al. [21], 1998). Let 𝐺 be a connected
block-cactus graph with at least two blocks.Then 𝑏(𝐺) ⩽ Δ(𝐺).

Theorem 70 (Dunbar et al. [21], 1998). Let 𝐺 be a connected
block-cactus graph which is neither a cactus graph nor a block
graph. Then 𝑏(𝐺) ⩽ Δ(𝐺) − 1.

5.3. Edge-Deletion and Edge-Contraction. In order to obtain
further results of the bondage number, we may consider how
the bondage number changes under some operations of a
graph 𝐺, which remain the domination number unchanged
or preserve some property of 𝐺, such as planarity. Two
simple operations satisfying these requirements are the edge-
deletion and the edge-contraction.

Theorem 71 (Huang and Xu [44], 2012). Let 𝐺 be any graph
and 𝑒 ∈ 𝐸(𝐺). Then 𝑏(𝐺 − 𝑒) ⩾ 𝑏(𝐺) − 1. Moreover, 𝑏(𝐺 − 𝑒) ⩽
𝑏(𝐺) if 𝛾(𝐺 − 𝑒) = 𝛾(𝐺).

FromTheorem 1, 𝑏(𝐶
𝑛
− 𝑒) = 𝑏(𝑃

𝑛
) = 𝑏(𝐶

𝑛
) − 1 for any 𝑒

in𝐶
𝑛
, which shows that the lower bound on 𝑏(𝐺−𝑒) is sharp.

The upper bound can reach for any graph 𝐺 with 𝑏(𝐺) ⩾ 2.
Next, we consider the effect of the edge-contraction on

the bondage number. Given a graph 𝐺, the contraction of 𝐺
by the edge 𝑒 = 𝑥𝑦, denoted by 𝐺/𝑥𝑦, is the graph obtained
from 𝐺 by contracting two vertices 𝑥 and 𝑦 to a new vertex
and then deleting all multiedges. It is easy to observe that for
any graph 𝐺, 𝛾(𝐺) − 1 ⩽ 𝛾(𝐺/𝑥𝑦) ⩽ 𝛾(𝐺) for any edge 𝑥𝑦 of
𝐺.

Theorem 72 (Huang and Xu [44], 2012). Let 𝐺 be any graph
and 𝑥𝑦 be any edge in𝐺. If𝑁

𝐺
(𝑥)∩𝑁

𝐺
(𝑦) = 0 and 𝛾(𝐺/𝑥𝑦) =

𝛾(𝐺), then 𝑏(𝐺/𝑥𝑦) ⩾ 𝑏(𝐺).

We can use examples 𝐶
𝑛
and 𝐾

𝑛
to show that the

conditions ofTheorem 72 are necessary and the lower bound
inTheorem 72 is tight. Clearly, 𝛾(𝐶

𝑛
) = ⌈𝑛/3⌉ and 𝛾(𝐾

𝑛
) = 1;

for any edge 𝑥𝑦, 𝐶
𝑛
/𝑥𝑦 = 𝐶

𝑛−1
and 𝐾

𝑛
/𝑥𝑦 = 𝐾

𝑛−1
. By

Theorem 1, if 𝑛 ≡ 1 (mod 3), then 𝛾(𝐶
𝑛
/𝑥𝑦) < 𝛾(𝐺) and

𝑏(𝐶
𝑛
/𝑥𝑦) = 2 < 3 = 𝑏(𝐶

𝑛
). Thus, the result in Theorem 72

is generally invalid without the hypothesis 𝛾(𝐺/𝑥𝑦) = 𝛾(𝐺).
Furthermore, the condition 𝑁

𝐺
(𝑥) ∩ 𝑁

𝐺
(𝑦) = 0 cannot be

omitted even if 𝛾(𝐺/𝑥𝑦) = 𝛾(𝐺), since for odd 𝑛, 𝑏(𝐾
𝑛
/𝑥𝑦) =

⌈(𝑛 − 1)/2⌉ < ⌈𝑛/2⌉ = 𝑏(𝐾
𝑛
), by Theorem 1.

On the other hand, 𝑏(𝐶
𝑛
/𝑥𝑦) = 𝑏(𝐶

𝑛
) = 2 if 𝑛 ≡ 0 (mod

3) and 𝑏(𝐾
𝑛
/𝑥𝑦) = 𝑏(𝐾

𝑛
) if 𝑛 is even, which shows that the

equality in 𝑏(𝐺/𝑥𝑦) ⩾ 𝑏(𝐺) may hold. Thus, the bound in
Theorem 72 is tight. However, provided all the conditions,
𝑏(𝐺/𝑥𝑦) can be arbitrarily larger than 𝑏(𝐺). Given a graph𝐻,
let𝐺 be the graph formed from𝐻∘𝐾

1
by adding a new vertex

𝑥 and joining it to an vertex 𝑦 of degree one in𝐻 ∘ 𝐾
1
. Then

𝐺/𝑥𝑦 = 𝐻 ∘ 𝐾
1
, 𝛾(𝐺) = 𝛾(𝐺/𝑥𝑦), and 𝑁

𝐺
(𝑥) ∩ 𝑁

𝐺
(𝑦) = 0.

But 𝑏(𝐺) = 1 since 𝛾(𝐺 − 𝑥𝑦) = 𝛾(𝐺/𝑥𝑦) + 1, and 𝑏(𝐺/𝑥𝑦) =
𝛿(𝐻) + 1 byTheorem 66.The gap between 𝑏(𝐺) and 𝑏(𝐺/𝑥𝑦)
is 𝛿(𝐻).

6. Results on Planar Graphs

From Section 2, we have seen that the bondage number
for a tree has been completely solved. Moreover, a linear
time algorithm to compute the bondage number of a tree is
designed by Hartnell et al. [15]. It is quite natural to consider
the bondage number for a planar graph. In this section, we
state some results and problems on the bondage number for
a planar graph.

6.1. Conjecture on Bondage Number. As mentioned in
Section 3, the bondage number can be much larger than the
maximum degree. But for a planar graph 𝐺, the bondage
number 𝑏(𝐺) cannot exceed Δ(𝐺) too much. It is clear that
𝑏(𝐺) ⩽ Δ(𝐺) + 4 by Corollary 15 since 𝛿(𝐺) ⩽ 5 for any
planar graph𝐺. In 1998,Dunbar et al. [21] posed the following
conjecture.

Conjecture 73. If 𝐺 is a planar graph, then 𝑏(𝐺) ⩽ Δ(𝐺) + 1.

Because of its attraction, it immediately became the focus
of attention when this conjecture is proposed. In fact, the
main aim concerning the research of the bondage number for
a planar graph is focused on this conjecture.

It has been mentioned in Theorems 1 and 60 that
𝑏(𝐶

3𝑘+1
) = 3 = Δ + 1, and 𝑏(𝐶

4𝑘+2
× 𝐾

2
) = 4 = Δ + 1. It

is known that 𝑏(𝐾
6
− 𝑀) = 5 = Δ + 1, where𝑀 is a perfect

matching of the complete graph𝐾
6
.These examples show that

if Conjecture 73 is true, then the upper bound is sharp for
2 ⩽ Δ ⩽ 4.

Here, we note that it is sufficient to prove this conjecture
for connected planar graphs, since the bondage number of a
disconnected graph is simply the minimum of the bondage
numbers of its components.

The first paper attacking this conjecture is due to Kang
and Yuan [45], which confirmed the conjecture for every
connected planar graph 𝐺 with Δ ⩾ 7. The proofs are mainly
based onTheorems 16 and 18.

Theorem 74 (Kang and Yuan [45], 2000). If 𝐺 is a connected
planar graph, then 𝑏(𝐺) ⩽ min{8, Δ(𝐺) + 2}.

Obviously, in view of Theorem 74, Conjecture 73 is true
for any connected planar graph with Δ ⩾ 7.

6.2. Bounds Implied by Degree Conditions. As we have seen
from Theorem 74, to attack Conjecture 73, we only need to
consider connected planar graphs with maximum Δ ⩽ 6.
Thus, studying the bondage number of planar graphs by
degree conditions is of significance.The first result on bounds
implied by degree conditions is obtained by Kang and Yuan
[45].
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Theorem 75 (Kang and Yuan [45], 2000). If 𝐺 is a connected
planar graph without vertices of degree 5, then 𝑏(𝐺) ⩽ 7.

Fischermann et al. [46] generalized Theorem 75 as fol-
lows.

Theorem 76 (Fischermann et al. [46], 2003). Let 𝐺 be a
connected planar graph and 𝑋 the set of vertices of degree 5
which have distance at least 3 to vertices of degrees 1, 2, and
3. If all vertices in 𝑋 not adjacent with vertices of degree 4
are independent and not adjacent to vertices of degree 6, then
𝑏(𝐺) ⩽ 7.

Clearly, if𝐺 has no vertices of degree 5, then𝑋 = 0. Thus,
Theorem 76 yields Theorem 75.

Use 𝑛
𝑖
to denote the number of vertices of degree 𝑖 in 𝐺

for each 𝑖 = 1, 2, . . . , Δ(𝐺). Using Theorem 18, Fischermann
et al. obtained the following two theorems.

Theorem 77 (Fischermann et al. [46], 2003). For any con-
nected planar graph 𝐺,

(1) 𝑏(𝐺) ⩽ 7 if 𝑛
5
< 2𝑛

2
+ 3𝑛

3
+ 2𝑛

4
+ 12;

(2) 𝑏(𝐺) ⩽ 6 if 𝐺 contains no vertices of degrees 4 and 5.

Theorem 78 (Fischermann et al. [46], 2003). For any con-
nected planar graph 𝐺, 𝑏(𝐺) ⩽ Δ(𝐺) + 1 if

(1) Δ(𝐺) = 6 and every edge 𝑒 = 𝑥𝑦 with 𝑑
𝐺
(𝑥) = 5 and

𝑑
𝐺
(𝑦) = 6 is contained in at most one triangle;

(2) Δ(𝐺) = 5 and no triangle contains an edge 𝑒 = 𝑥𝑦 with
𝑑
𝐺
(𝑥) = 5 and 4 ⩽ 𝑑

𝐺
(𝑦) ⩽ 5.

6.3. Bounds Implied by Girth Conditions. The girth 𝑔(𝐺) of a
graph 𝐺 is the length of the shortest cycle in 𝐺. If 𝐺 has no
cycles, we define 𝑔(𝐺) = ∞.

Combining Theorem 74 with Theorem 78, we find that
if a planar graph contains no triangles and has maximum
degree Δ ⩾ 5, then Conjecture 73 holds. This fact motivated
Fischermann et al.’s [46] attempt to attack Conjecture 73 by
girth restraints.

Theorem 79 (Fischermann et al. [46], 2003). For any con-
nected planar graph 𝐺,

𝑏 (𝐺) ⩽

{{{{

{{{{

{

6 𝑖𝑓 𝑔 (𝐺) ⩾ 4,

5 𝑖𝑓 𝑔 (𝐺) ⩾ 5,

4 𝑖𝑓 𝑔 (𝐺) ⩾ 6,

3 𝑖𝑓 𝑔 (𝐺) ⩾ 8.

(20)

The first result in Theorem 79 shows that Conjecture 73
is valid for all connected planar graphs with 𝑔(𝐺) ⩾ 4 and
Δ(𝐺) ⩾ 5. It is easy to verify that the second result in
Theorem 79 implies that Conjecture 73 is valid for all not
3-regular graphs of girth 𝑔(𝐺) ⩾ 5, which is stated in the
following corollary.

Corollary 80. For any connected planar graph 𝐺, if 𝐺 is not
3-regular and 𝑔(𝐺) ⩾ 5, then 𝑏(𝐺) ⩽ Δ(𝐺) + 1.

The first result in Theorem 79 also implies that if 𝐺 is
a connected planar graph with no cycles of length 3, then
𝑏(𝐺) ⩽ 6. Hou et al. [47] improved this result as follows.

Theorem 81 (Hou et al. [47], 2011). For any connected planar
graph 𝐺, if 𝐺 contains no cycles of length 𝑖 (4 ⩽ 𝑖 ⩽ 6), then
𝑏(𝐺) ⩽ 6.

Since 𝑏(𝐶
3𝑘+1
) = 3 for 𝑘 ⩾ 3 (see Theorem 1), the

last bound in Theorem 79 is tight. Whether other bounds in
Theorem 79 are tight remains open. In 2003, Fischermann et
al. [46] posed the following conjecture.

Conjecture 82. For any connected planar graph 𝐺, 𝑏(𝐺) ⩽ 7,
and

𝑏 (𝐺) ⩽ {
5, 𝑖𝑓 𝑔 (𝐺) ⩾ 4,

4, 𝑖𝑓 𝑔 (𝐺) ⩾ 5.
(21)

We conclude this subsection with a question on bondage
numbers of planar graphs.

Question 1 (Fischermann et al. [46], 2003). Is there a planar
graph 𝐺 with 6 ⩽ 𝑏(𝐺) ⩽ 8?

In 2006, Carlson andDevelin [42] showed that the corona
𝐺 = 𝐻 ∘ 𝐾

1
for a planar graph 𝐻 with 𝛿(𝐻) = 5 has the

bondage number 𝑏(𝐺) = 𝛿(𝐻) + 1 = 6 (see Theorem 66).
Since the minimum degree of planar graphs is at most 5,
then 𝑏(𝐺) can attach 6. If we take 𝐻 as the graph of the
icosahedron, then 𝐺 = 𝐻 ∘ 𝐾

1
is such an example. The

question for the existence of planar graphs with bondage
number 7 or 8 remains open.

6.4. Comments on the Conjectures. Conjecture 73 is true for
all connected planar graphs with minimum degree 𝛿 ⩽ 2 by
Theorem 16, or maximum degree Δ ⩾ 7 by Theorem 74, or
not 𝛾-critical planar graphs by Theorem 13. Thus, to attack
Conjecture 73, we only need to consider connected critical
planar graphs with degree-restriction 3 ⩽ 𝛿 ⩽ Δ ⩽ 6.

Recalling and anatomizing the proofs of all results men-
tioned in the preceding subsections on the bondage number
for connected planar graphs, we find that the proofs of these
results strongly depend upon Theorem 16 or Theorem 18. In
other words, a basic way used in the proofs is to find two
vertices 𝑥 and 𝑦 with distance at most two in a considered
planar graph 𝐺 such that

𝑑
𝐺
(𝑥) + 𝑑

𝐺
(𝑦) or 𝑑

𝐺
(𝑥) + 𝑑

𝐺
(𝑦) −

𝑁𝐺
(𝑥) ∩ 𝑁

𝐺
(𝑦)
 ,

(22)

which bounds 𝑏(𝐺), is as small as possible. Very recently,
Huang and Xu [44] have considered the following parameter

𝐵 (𝐺) = min
𝑥,𝑦∈𝑉(𝐺)

{{𝑑
𝑥𝑦
: 1 ⩽ 𝑑

𝐺
(𝑥, 𝑦) ⩽ 2}

∪ {𝑑
𝑥𝑦
− 𝑛

𝑥𝑦
: 𝑑 (𝑥, 𝑦) = 1}} ,

(23)

where 𝑑
𝑥𝑦
= 𝑑

𝐺
(𝑥) + 𝑑

𝐺
(𝑦) − 1 and 𝑛

𝑥𝑦
= |𝑁

𝐺
(𝑥) ∩ 𝑁

𝐺
(𝑦)|.
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It follows fromTheorems 16 and 18 that

𝑏 (𝐺) ⩽ 𝐵 (𝐺) . (24)

The proofs given in Theorems 74 and 79 indeed imply the
following stronger results.

Theorem 83. If 𝐺 is a connected planar graph, then

𝐵 (𝐺) ⩽

{{{{{

{{{{{

{

min {8, Δ (𝐺) + 2}
6 𝑖𝑓 𝑔 (𝐺) ⩾ 4,

5 𝑖𝑓 𝑔 (𝐺) ⩾ 5,

4 𝑖𝑓 𝑔 (𝐺) ⩾ 6,

3 𝑖𝑓 𝑔 (𝐺) ⩾ 8.

(25)

Thus, using Theorem 16 or Theorem 18, if we can prove
Conjectures 73 and 82, then we can prove the following
statement.

Statement. If 𝐺 is a connected planar graph, then

𝐵 (𝐺) ⩽

{{{{

{{{{

{

Δ (𝐺) + 1,

7,

5, if 𝑔 (𝐺) ⩾ 4,
4, if 𝑔 (𝐺) ⩾ 5.

(26)

It follows from (24) that Statement implies Conjectures 73
and 82. However, Huang and Xu [44] gave examples to show
that none of conclusions in Statement is true. As a result, they
stated the following conclusion.

Theorem 84 (Huang and Xu [44], 2012). It is not possible to
prove Conjectures 73 and 82, if they are right, using Theorems
16 and 18.

Therefore, a new method is needed to prove or disprove
these conjectures. At the present time, one cannot prove these
conjectures, and may consider to disprove them. If one of
these conjectures is invalid, then there exists a minimum
counterexample 𝐺 with respect to 𝜐(𝐺) + 𝜀(𝐺). In order to
obtain a minimum counterexample, one may consider two
simple operations satisfying these requirements, the edge-
deletion and the edge-contraction,which decrease 𝜐(𝐺)+𝜀(𝐺)
and preserve planarity. However, applying Theorems 71 and
72, Huang and Xu [44] presented the following results.

Theorem 85 (Huang and Xu [44], 2012). It is not possible to
construct minimum counterexamples to Conjectures 73 and 82
by the operation of an edge-deletion or an edge-contraction.

7. Results on Crossing Number Restraints

It is quite natural to generalize the known results on the
bondage number for planar graphs to formore general graphs
in terms of graph-theoretical parameters. In this section, we
consider graphs with crossing number restraints.

The crossing number cr(𝐺) of 𝐺 is the smallest number
of pairwise intersections of its edges when 𝐺 is drawn in the
plane. If cr(𝐺) = 0, then 𝐺 is a planar graph.

7.1. General Methods. Use 𝑛
𝑖
to denote the number of vertices

of degree 𝑖 in𝐺 for 𝑖 = 1, 2, . . . , Δ(𝐺). Huang and Xu obtained
the following results.

Theorem 86 (Huang and Xu [48], 2007). For any connected
graph 𝐺,

𝑏 (𝐺) ⩽

{{{{{{{{{{{

{{{{{{{{{{{

{

6 𝑖𝑓 𝑔 (𝐺) ⩾ 4 𝑎𝑛𝑑 2cr (𝐺) < 1
2
𝑎
1
;

5 𝑖𝑓 𝑔 (𝐺) ⩾ 5 𝑎𝑛𝑑 6cr (𝐺) < 1
6
𝑎
2
;

4 𝑖𝑓 𝑔 (𝐺) ⩾ 6 𝑎𝑛𝑑 4cr (𝐺) < 1
4
𝑎
3
;

3 𝑖𝑓 𝑔 (𝐺) ⩾ 8 𝑎𝑛𝑑 6cr (𝐺) < 1
6
𝑎
4
,

(27)

where 𝑎
1
= 𝑛

1
+ 2𝑛

2
+ 2𝑛

3
+∑

Δ

𝑖=8
(𝑖 − 7)𝑛

𝑖
+ 8; 𝑎

2
= 3𝑛

1
+ 6𝑛

2
+

5𝑛
3
+∑

Δ

𝑖=7
(3𝑖−18)𝑛

𝑖
+20; 𝑎

3
= 𝑛

1
+2𝑛

2
+∑

Δ

𝑖=6
(2𝑖−10)𝑛

𝑖
+12;

and 𝑎
4
= ∑

Δ

𝑖=5
(3𝑖 − 12)𝑛

𝑖
+ 16.

Simplifying the conditions in Theorem 86, we obtain the
following corollaries immediately.

Corollary 87 (Huang and Xu [48], 2007). For any connected
graph 𝐺,

𝑏 (𝐺) ⩽

{{{{{{{{

{{{{{{{{

{

6, 𝑖𝑓 𝑔 (𝐺) ⩾ 4 𝑎𝑛𝑑 cr (𝐺) ⩽ 3,

5, 𝑖𝑓 𝑔 (𝐺) ⩾ 5 𝑎𝑛𝑑 cr (𝐺) ⩽ 4,

4, 𝑖𝑓 𝑔 (𝐺) ⩾ 6 𝑎𝑛𝑑 cr (𝐺) ⩽ 2,

3, 𝑖𝑓 𝑔 (𝐺) ⩾ 8 𝑎𝑛𝑑 cr (𝐺) ⩽ 2.

(28)

Corollary 88 (Huang and Xu [48], 2007). For any connected
graph 𝐺,

(a) 𝑏(𝐺) ⩽ 6 if 𝐺 is not 4-regular, cr(𝐺) = 4 and 𝑔(𝐺) ⩾ 4;

(b) 𝑏(𝐺) ⩽ Δ(𝐺) + 1 if 𝐺 is not 3-regular, cr(𝐺) ⩽ 4 and
𝑔(𝐺) ⩾ 5;

(c) 𝑏(𝐺) ⩽ 4 if 𝐺 is not 3-regular, cr(𝐺) = 3 and 𝑔(𝐺) ⩾ 6;

(d) 𝑏(𝐺) ⩽ 3 if cr(𝐺) = 3, 𝑔(𝐺) ⩾ 8 and Δ(𝐺) ⩾ 5.

These corollaries generalize some known results for pla-
nar graphs. For example, Corollary 87 contains Theorem 79;
Corollary 88 (b) contains Corollary 80.

Theorem 89 (Huang and Xu [48], 2007). For any connected
graph 𝐺, if cr(𝐺) ⩽ 𝑛

3
(𝐺) + 𝑛

4
(𝐺) + 3, then 𝑏(𝐺) ⩽ 8.

Corollary 90 (Huang and Xu [48], 2007). For any connected
graph 𝐺, if cr(𝐺) ⩽ 3, then 𝑏(𝐺) ⩽ 8.

Perhaps being unaware of this result, in 2010, Ma et al.
[49] proved that 𝑏(𝐺) ⩽ 12 for any graph 𝐺 with cr(𝐺) = 1.

Theorem91 (Huang and Xu [48], 2007). Let𝐺 be a connected
graph, and 𝐼 = {𝑥 ∈ 𝑉(𝐺) : 𝑑

𝐺
(𝑥) = 5, 𝑑

𝐺
(𝑥, 𝑦) ⩾ 3 if
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𝑑
𝐺
(𝑦) ⩽ 3, and 𝑑

𝐺
(𝑦) ̸= 4 for every 𝑦 ∈ 𝑁

𝐺
(𝑥)}. If 𝐼 is

independent, no vertices adjacent to vertices of degree 6 and

cr (𝐺) < max{
5𝑛

3
+ |𝐼| − 2𝑛

4
+ 28

11
,
7𝑛

3
+ 40

16
} , (29)

then 𝑏(𝐺) ⩽ 7.

Corollary 92 (Huang and Xu [48], 2007). Let 𝐺 be a
connected graph with cr(𝐺) ⩽ 2. If 𝐼 = {𝑥 ∈ 𝑉(𝐺) : 𝑑

𝐺
(𝑥) =

5, 𝑑
𝐺
(𝑦, 𝑥) ⩾ 3 if 𝑑

𝐺
(𝑦) ⩽ 3 and 𝑑

𝐺
(𝑦) ̸= 4 for every 𝑦 ∈

𝑁
𝐺
(𝑥)} is independent, and no vertices adjacent to vertices of

degree 6, then 𝑏(𝐺) ⩽ 7.

Theorem93 (Huang andXu [48], 2007). Let𝐺 be a connected
graph. If 𝐺 satisfies

(a) 5cr(𝐺) + 𝑛
5
< 2𝑛

2
+ 3𝑛

3
+ 2𝑛

4
+ 12 or

(b) 7cr(𝐺) + 2𝑛
5
< 3𝑛

2
+ 4𝑛

4
+ 24,

then 𝑏(𝐺) ⩽ 7.

Proposition 94 (Huang and Xu [48], 2007). Let 𝐺 be a
connected graph with no vertices of degrees four and five. If
cr(𝐺) ⩽ 2, then 𝑏(𝐺) ⩽ 6.

Theorem 95 (Huang and Xu [48], 2007). If 𝐺 is a connected
graph with cr(𝐺) ⩽ 4 and not 4-regular when cr(𝐺) = 4, then
𝑏(𝐺) ⩽ Δ(𝐺) + 2.

The above results generalize some known results for
planar graphs. For example, Corollary 90 and Theorem 95
contain Theorem 74; the first condition in Theorem 93 con-
tains the second condition inTheorem 77.

From Corollary 88 and Theorem 95, we suggest the fol-
lowing questions.

Question 2. Is there a

(a) 4-regular graph 𝐺 with cr(𝐺) = 4 such that 𝑏(𝐺) ⩾ 7?

(b) 3-regular graph 𝐺 with cr ⩽ 4 and 𝑔(𝐺) ⩾ 5 such that
𝑏(𝐺) = 5?

(c) 3-regular graph 𝐺 with cr = 3 and 𝑔(𝐺) = 6 or 7 such
that 𝑏(𝐺) = 5?

7.2. Carlson-Develin Methods. In this subsection, we intro-
duce an elegant method presented by Carlson and Develin
[42] to obtain some upper bounds for the bondage number
of a graph.

Suppose that 𝐺 is a connected graph. We say that 𝐺 has
genus 𝜌 if 𝐺 can be embedded in a surface 𝑆 with 𝜌 handles
such that edges are pairwise disjoint except possibly for end-
vertices. Let𝐺 be an embedding of𝐺 in surface 𝑆, and let𝜙(𝐺)
denote the number of regions in 𝐺. The boundary of every
region contains at least three edges and every edge is on the
boundary of atmost two regions (the two regions are identical
when 𝑒 is a cut-edge). For any edge 𝑒 of 𝐺, let 𝑟1

𝐺
(𝑒) and 𝑟2

𝐺
(𝑒)

be the numbers of edges comprising the regions in 𝐺 which
the edge 𝑒 borders. It is clear that every 𝑒 = 𝑥𝑦 ∈ 𝐸(𝐺),

𝑟
2

𝐺
(𝑒) ⩾ 𝑟

1

𝐺
(𝑒) ⩾ 4 if 𝑁𝐺

(𝑥) ∩ 𝑁
𝐺
(𝑦)
 = 0,

𝑟
2

𝐺
(𝑒) ⩾ 4, 𝑟

1

𝐺
(𝑒) ⩾ 3 if 𝑁𝐺

(𝑥) ∩ 𝑁
𝐺
(𝑦)
 = 1,

𝑟
2

𝐺
(𝑒) ⩾ 𝑟

1

𝐺
(𝑒) ⩾ 3 if 𝑁𝐺

(𝑥) ∩ 𝑁
𝐺
(𝑦)
 ⩾ 2.

(30)

Following Carlson and Develin [42], for any edge 𝑒 = 𝑥𝑦 of
𝐺, we define

𝐷
𝐺
(𝑒) =

1

𝑑
𝐺
(𝑥)
+

1

𝑑
𝐺
(𝑦)

+
1

𝑟
1

𝐺
(𝑒)
+

1

𝑟
2

𝐺
(𝑒)
− 1. (31)

By the well-known Euler’s formula

𝜐 (𝐺) − 𝜀 (𝐺) + 𝜙 (𝐺) = 2 − 2𝜌 (𝐺) , (32)

it is easy to see that

∑

𝑒∈𝐸(𝐺)

𝐷
𝐺
(𝑒) = 𝜐 (𝐺) − 𝜀 (𝐺) + 𝜙 (𝐺) = 2 − 2𝜌 (𝐺) . (33)

If 𝐺 is a planar graph, that is, 𝜌(𝐺) = 0, then

∑

𝑒∈𝐸(𝐺)

𝐷
𝐺
(𝑒) = 𝜐 (𝐺) − 𝜀 (𝐺) + 𝜙 (𝐺) = 2. (34)

Combining these formulas withTheorem 18, Carlson and
Develin [42] gave a simple and intuitive proof ofTheorem 74
and obtained the following result.

Theorem 96 (Carlson and Develin [42], 2006). Let 𝐺 be a
connected graph which can be embedded on a torus. Then
𝑏(𝐺) ⩽ Δ(𝐺) + 3.

Recently, Hou and Liu [50] improved Theorem 96 as
follows.

Theorem 97 (Hou and Liu [50], 2012). Let 𝐺 be a connected
graph which can be embedded on a torus. Then 𝑏(𝐺) ⩽ 9.
Moreover, if Δ(𝐺) ̸= 6, then 𝑏(𝐺) ⩽ 8.

By the way, Cao et al. [51] generalized the result in
Theorem 79 to a connected graph 𝐺 that can be embedded
on a torus; that is,

𝑏 (𝐺) ≤

{{{{

{{{{

{

6, if 𝑔 (𝐺) ⩾ 4 and 𝐺 is not 4-regular,
5, if 𝑔 (𝐺) ⩾ 5,
4, if 𝑔 (𝐺) ⩾ 6 and 𝐺 is not 3-regular,
3, if 𝑔 (𝐺) ⩾ 8.

(35)

Several authors used this method to obtain some results
on the bondage number. For example, Fischermann et al.
[46] used this method to prove the second conclusion in
Theorem 78. Recently, Cao et al. [52] have used thismethod to
deal with more general graphs with small crossing numbers.
First, they found the following property.

Lemma 98. 𝛿(𝐺) ⩽ 5 for any graph 𝐺 with cr(𝐺) ⩽ 5.
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This result implies that 𝑏(𝐺) ⩽ Δ(𝐺) + 4 by Corollary 15
for any graph 𝐺 with cr(𝐺) ⩽ 5. Cao et al. established the
following relation in terms of maximum planar subgraphs.

Lemma 99 (Cao et al. [52]). Let 𝐺 be a connected graph with
crossing number cr(𝐺). For any maximum planar subgraph𝐻
of 𝐺,

∑

𝑒∈𝐸(𝐻)

𝐷
𝐺
(𝑒) ⩾ 2 −

2cr (𝐺)
𝛿 (𝐺)

. (36)

Using Carlson-Develin method and combining
Lemma 98 with Lemma 99, Cao et al. proved the following
results.

Theorem 100 (Cao et al. [52]). For any connected graph 𝐺,
𝑏(𝐺) ⩽ Δ(𝐺) + 2 if 𝐺 satisfies one of the following conditions:

(a) cr(𝐺) ⩽ 3;
(b) cr(𝐺) = 4 and 𝐺 is not 4-regular;
(c) cr(𝐺) = 5 and 𝐺 contains no vertices of degree 4.

Theorem101 (Cao et al. [52]). Let𝐺 be a connected graphwith
Δ(𝐺) = 5 and cr(𝐺) ⩽ 4. If no triangles contain two vertices of
degree 5, then 𝑏(𝐺) ⩽ 6 = Δ(𝐺) + 1.

Theorem 102 (Cao et al. [52]). Let 𝐺 be a connected graph
with Δ(𝐺) ⩾ 6 and cr(𝐺) ⩽ 3. If Δ(𝐺) ⩾ 7 or if Δ(𝐺) = 6,
𝛿(𝐺) ̸= 3 and every edge 𝑒 = 𝑥𝑦 with 𝑑

𝐺
(𝑥) = 5 and 𝑑

𝐺
(𝑦) = 6

is contained in atmost one triangle, then 𝑏(𝐺) ⩽ min{8, Δ(𝐺)+
1}.

Using Carlson-Develin method, it can be proved that
𝑏(𝐺) ⩽ Δ(𝐺) + 2 if cr(𝐺) ⩽ 3 (see the first conclusion in
Theorem 100), and not yet proved that 𝑏(𝐺) ⩽ 8 if cr(𝐺) ⩽
3, although it has been proved by using other method (see
Corollary 90).

By using Carlson-Develin method, Samodivkin [25]
obtained some results on the bondage number for graphswith
some given properties.

Kim [53] showed that 𝑏(𝐺) ⩽ Δ(𝐺) + 2 for a connected
graph 𝐺 with genus 1, Δ(𝐺) ⩽ 5 and having a toroidal
embedding of which at least one region is not 4-sided.
Recently, Gagarin and Zverovich [54] further have extended
Carlson-Develin ideas to establish a nice upper bound for
arbitrary graphs that can be embedded on orientable or
nonorientable topological surface.

Theorem 103 (Gagarin and Zverovich [54], 2012). Let 𝐺 be
a graph embeddable on an orientable surface of genus ℎ and a
nonorientable surface of genus 𝑘. Then 𝑏(𝐺) ⩽ min{Δ(𝐺)+ℎ+
2, Δ(𝐺) + 𝑘 + 1}.

This result generalizes the corresponding upper bounds
in Theorems 74 and 96 for any orientable or nonori-
entable topological surface. By investigating the proof of
Theorem 103, Huang [55] found that the issue of the ori-
entability can be avoided by using the Euler characteristic
𝜒(= 𝜐(𝐺) − 𝜀(𝐺) + 𝜙(𝐺)) instead of the genera ℎ and 𝑘; the

relations are 𝜒 = 2−2ℎ and 𝜒 = 2−𝑘. To obtain the best result
fromTheorem 103, onewants ℎ and 𝑘 as small as possible; this
is equivalent to having 𝜒 as large as possible.

According toTheorem 103, if𝐺 is planar (ℎ = 0, 𝜒 = 2) or
can be embedded on the real projective plane (𝑘 = 1, 𝜒 = 1),
then 𝑏(𝐺) ⩽ Δ(𝐺) + 2. In all other cases, Huang [55] had the
following improvement for Theorem 103; the proof is based
on the technique developed byCarlson-Develin andGagarin-
Zverovich and includes some elementary calculus as a new
ingredient, mainly the intermediate-value theorem and the
mean-value theorem.

Theorem 104 (Huang [55], 2012). Let 𝐺 be a graph embed-
dable on a surface whose Euler characteristic 𝜒 is as large as
possible. If 𝜒 ⩽ 0, then 𝑏(𝐺) ⩽ Δ(𝐺)+⌊𝑟⌋, where 𝑟 is the largest
real root of the following cubic equation in 𝑧:

𝑧
3

+ 2𝑧
2

+ (6𝜒 − 7) 𝑧 + 18𝜒 − 24 = 0. (37)

In addition, if 𝜒 decreases, then 𝑟 increases.

The following result is asymptotically equivalent to
Theorem 104.

Theorem 105 (Huang [55], 2012). Let 𝐺 be a graph embed-
dable on a surface whose Euler characteristic 𝜒 is as large as
possible. If 𝜒 ⩽ 0, then 𝑏(𝐺) < Δ(𝐺) + √12 − 6𝜒 + 1/2, or
equivalently, 𝑏(𝐺) ⩽ Δ(𝐺) + ⌈√12 − 6𝜒 − 1/2⌉.

Also, Gagarin andZverovich [54] indicated that the upper
bound in Theorem 103 can be improved for larger values of
the genera ℎ and 𝑘 by adjusting the proofs and stated the
following general conjecture.

Conjecture 106 (Gagarin and Zverovich [54], 2012). For a
connected graph G of orientable genus ℎ and nonorientable
genus 𝑘,

𝑏 (𝐺) ⩽ min {𝑐
ℎ
, 𝑐



𝑘
, Δ (𝐺) + 𝑜 (ℎ) , Δ (𝐺) + 𝑜 (𝑘)} , (38)

where 𝑐
ℎ
and 𝑐

𝑘
are constants depending, respectively, on the

orientable and nonorientable genera of 𝐺.

In the recent paper, Gagarin and Zverovich [56] provided
constant upper bounds for the bondage number of graphs on
topological surfaces, which can be used as the first estimation
for the constants 𝑐

ℎ
and 𝑐

𝑘
of Conjecture 106.

Theorem 107 (Gagarin and Zverovich [56], 2013). Let 𝐺 be
a connected graph of order 𝑛. If 𝐺 can be embedded on the
surface of its orientable or nonorientable genus of the Euler
characteristic 𝜒, then

(a) 𝜒 ⩾ 1 implies 𝑏(𝐺) ⩽ 10;
(b) 𝜒 ⩽ 0 and 𝑛 > −12𝜒 imply 𝑏(𝐺) ⩽ 11;
(c) 𝜒 ⩽ −1 and 𝑛 ⩽ −12𝜒 imply 𝑏(𝐺) ⩽ 11 +

3𝜒(√17 − 8𝜒 − 3)/(𝜒 − 1) = 11 + 𝑂(√−𝜒).

Theorem 79 shows that a connected planar triangle-free
graph 𝐺 has 𝑏(𝐺) ⩽ 6. The following result generalizes to it
all the other topological surfaces.
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Theorem 108 (Gagarin and Zverovich [56], 2013). Let 𝐺 be a
connected triangle-free graph of order 𝑛. If 𝐺 can be embedded
on the surface of its orientable or nonorientable genus of the
Euler characteristic 𝜒, then

(a) 𝜒 ⩾ 1 implies 𝑏(𝐺) ⩽ 6;
(b) 𝜒 ⩽ 0 and 𝑛 > −8𝜒 imply 𝑏(𝐺) ⩽ 7;
(c) 𝜒 ⩽ −1 and 𝑛 ⩽ −8𝜒 imply 𝑏(𝐺) ⩽ 7−4𝜒/(1+√2 − 𝜒).

In [56], the authors also explicitly improved upper
bounds in Theorem 103 and gave tight lower bounds for
the number of vertices of graphs 2-cell embeddable on
topological surfaces of a given genus.The interested reader is
referred to the original paper for details. The following result
is interesting although its proof is easy.

Theorem 109 (Samodivkin [57]). Let𝐺 be a graph with order
𝑛 and girth 𝑔. If 𝐺 is embeddable on a surface whose Euler
characteristic 𝜒 is as large as possible, then

𝑏 (𝐺) ⩽ 3 +
8

𝑔 − 2
−

4𝜒𝑔

𝑛 (𝑔 − 2)
. (39)

If 𝐺 is a planar graph with girth 𝑔 ⩾ 4 + 𝑖 for any 𝑖 ∈
{0, 1, 2}, then Theorem 109 leads to 𝑏(𝐺) ⩽ 6 − 𝑖, which is
the result inTheorem 79 obtained by Fischermann et al. [46].
Also, inmany cases the bound stated inTheorem 109 is better
than those given byTheorems 103 and 105.

8. Conditional Bondage Numbers

Since the concept of the bondage number is based upon the
domination, all sorts of dominations, which are variations
of the normal domination by adding restricted conditions
to the normal dominating set, can develop a new “bondage
number” as long as a variation of domination number is
given. In this section, we survey results on the bondage
number under some restricted conditions.

8.1. Total Bondage Numbers. A dominating set 𝑆 of a graph
𝐺 without isolated vertices is called total if the subgraph
induced by 𝑆 contains no isolated vertices. The minimum
cardinality of a total dominating set is called the total
domination number of 𝐺 and denoted by 𝛾

𝑇
(𝐺). It is clear

that 𝛾(𝐺) ⩽ 𝛾
𝑇
(𝐺) ⩽ 2𝛾(𝐺) for any graph 𝐺 without isolated

vertices.
The total domination in graphs was introduced by Cock-

ayne et al. [58] in 1980. Pfaff et al. [59, 60] in 1983 showed
that the problem determining total domination number for
general graphs is NP-complete, even for bipartite graphs and
chordal graphs. Even now, total domination in graphs has
been extensively studied in the literature. In 2009, Henning
[61] gave a survey of selected recent results on total domina-
tion in graphs.

The total bondage number of 𝐺, denoted by 𝑏
𝑇
(𝐺), is the

smallest cardinality of a subset 𝐵 ⊆ 𝐸(𝐺) with the property
that𝐺−𝐵 contains no isolated vertices and 𝛾

𝑇
(𝐺−𝐵) > 𝛾

𝑇
(𝐺).

From definition, 𝑏
𝑇
(𝐺)may not exist for some graphs, for

example,𝐺 = 𝐾
1,𝑛
. We put 𝑏

𝑇
(𝐺) = ∞ if 𝑏

𝑇
(𝐺) does not exist.

It is easy to see that 𝑏
𝑇
(𝐺) is finite for any connected graph 𝐺

other than 𝐾
1
, 𝐾

2
, 𝐾

3
, and 𝐾

1,𝑛
. In fact, for such a graph 𝐺,

since there is a path of length 3 in 𝐺, we can find 𝐵
1
⊆ 𝐸(𝐺)

such that 𝐺 − 𝐵
1
is a spanning tree 𝑇 of 𝐺, containing a path

of length 3. So 𝛾
𝑇
(𝑇) = 𝛾

𝑇
(𝐺−𝐵

1
) ⩾ 𝛾

𝑇
(𝐺). For the tree𝑇, we

find 𝐵
2
⊆ 𝐸(𝑇) such that 𝛾

𝑇
(𝑇 − 𝐵

2
) > 𝛾

𝑇
(𝑇) ⩾ 𝛾

𝑇
(𝐺). Thus,

we have 𝛾
𝑇
(𝐺−𝐵

2
−𝐵

1
) > 𝛾

𝑇
(𝐺), and so 𝑏

𝑇
(𝐺) ⩽ |𝐵

1
|+|𝐵

2
|. In

the following discussion, we always assume that 𝑏
𝑇
(𝐺) exists

when a graph 𝐺 is mentioned.
In 1991, Kulli and Patwari [62] first studied the total

bondage number of a graph and calculated the exact values
of 𝑏

𝑇
(𝐺) for some standard graphs.

Theorem 110 (Kulli and Patwari [62], 1991). For 𝑛 ⩾ 4,

𝑏
𝑇
(𝐶

𝑛
) = {

3 𝑖𝑓 𝑛 ≡ 2 (mod 4) ,
2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏
𝑇
(𝑃

𝑛
) = {

2 𝑖𝑓 𝑛 ≡ 2 (mod 4) ,
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏
𝑇
(𝐾

𝑚,𝑛
) = 𝑚 𝑤𝑖𝑡ℎ 2 ⩽ 𝑚 ⩽ 𝑛,

𝑏
𝑇
(𝐾

𝑛
) = {

4 𝑓𝑜𝑟 𝑛 = 4,

2𝑛 − 5 𝑓𝑜𝑟 𝑛 ⩾ 5.

(40)

Recently, Hu et al. [63] have obtained some results on the
total bondage number of the Cartesian product𝑃

𝑚
×𝑃

𝑛
of two

paths 𝑃
𝑚
and 𝑃

𝑛
.

Theorem 111 (Hu et al. [63], 2012). For the Cartesian product
𝑃
𝑚
× 𝑃

𝑛
of two paths 𝑃

𝑚
and 𝑃

𝑛
,

𝑏
𝑇
(𝑃

2
× 𝑃

𝑛
) =

{{

{{

{

1 𝑖𝑓 𝑛 ≡ 0 (mod 3) ,
2 𝑖𝑓 𝑛 ≡ 2 (mod 3) ,
3 𝑖𝑓 𝑛 ≡ 1 (mod 3) ,

𝑏
𝑇
(𝑃

3
× 𝑃

𝑛
) = 1,

𝑏
𝑇
(𝑃

4
× 𝑃

𝑛
)

{{{{

{{{{

{

= 1 𝑖𝑓 𝑛 ≡ 1 (mod 5) ,
= 2 𝑖𝑓 𝑛 ≡ 4 (mod 5) ,
⩽ 3 𝑖𝑓 𝑛 ≡ 2 (mod 5) ,
⩽ 4 𝑖𝑓 𝑛 ≡ 0, 3 (mod 5) .

(41)

Generalized Petersen graphs are an important class of
commonly used interconnection networks and have been
studied recently. By constructing a family of minimum total
dominating sets, Cao et al. [64] determined the total bondage
number of the generalized Petersen graphs.

FromTheorem 6, we know that 𝑏(𝑇) ⩽ 2 for a nontrivial
tree 𝑇. But given any positive integer 𝑘, Sridharan et al. [65]
constructed a tree 𝑇 for which 𝑏

𝑇
(𝑇) = 𝑘. Let𝐻

𝑘
be the tree

obtained from a star𝐾
1,𝑘+1

by subdividing 𝑘 edges twice. The
tree 𝐻

7
is shown in Figure 6. It can be easily verified that

𝑏
𝑇
(𝐻

𝑘
) = 𝑘. This fact can be stated as the following theorem.

Theorem 112 (Sridharan et al. [65], 2007). For any positive
integer 𝑘, there exists a tree 𝑇 with 𝑏

𝑇
(𝑇) = 𝑘.
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Figure 6:𝐻
7
.

Combining Theorem 1 with Theorem 112, we have what
follows.

Corollary 113 (Sridharan et al. [65], 2007). The bondage
number and the total bondage number are unrelated, even for
trees.

However, Sridharan et al. [65] gave an upper bound on
the total bondage number of a tree in terms of its maximum
degree. For any tree 𝑇 of order 𝑛, if 𝑇 ̸=𝐾

1,𝑛−1
, then 𝑏

𝑇
(𝑇) =

min{Δ(𝑇), (1/3)(𝑛 − 1)}. Rad and Raczek [66] improved this
upper bound and gave a constructive characterization of a
certain class of trees attaching the upper bound.

Theorem 114 (Rad and Raczek [66], 2011). 𝑏
𝑇
(𝑇) ⩽ Δ(𝑇) − 1

for any tree 𝑇 with maximum degree at least three.

In general, the decision problem for 𝑏
𝑇
(𝐺) is NP-complete

for any graph 𝐺. We state the decision problem for the total
bondage as follows.

Problem 3. Consider the decision problem:
Total Bondage Problem
Instance: a graph 𝐺 and a positive integer 𝑏.
Question: is 𝑏

𝑇
(𝐺) ⩽ 𝑏?

Theorem 115 (Hu and Xu [16], 2012). The total bondage
problem is NP-complete.

Consequently, in view of its computational hardness,
it is significative to establish some sharp bounds on the
total bondage number of a graph in terms of other graphic
parameters. In 1991, Kulli and Patwari [62] showed that
𝑏
𝑇
(𝐺) ⩽ 2𝑛 − 5 for any graph 𝐺 with order 𝑛 ⩾ 5. Sridharan

et al. [65] improved this result as follows.

Theorem 116 (Sridharan et al. [65], 2007). For any graph 𝐺
with order 𝑛, if 𝑛 ⩾ 5, then

𝑏
𝑇
(𝐺) ⩽

{{{

{{{

{

1

3
(𝑛 − 1) 𝑖𝑓 𝐺 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑛𝑜 𝑐𝑦𝑐𝑙𝑒𝑠,

𝑛 − 1 𝑖𝑓 𝑔 (𝐺) ⩾ 5,

𝑛 − 2 𝑖𝑓 𝑔 (𝐺) = 4.

(42)

Rad and Raczek [66] also established some upper
bounds on 𝑏

𝑇
(𝐺) for a general graph 𝐺. In particular, they

gave an upper bound on 𝑏
𝑇
(𝐺) in terms of the girth of

𝐺.

Theorem 117 (Rad and Raczek [66], 2011). 𝑏
𝑇
(𝐺)⩽4Δ(𝐺) − 5

for any graph 𝐺 with 𝑔(𝐺) ⩾ 4.

8.2. Paired Bondage Numbers. A dominating set 𝑆 of 𝐺 is
called to be paired if the subgraph induced by 𝑆 contains
a perfect matching. The paired domination number of 𝐺,
denoted by 𝛾

𝑃
(𝐺), is the minimum cardinality of a paired

dominating set of 𝐺. Clearly, 𝛾
𝑇
(𝐺) ⩽ 𝛾

𝑃
(𝐺) for every

connected graph 𝐺 with order at least two, where 𝛾
𝑇
(𝐺) is

the total domination number of 𝐺, and 𝛾
𝑃
(𝐺) ⩽ 2𝛾(𝐺) for

any graph𝐺without isolated vertices. Paired domination was
introduced by Haynes and Slater [67, 68] and further studied
in [69–72].

The paired bondage number of 𝐺 with 𝛿(𝐺) ⩾ 1, denoted
by 𝑏P(𝐺), is the minimum cardinality among all sets of edges
𝐵 ⊆ 𝐸 such that 𝛿(𝐺 − 𝐵) ⩾ 1 and 𝛾

𝑃
(𝐺 − 𝐵) > 𝛾

𝑃
(𝐺).

The concept of the paired bondage number was first
proposed by Raczek [73] in 2008.The following observations
follow immediately from the definition of the paired bondage
number.

Observation 2. Let 𝐺 be a graph with 𝛿(𝐺) ⩾ 1.

(a) If 𝐻 is a subgraph of 𝐺 such that 𝛿(𝐻) ⩾ 1, then
𝑏
𝑃
(𝐻) ⩽ 𝑏

𝑃
(𝐺).

(b) If 𝐻 is a subgraph of 𝐺 such that 𝑏
𝑃
(𝐻) = 1 and 𝑘

is the number of edges removed to form𝐻, then 1 ⩽
𝑏
𝑃
(𝐺) ⩽ 𝑘 + 1.

(c) If 𝑥𝑦 ∈ 𝐸(𝐺) such that 𝑑
𝐺
(𝑥), 𝑑

𝐺
(𝑦) > 1, and 𝑥𝑦

belongs to each perfect matching of each minimum
paired dominating set of 𝐺, then 𝑏

𝑃
(𝐺) = 1.

Based on these observations, 𝑏
𝑃
(𝑃

𝑛
) ⩽ 2. In fact, the

paired bondage number of a path has been determined.

Theorem 118 (Raczek [73], 2008). For any positive integer 𝑘,
if 𝑛 ⩾ 2, then

𝑏
𝑃
(𝑃

𝑛
) =

{{

{{

{

0 𝑖𝑓 𝑛 = 2, 3, 𝑜𝑟 5,

1 𝑖𝑓 𝑛 = 4𝑘, 4𝑘 + 3, 𝑜𝑟 4𝑘 + 6,

2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(43)

For a cycle 𝐶
𝑛
of order 𝑛 ⩾ 3, since 𝛾

𝑃
(𝐶

𝑛
) = 𝛾

𝑃
(𝑃

𝑛
), from

Theorem 118 the following result holds immediately.

Corollary 119 (Raczek [73], 2008). For any positive integer 𝑘,
if 𝑛 ⩾ 3, then

𝑏
𝑃
(𝐶

𝑛
) =

{{

{{

{

0 𝑖𝑓 𝑛 = 3 𝑜𝑟 5,

2 𝑖𝑓 𝑛 = 4𝑘, 4𝑘 + 3, 𝑜𝑟 4𝑘 + 6,

3 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(44)

A wheel 𝑊
𝑛
, where 𝑛 ⩾ 4, is a graph with 𝑛 vertices,

formed by connecting a single vertex to all vertices of a cycle
𝐶
𝑛−1

. Of course 𝛾
𝑃
(𝑊

𝑛
) = 2.
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...
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𝑘

Figure 7: A tree 𝑇 with 𝑏
𝑃
(𝑇) = 𝑘.

Theorem 120 (Raczek [73], 2008). For positive integers 𝑛 and
𝑚,

𝑏
𝑃
(𝐾

𝑚,𝑛
) = 𝑚 𝑓𝑜𝑟 1 < 𝑚 ⩽ 𝑛,

𝑏
𝑃
(𝑊

𝑛
) =

{{

{{

{

4 𝑖𝑓 𝑛 = 4,

3 𝑖𝑓 𝑛 = 5,

2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(45)

Theorem 16 shows that if 𝑇 is a nontrivial tree, then
𝑏(𝑇) ⩽ 2. However, no similar result exists for paired
bondage. For any nonnegative integer 𝑘, let 𝑇

𝑘
be a tree

obtained by subdividing all but one edge of a star 𝐾
1,𝑘+1

(as
shown in Figure 7). It is easy to see that 𝑏

𝑃
(𝑇

𝑘
) = 𝑘. We

state this fact as the following theorem, which is similar to
Theorem 112.

Theorem121 (Raczek [73], 2008). For any nonnegative integer
𝑘, there exists a tree 𝑇 with 𝑏

𝑃
(𝑇) = 𝑘.

Consider the tree defined in Figure 5 for 𝑘 = 3. Then
𝑏(𝑇

3
) ⩽ 2 and 𝑏

𝑃
(𝑇

3
) = 3. On the other hand, 𝑏(𝑃

4
) = 2

and 𝑏
𝑃
(𝑃

4
) = 1. Thus, we have what follows, which is similar

to Corollary 113.

Corollary 122. The bondage number and the paired bondage
number are unrelated, even for trees.

A constructive characterization of trees with 𝑏(𝑇) = 2
is given by Hartnell and Rall in [12]. Raczek [73] provided
a constructive characterization of trees with 𝑏

𝑃
(𝑇) = 0. In

order to state the characterization, we define a labeling and
three simple operations on a tree𝑇. Let 𝑦 ∈ 𝑉(𝑇) and let ℓ(𝑦)
be the label assigned to 𝑦.

Operation T
1
. If ℓ(𝑦) = 𝐵, add a vertex 𝑥 and the

edge 𝑦𝑥, and let ℓ(𝑥) = 𝐴.
OperationT

2
. If ℓ(𝑦) = 𝐶, add a path (𝑥

1
, 𝑥

2
) and the

edge 𝑦𝑥
1
, and let ℓ(𝑥

1
) = 𝐵, ℓ(𝑥

2
) = 𝐴.

Operation T
3
. If ℓ(𝑦) = 𝐵, add a path (𝑥

1
, 𝑥

2
, 𝑥

3
)

and the edge 𝑦𝑥
1
, and let ℓ(𝑥

1
) = 𝐶, ℓ(𝑥

2
) = 𝐵, and

ℓ(𝑥
3
) = 𝐴.

Let 𝑃
2
= (𝑢, V) with ℓ(𝑢) = 𝐴 and ℓ(V) = 𝐵. Let T be

the class of all trees obtained from the labeled 𝑃
2
by a finite

sequence of operationsT
1
, T

2
, T

3
.

A tree 𝑇 in Figure 8 belongs to the familyT.
Raczek [73] obtained the following characterization of all

trees 𝑇 with 𝑏
𝑃
(𝑇) = 0.

𝐴

𝐴

𝐴

𝐴

𝐴

𝐵 𝐶

𝐵 𝐶 𝐵

𝐵
𝐴

Figure 8: A tree 𝑇 belong to the familyT.

Theorem 123 (Raczek [73], 2008). For a tree 𝑇, 𝑏
𝑃
(𝑇) = 0 if

and only if 𝑇 is inT.

We state the decision problem for the paired bondage as
follows.

Problem 4. Consider the decision problem:

Paired Bondage Problem
Instance: a graph 𝐺 and a positive integer 𝑏.
Question: is 𝑏

𝑃
(𝐺) ⩽ 𝑏?

Conjecture 124. The paired bondage problem is NP-complete.

8.3. Restrained Bondage Numbers. A dominating set 𝑆 of 𝐺 is
called to be restrained if the subgraph induced by 𝑆 contains
no isolated vertices, where 𝑆 = 𝑉(𝐺) \ 𝑆. The restrained
domination number of 𝐺, denoted by 𝛾

𝑅
(𝐺), is the smallest

cardinality of a restrained dominating set of 𝐺. It is clear that
𝛾
𝑅
(𝐺) exists and 𝛾(𝐺) ⩽ 𝛾

𝑅
(𝐺) for any nonempty graph 𝐺.

The concept of restrained domination was introduced
by Telle and Proskurowski [74] in 1997, albeit indirectly, as
a vertex partitioning problem. Concerning the study of the
restrained domination numbers, the reader is referred to [74–
79].

In 2008, Hattingh and Plummer [80] defined the
restrained bondage number 𝑏R(𝐺) of a nonempty graph 𝐺 to
be the minimum cardinality among all subsets 𝐵 ⊆ 𝐸(𝐺) for
which 𝛾

𝑅
(𝐺 − 𝐵) > 𝛾

𝑅
(𝐺).

For some simple graphs, their restrained domination
numbers can be easily determined, and so restrained bondage
numbers have been also determined. For example, it is clear
that 𝛾

𝑅
(𝐾

𝑛
) = 1. Domke et al. [77] showed that 𝛾

𝑅
(𝐶

𝑛
) =

𝑛 − 2⌊𝑛/3⌋ for 𝑛 ⩾ 3, and 𝛾
𝑅
(𝑃

𝑛
) = 𝑛 − 2⌊(𝑛 − 1)/3⌋ for 𝑛 ⩾ 1.

Using these results, Hattingh and Plummer [80] obtained the
restricted bondage numbers for𝐾

𝑛
, 𝐶

𝑛
, 𝑃

𝑛
, and𝐺 = 𝐾

𝑛
1
,𝑛
2
,...,𝑛
𝑡

as follows.

Theorem 125 (Hattingh and Plummer [80], 2008). For 𝑛 ⩾ 3,

𝑏R (𝐾𝑛
) =
{

{

{

1 𝑖𝑓 𝑛 = 3,

⌈
𝑛

2
⌉ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏R (𝐶𝑛
) = {

1 𝑖𝑓 𝑛 ≡ 0 (mod 3) ,
2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏R (𝑃𝑛) = 1, 𝑛 ⩾ 4,
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𝑏R (𝐺)

=

{{{{{{{{

{{{{{{{{

{

⌈
𝑚

2
⌉ 𝑖𝑓 𝑛

𝑚
= 1 𝑎𝑛𝑑 𝑛

𝑚+1
⩾ 2 (1 ⩽ 𝑚 < 𝑡) ,

2𝑡 − 2 𝑖𝑓 𝑛
1
= 𝑛

2
= ⋅ ⋅ ⋅ = 𝑛

𝑡
= 2 (𝑡 ⩾ 2) ,

2 𝑖𝑓 𝑛
1
= 2 𝑎𝑛𝑑 𝑛

2
⩾ 3 (𝑡 = 2) ,

𝑡−1

∑

𝑖=1

𝑛
𝑖
− 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(46)

Theorem 126 (Hattingh and Plummer [80], 2008). For a tree
𝑇 of order 𝑛 (⩾ 4), 𝑇 ≇ 𝐾

1,𝑛−1
if and only if 𝑏R(𝑇) = 1.

Theorem 126 shows that the restrained bondage number
of a tree can be computed in constant time. However, the
decision problem for 𝑏R(𝐺) is NP-complete even for bipartite
graphs.

Problem 5. Consider the decision problem:

Restrained Bondage Problem

Instance: a graph 𝐺 and a positive integer 𝑏.

Question: is 𝑏R(𝐺) ⩽ 𝑏?

Theorem 127 (Hattingh and Plummer [80], 2008). The
restrained bondage problem is NP-complete, even for bipartite
graphs.

Consequently, in view of its computational hardness,
it is significative to establish some sharp bounds on the
restrained bondage number of a graph in terms of other
graphic parameters.

Theorem 128 (Hattingh and Plummer [80], 2008). For any
graph 𝐺 with 𝛿(𝐺) ⩾ 2,

𝑏R (𝐺) ⩽ min
𝑥𝑦∈𝐸(𝐺)

{𝑑
𝐺
(𝑥) + 𝑑

𝐺
(𝑦) − 2} . (47)

Corollary 129. 𝑏R(𝐺) ⩽ Δ(𝐺)+𝛿(𝐺)−2 for any graph𝐺 with
𝛿(𝐺) ⩾ 2.

Notice that the bounds stated in Theorem 128 and
Corollary 129 are sharp. Indeed the class of cycles whose
orders are congruent to 1, 2 (mod 3) have a restrained bondage
number achieving these bounds (see Theorem 125).

Theorem 128 is an analogue of Theorem 14. A quite
natural problem is whether or not, for restricted bondage
number, there are analogues of Theorem 16, Theorem 18,
Theorem 29, and so on. Indeed, we should consider all results
for the bondage number whether or not there are analogues
for restricted bondage number.

Theorem 130 (Hattingh and Plummer [80], 2008). For any
graph 𝐺 with 𝛾

𝑅
(𝐺) = 2,

𝑏R (𝐺) ⩽ Δ (𝐺) + 1. (48)

We now consider the relation between 𝑏
𝑅
(𝐺) and 𝑏(𝐺).

Theorem 131 (Hattingh and Plummer [80], 2008). If 𝛾
𝑅
(𝐺) =

𝛾(𝐺) for some graph 𝐺, then 𝑏R(𝐺) ⩽ 𝑏(𝐺).

Corollary 129 and Theorem 131 provide a possibility to
attack Conjecture 73 by characterizing planar graphs with
𝛾
𝑅
= 𝛾 and 𝑏R = 𝑏 when 3 ⩽ Δ ⩽ 6.
However, we do not have 𝑏R(𝐺) = 𝑏(𝐺) for any graph

𝐺 even if 𝛾
𝑅
(𝐺) = 𝛾(𝐺). Observe that 𝛾

𝑅
(𝐾

3
) = 𝛾(𝐾

3
), yet

𝑏
𝑅
(𝐾

3
) = 1 and 𝑏(𝐾

3
) = 2. We still may not claim that

𝑏
𝑅
(𝐺) = 𝑏(𝐺) even in the case that every 𝛾-set is a 𝛾

𝑅
-set.

The example 𝐾
3
again demonstrates this.

Theorem 132 (Hattingh and Plummer [80], 2008). There is
an infinite class of graphs inwhich each graph𝐺 satisfies 𝑏(𝐺) <
𝑏R(𝐺).

In fact, such an infinite class of graphs can be obtained as
follows. Let𝐻 be a connected graph, BC(𝐻) a graph obtained
from 𝐻 by attaching ℓ (⩾ 2) vertices of degree 1 to each
vertex in 𝐻, and B = {𝐺 : 𝐺 = BC(𝐻) for some graph 𝐻
such that 𝛿(𝐻) ⩾ 2}. By Theorem 3, we can easily check that
𝑏(𝐺) = 1 < 2 ⩽ min{𝛿(𝐻), ℓ} = 𝑏R(𝐺) for any 𝐺 ∈ B.
Moreover, there exists a graph 𝐺 ∈ B such that 𝑏R(𝐺) can
be much larger than 𝑏(𝐺), which is stated as the following
theorem.

Theorem 133 (Hattingh and Plummer [80], 2008). For each
positive integer 𝑘, there is a graph𝐺 such that 𝑘 = 𝑏R(𝐺)−𝑏(𝐺).

Combining Theorem 133 with Theorem 132, we have the
following corollary.

Corollary 134. The bondage number and the restrained
bondage number are unrelated.

Very recently, Jafari Rad et al. [81] have considered
the total restrained bondage in graphs based on both total
dominating sets and restrained dominating sets and obtained
several properties, exact values, and bounds for the total
restrained bondage number of a graph.

A restrained dominating set 𝑆 of a graph 𝐺 without iso-
lated vertices is called to be a total restrained dominating set
if 𝑆 is a total dominating set. The total restrained domination
number of𝐺, denoted by 𝛾TR (𝐺), is theminimum cardinality
of a total restrained dominating set of 𝐺. For references
on this domination in graphs, see [3, 61, 82–85]. The total
restrained bondage number 𝑏TR (𝐺) of a graph 𝐺 with no
isolated vertex, is the cardinality of a smallest set of edges 𝐵 ⊆
𝐸(𝐺) for which𝐺−𝐵 has no isolated vertex and 𝛾TR (𝐺−𝐵) >
𝛾TR (𝐺). In the case that there is no such subset 𝐵, we define
𝑏TR (𝐺) = ∞.

Ma et al. [84] determined that 𝛾TR (𝑃𝑛) = 𝑛−2⌊(𝑛−2)/4⌋
for 𝑛 ⩾ 3, 𝛾TR (𝐶𝑛

) = 𝑛 − 2⌊𝑛/4⌋ for 𝑛 ⩾ 3, 𝛾TR (𝐾3
) =

3 and 𝛾TR (𝐾𝑛
) = 2 for 𝑛 ̸= 3, and 𝛾TR (𝐾1,𝑛

) = 1 + 𝑛

and 𝛾TR (𝐾𝑚,𝑛
) = 2 for 2 ⩽ 𝑚 ⩽ 𝑛. According to these

results, Jafari Rad et al. [81] determined the exact values
of total restrained bondage numbers for the corresponding
graphs.
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Theorem 135 (Jafari Rad et al. [81]). For an integer 𝑛,

𝑏TR (𝑃𝑛) = {
∞ 𝑖𝑓 2 ⩽ 𝑛 ⩽ 5,

1, 𝑖𝑓 𝑛 ⩾ 5

𝑏TR (𝐶𝑛
) =

{{

{{

{

∞ 𝑖𝑓 𝑛 = 3,

1, 𝑖𝑓 3 < 𝑛, 𝑛 ≡ 0, 1 (mod 4)
2, 𝑖𝑓 3 < 𝑛, 𝑛 ≡ 2, 3 (mod 4)

𝑏TR (𝑊𝑛
) = 2 𝑓𝑜𝑟 𝑛 ⩾ 6,

𝑏TR (𝐾𝑛
) = 𝑛 − 1 𝑓𝑜𝑟 𝑛 ⩾ 4,

𝑏TR (𝐾𝑚,𝑛
) = 𝑚 − 1 𝑓𝑜𝑟 2 ⩽ 𝑚 ⩽ 𝑛.

(49)

𝑏TR (𝐾𝑛
) = 𝑛−1 shows the fact that for any integer 𝑛 ⩾ 3 there

exists a connected graph, namely,𝐾
𝑛+1

such that 𝑏TR (𝐾𝑛+1
) =

𝑛; that is, the total restrained bondage number is unbounded
from the above.

A vertex is said to be a support vertex if it is adjacent to
a vertex of degree one. Let A be the family of all connected
graphs such that𝐺 belongs toA if and only if every edge of𝐺
is incident to a support vertex or 𝐺 is a cycle of length three.

Proposition 136 (Cyman and Raczek [82], 2006). For a
connected graph𝐺 of order 𝑛, 𝛾TR (𝐺) = 𝑛 if and only if𝐺 ∈ A.

Hence, if 𝐺 ∈ A, then the removal of any subset of edges
of𝐺 cannot increase the total restrained domination number
of 𝐺 and thus 𝑏TR (𝐺) = ∞. When 𝐺 ∉ A, a result similar to
Theorem 6 is obtained.

Theorem 137 (Jafari Rad et al. [81]). For any tree 𝑇 ∉ A,
𝑏TR (𝑇) ⩽ 2. This bound is sharp.

In the samepaper, the authors provided a characterization
for trees 𝑇 ∉ A with 𝑏TR (𝑇) = 1 or 2. The following result is
similar to Observation 1.

Observation 3 (Jafari Rad et al. [81]). If 𝑘 edges can be
removed from a graph 𝐺 to obtain a graph 𝐻 without an
isolated vertex and with 𝑏TR (𝐻) = 𝑡, then 𝑏TR (𝐺) ⩽ 𝑘 + 𝑡.

ApplyingTheorem 137 andObservation 3, Jafari Rad et al.
characterized all connected graphs 𝐺 with 𝑏TR (𝐺) = ∞.

Theorem 138 (Jafari Rad et al. [81]). For a connected graph𝐺,
𝑏TR (𝐺) = ∞ if and only if 𝐺 ∈ A.

8.4. Other Conditional Bondage Numbers. A subset 𝐼 ⊆ 𝑉(𝐺)
is called an independent set if no two vertices in 𝐼 are adjacent
in 𝐺. The maximum cardinality among all independent sets
is called the independence number of 𝐺, denoted by 𝛼(𝐺).

A dominating set 𝑆 of a graph 𝐺 is called to be inde-
pendent if 𝑆 is an independent set of 𝐺. The minimum
cardinality among all independent dominating set is called
the independence domination number of 𝐺 and denoted by
𝛾
𝐼
(𝐺).

Since an independent dominating set is not only a
dominating set but also an independent set, 𝛾(𝐺) ⩽ 𝛾

𝐼
(𝐺) ⩽

𝛼(𝐺) for any graph 𝐺.
It is clear that a maximal independent set is certainly a

dominating set. Thus, an independent set is maximal if and
only if it is an independent dominating set, and so 𝛾

𝐼
(𝐺) is the

minimum cardinality among all maximal independent sets
of 𝐺. This graph-theoretical invariant has been well studied
in the literature; see, for example, Haynes et al. [3] for early
results, Goddard and Henning [86] for recent results on
independent domination in graphs.

In 2003, Zhang et al. [87] defined the independence
bondage number 𝑏

𝐼
(𝐺) of a nonempty graph 𝐺 to be the

minimum cardinality among all subsets 𝐵 ⊆ 𝐸(𝐺) for which
𝛾
𝐼
(𝐺 − 𝐵) > 𝛾

𝐼
(𝐺). For some ordinary graphs, their indepen-

dence domination numbers can be easily determined, and so
independence bondage numbers have been also determined.
Clearly, 𝑏

𝐼
(𝐾

𝑛
) = 1 if 𝑛 ⩾ 2.

Theorem 139 (Zhang et al. [87], 2003). For any integer 𝑛 ⩾ 4,

𝑏
𝐼
(𝐶

𝑛
) = {

1 𝑖𝑓 𝑛 ≡ 1 (mod 2) ,
2 𝑖𝑓 𝑛 ≡ 0 (mod 2) ,

𝑏
𝐼
(𝑃

𝑛
) = {

1 𝑖𝑓 𝑛 ≡ 0 (mod 2) ,
2 𝑖𝑓 𝑛 ≡ 1 (mod 2) ,

𝑏
𝐼
(𝐾

𝑚,𝑛
) = 𝑛 𝑓𝑜𝑟 𝑚 ⩽ 𝑛.

(50)

Apart from the above-mentioned results, as far as we find
no other results on the independence bondage number in the
present literature, we never knew much of any result on this
parameter for a tree.

A subset 𝑆 of 𝑉(𝐺) is called an equitable dominating
set if for every 𝑦 ∈ 𝑉(𝐺 − 𝑆) there exists a vertex 𝑥 ∈ 𝑆
such that 𝑥𝑦 ∈ 𝐸(𝐺) and |𝑑

𝐺
(𝑥) − 𝑑

𝐺
(𝑦)| ⩽ 1 proposed

by Dharmalingam [88]. The minimum cardinality of such a
dominating set is called the equitable domination number and
is denoted by 𝛾

𝐸
(𝐺). Deepak et al. [89] defined the equitable

bondage number 𝑏
𝐸
(𝐺) of a graph 𝐺 to be the cardinality of a

smallest set 𝐵 ⊆ 𝐸(𝐺) of edges for which 𝛾
𝐸
(𝐺 − 𝐵) > 𝛾

𝐸
(𝐺)

and determined 𝑏
𝐸
(𝐺) for some special graphs.

Theorem 140 (Deepak et al. [89], 2011). For any integer 𝑛 ⩾ 2,

𝑏
𝐸
(𝐾

𝑛
) = ⌈

𝑛

2
⌉ ,

𝑏
𝐸
(𝐾

𝑚,𝑛
) = 𝑚 𝑓𝑜𝑟 0 ⩽ 𝑛 − 𝑚 ⩽ 1,

𝑏
𝐸
(𝐶

𝑛
) = {

3 𝑖𝑓 𝑛 ≡ 1 (mod 3)
2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏
𝐸
(𝑃

𝑛
) = {

2 𝑖𝑓 𝑛 ≡ 1 (mod 3)
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏
𝐸
(𝑇) ⩽ 2 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛𝑜𝑛𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑡𝑟𝑒𝑒 𝑇,

𝑏
𝐸
(𝐺) ⩽ 𝑛 − 1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝐺 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑛.

(51)
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As far as we know, there are no more results on the
equitable bondage number of graphs in the present literature.

There are other variations of the normal domination by
adding restricted conditions to the normal dominating set.
For example, the connected domination set of a graph𝐺, pro-
posed by Sampathkumar and Walikar [90], is a dominating
set 𝑆 such that the subgraph induced by 𝑆 is connected. The
problem of finding a minimum connected domination set in
a graph is equivalent to the problemof finding a spanning tree
withmaximumnumber of vertices of degree one [91], and has
some important applications in wireless networks [92]; thus,
it has received much research attention. However, for such
an important domination, there is no result on its bondage
number. We believe that the topic is of significance for future
research.

9. Generalized Bondage Numbers

There are various generalizations of the classical domination,
such as 𝑝-domination, distance domination, fractional dom-
ination, Roman domination, and rainbow domination. Every
such a generalization can lead to a corresponding bondage.
In this section, we introduce some of them.

9.1. 𝑝-Bondage Numbers. In 1985, Fink and Jacobson [93]
introduced the concept of 𝑝-domination. Let 𝑝 be a positive
integer. A subset 𝑆 of 𝑉(𝐺) is a 𝑝-dominating set of 𝐺 if
|𝑆 ∩ 𝑁

𝐺
(𝑦)| ⩾ 𝑝 for every 𝑦 ∈ 𝑆. The 𝑝-domination number

𝛾
𝑝
(𝐺) is the minimum cardinality among all 𝑝-dominating

sets of 𝐺. Any 𝑝-dominating set of 𝐺 with cardinality 𝛾
𝑝
(𝐺)

is called a 𝛾
𝑝
-set of 𝐺. Note that a 𝛾

1
-set is a classic minimum

dominating set. Notice that every graph has a 𝑝-dominating
set since the vertex-set𝑉(𝐺) is such a set.We also note that a 1-
dominating set is a dominating set, and so 𝛾(𝐺) = 𝛾

1
(𝐺). The

𝑝-domination number has received much research attention;
see a state-of-the-art survey article by Chellali et al. [94].

It is clear from definition that every 𝑝-dominating set
of a graph certainly contains all vertices of degree at most
𝑝 − 1. By this simple observation, to avoid the trivial case
occurrence, we always assume that Δ(𝐺) ⩾ 𝑝. For 𝑝 ⩾ 2, Lu
et al. [95] gave a constructive characterization of trees with
unique minimum 𝑝-dominating sets.

Recently, Lu and Xu [96] have introduced the concept
to the 𝑝-bondage number of 𝐺, denoted by 𝑏

𝑝
(𝐺), as the

minimum cardinality among all sets of edges 𝐵 ⊆ 𝐸(𝐺) such
that 𝛾

𝑝
(𝐺 − 𝐵) > 𝛾

𝑝
(𝐺). Clearly, 𝑏

1
(𝐺) = 𝑏(𝐺).

Lu and Xu [96] established a lower bound and an upper
bound on 𝑏

𝑝
(𝑇) for any integer 𝑝 ⩾ 2 and any tree 𝑇 with

Δ(𝑇) ⩾ 𝑝 and characterized all trees achieving the lower
bound and the upper bound, respectively.

Theorem 141 (Lu and Xu [96], 2011). For any integer 𝑝 ⩾ 2
and any tree 𝑇 with Δ(𝑇) ⩾ 𝑝,

1 ⩽ 𝑏
𝑝
(𝑇) ⩽ Δ (𝑇) − 𝑝 + 1. (52)

Let 𝑆 be a given subset of 𝑉(𝐺) and, for any 𝑥 ∈ 𝑆, let

𝑁
𝑝
(𝑥, 𝑆, 𝐺) = {𝑦 ∈ 𝑆 ∩ 𝑁

𝐺
(𝑥) :

𝑁𝐺
(𝑦) ∩ 𝑆

 = 𝑝} .

(53)

Then, all trees achieving the lower bound 1 can be character-
ized as follows.

Theorem 142 (Lu and Xu [96], 2011). Let 𝑇 be a tree with
Δ(𝑇) ⩾ 𝑝 ⩾ 2. Then 𝑏

𝑝
(𝑇) = 1 if and only if for any 𝛾

𝑝
-set

𝑆 of 𝑇 there exists an edge 𝑥𝑦 ∈ (𝑆, 𝑆) such that 𝑦 ∈ 𝑁
𝑝
(𝑥, 𝑆, 𝑇)

The notation 𝑆(𝑎, 𝑏) denotes a double star obtained by
adding an edge between the central vertices of two stars𝐾

1,𝑎−1

and𝐾
1,𝑏−1

. And the vertex with degree 𝑎 (resp., 𝑏) in 𝑆(𝑎, 𝑏) is
called the 𝐿-central vertex (resp., 𝑅-central vertex) of 𝑆(𝑎, 𝑏):

To characterize all trees attaining the upper bound given
in Theorem 141, we define three types of operations on a tree
𝑇 with Δ(𝑇) = Δ ⩾ 𝑝 + 1:

Type 1: attach a pendant edge to a vertex 𝑦with 𝑑
𝑇
(𝑦) ⩽ 𝑝−

2 in 𝑇.

Type 2: attach a star 𝐾
1,Δ−1

to a vertex 𝑦 of 𝑇 by joining its
central vertex to 𝑦, where 𝑦 in a 𝛾

𝑝
-set of 𝑇 and

𝑑
𝑇
(𝑦) ⩽ Δ − 1.

Type 3: attach a double star 𝑆(𝑝, Δ − 1) to a pendant vertex 𝑦
of 𝑇 by coinciding its 𝑅-central vertex with 𝑦, where
the unique neighbor of 𝑦 is in a 𝛾

𝑝
-set of 𝑇.

Let B = {𝑇: a tree obtained from 𝐾
1,Δ

or 𝑆(𝑝, Δ) by a
finite sequence of operations of Types 1, 2, and 3}.

Theorem 143 (Lu and Xu [96], 2011). A tree with the maxi-
mum Δ ⩾ 𝑝 + 1 has 𝑝-bondage number Δ − 𝑝 + 1 if and only
if it belongs toB.

Theorem 144 (Lu and Xu [97], 2012). Let 𝐺
𝑚,𝑛
= 𝑃

𝑚
× 𝑃

𝑛
.

Then

𝑏
2
(𝐺

2,𝑛
) = 1 𝑓𝑜𝑟 𝑛 ⩾ 2,

𝑏
2
(𝐺

3,𝑛
) = {

2 𝑖𝑓 𝑛 ≡ 1 (mod 3) ,
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

for 𝑛 ⩾ 2,

𝑏
2
(𝐺

4,𝑛
) = {

1 𝑖𝑓 𝑛 ≡ 3 (mod 4) ,
2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

for 𝑛 ⩾ 7.

(54)

Recently, Krzywkowski [98] has proposed the concept
of the nonisolating 2-bondage of a graph. The nonisolating
2-bondage number of a graph 𝐺, denoted by 𝑏

2
(𝐺), is the

minimum cardinality among all sets of edges 𝐵 ⊆ 𝐸(𝐺) such
that 𝐺 − 𝐵 has no isolated vertices and 𝛾

2
(𝐺 − 𝐵) > 𝛾

2
(𝐺). If

for every 𝐵 ⊆ 𝐸(𝐺), either 𝛾
2
(𝐺 − 𝐵) = 𝛾

2
(𝐺) or 𝐺 − 𝐵 has

isolated vertices, then define 𝑏
2
(𝐺) = 0, and say that 𝐺 is a 2-

nonisolatedly strongly stable graph. Krzywkowski presented
some basic properties of nonisolating 2-bondage in graphs,
showed that for every nonnegative integer 𝑘 there exists a
tree 𝑇 such 𝑏

2
(𝑇) = 𝑘, characterized all 2-non-isolatedly

strongly stable trees, and determined 𝑏
2
(𝐺) for several special

graphs.
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Theorem 145 (Krzywkowski [98], 2012). For any positive
integers 𝑛 and𝑚 with𝑚 ⩽ 𝑛,

𝑏


2
(𝐾

𝑛
) =
{

{

{

0 𝑖𝑓 𝑛 = 1, 2, 3

⌊
2𝑛

3
⌋ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏


2
(𝑃

𝑛
) = {

0 𝑖𝑓 𝑛 = 1, 2, 3

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏


2
(𝐶

𝑛
) =

{{

{{

{

0 𝑖𝑓 𝑛 = 3

1 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛

2 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

𝑏


2
(𝐾

𝑚,𝑛
) =

{{

{{

{

3 𝑖𝑓 𝑚 = 𝑛 = 3

1 𝑖𝑓 𝑚 = 𝑛 = 4

2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(55)

9.2. Distance Bondage Numbers. A subset 𝑆 of vertices of a
graph𝐺 is said to be a distance 𝑘-dominating set for𝐺 if every
vertex in 𝐺 not in 𝑆 is at distance at most 𝑘 from some vertex
of 𝑆. The minimum cardinality of all distance 𝑘-dominating
sets is called the distance 𝑘-domination number of 𝐺 and
denoted by 𝛾

𝑘
(𝐺) (do not confuse with the above-mentioned

𝛾
𝑝
(𝐺)!). When 𝑘 = 1, a distance 1-dominating set is a normal

dominating set, and so 𝛾
1
(𝐺) = 𝛾(𝐺) for any graph 𝐺. Thus,

the distance 𝑘-domination is a generalization of the classical
domination.

The relation between 𝛾
𝑘
and 𝛼

𝑘
(the 𝑘-independence

number, defined in Section 2.2) for a tree obtained by Meir
and Moon [14], who proved that 𝛾

𝑘
(𝑇) = 𝛼

2𝑘
(𝑇) for any tree

𝑇 (a special case for 𝑘 = 1 is stated in Proposition 10). The
further research results can be found in Henning et al. [99],
Tian and Xu [100–103], and Liu et al. [104].

In 1998, Hartnell et al. [15] defined the distance 𝑘-bondage
number of 𝐺, denoted by 𝑏

𝑘
(𝐺), to be the cardinality of a

smallest subset 𝐵 of edges of 𝐺 with the property that 𝛾
𝑘
(𝐺 −

𝐵) > 𝛾
𝑘
(𝐺). FromTheorem 6, it is clear that if𝑇 is a nontrivial

tree, then 1 ⩽ 𝑏
1
(𝑇) ⩽ 2. Hartnell et al. [15] generalized this

result to any integer 𝑘 ⩾ 1.

Theorem 146 (Hartnell et al. [15], 1998). For every nontrivial
tree 𝑇 and positive integer 𝑘, 1 ⩽ 𝑏

𝑘
(𝑇) ⩽ 2.

Hartnell et al. [15] and Topp and Vestergaard [13] also
characterized the trees having distance 𝑘-bondage number 2.
In particular, the class of trees for which 𝑏

1
(𝑇) = 2 are just

those which have a unique maximum 2-independent set (see
Theorem 11).

Since, when 𝑘 = 1, the distance 1-bondage number 𝑏
1
(𝐺)

is the classical bondage number 𝑏(𝐺), Theorem 12 gives the
NP-hardness of deciding the distance 𝑘-bondage number of
general graphs.

Theorem 147. Given a nonempty undirected graph 𝐺 and
positive integers 𝑘 and 𝑏 with 𝑏 ⩽ 𝜀(𝐺), determining wether
or not 𝑏

𝑘
(𝐺) ⩽ 𝑏 is NP-hard.

For a vertex 𝑥 in𝐺, the open 𝑘-neighborhood𝑁
𝑘
(𝑥) of 𝑥 is

defined as𝑁
𝑘
(𝑥) = {𝑦 ∈ 𝑉(𝐺) : 1 ⩽ 𝑑

𝐺
(𝑥, 𝑦) ≤ 𝑘}.The closed

𝑘-neighborhood𝑁
𝑘
[𝑥] of 𝑥 in 𝐺 is defined as𝑁

𝑘
(𝑥) ∪ {𝑥}. Let

Δ
𝑘
(𝐺) = max {𝑁𝑘

(𝑥)
 : for any 𝑥 ∈ 𝑉 (𝐺)} . (56)

Clearly, Δ
1
(𝐺) = Δ(𝐺). The 𝑘th power of a graph 𝐺 is the

graph𝐺𝑘 with vertex-set𝑉(𝐺𝑘

) = 𝑉(𝐺) and edge-set𝐸(𝐺𝑘

) =

{𝑥𝑦 : 1 ⩽ 𝑑
𝐺
(𝑥, 𝑦) ⩽ 𝑘}. The following lemma holds directly

from the definition of 𝐺𝑘.

Proposition 148 (Tian and Xu [101]). Δ(𝐺𝑘

) = Δ
𝑘
(𝐺) and

𝛾(𝐺
𝑘

) = 𝛾
𝑘
(𝐺) for any graph 𝐺 and each 𝑘 ⩾ 1.

A graph 𝐺 is 𝑘-distance domination-critical, or 𝛾
𝑘
-critical

for short, if 𝛾
𝑘
(𝐺 − 𝑥) < 𝛾

𝑘
(𝐺) for every vertex 𝑥 in 𝐺,

proposed by Henning et al. [105]

Proposition 149 (Tian and Xu [101]). For each 𝑘 ⩾ 1, a graph
𝐺 is 𝛾

𝑘
-critical if and only if 𝐺𝑘 is 𝛾

𝑘
-critical.

By the above facts, we suggest the following worthwhile
problem.

Problem 6. Can we generalize the results on the bondage for
𝐺 to 𝐺𝑘? In particular, do the following propositions hold?

(a) 𝑏(𝐺𝑘

) = 𝑏
𝑘
(𝐺) for any graph 𝐺 and each 𝑘 ⩾ 1.

(b) 𝑏(𝐺𝑘

) ⩽ Δ
𝑘
(𝐺) if 𝐺 is not 𝛾

𝑘
-critical.

Let 𝑘 and 𝑝 be positive integers. A subset 𝑆 of 𝑉(𝐺) is
defined to be a (𝑘, 𝑝)-dominating set of 𝐺 if, for any vertex
𝑥 ∈ 𝑆, |𝑁

𝑘
(𝑥) ∩ 𝑆| ⩾ 𝑝. The (𝑘, 𝑝)-domination number of

𝐺, denoted by 𝛾
𝑘,𝑝
(𝐺), is the minimum cardinality among

all (𝑘, 𝑝)-dominating sets of 𝐺. Clearly, for a graph 𝐺, a
(1, 1)-dominating set is a classical dominating set, a (𝑘, 1)-
dominating set is a distance 𝑘-dominating set, and a (1, 𝑝)-
dominating set is the above-mentioned 𝑝-dominating set.
That is, 𝛾

1,1
(𝐺) = 𝛾(𝐺), 𝛾

𝑘,1
(𝐺) = 𝛾

𝑘
(𝐺), and 𝛾

1,𝑝
(𝐺) = 𝛾

𝑝
(𝐺).

The concept of (𝑘, 𝑝)-domination in a graph 𝐺 is a gen-
eralized domination which combines distance 𝑘-domination
and 𝑝-domination in 𝐺. So, the investigation of (𝑘, 𝑝)-
domination of 𝐺 is more interesting and has received the
attention of many researchers; see, for example, [106–109].

More general, Li and Xu [110] proposed the concept of the
(ℓ, 𝑤)-domination number of a𝑤-connected graph. A subset
𝑆 of 𝑉(𝐺) is defined to be an (ℓ, 𝑤)-dominating set of 𝐺 if,
for any vertex 𝑥 ∈ 𝑆, there are 𝑤 internally disjoint paths
of length at most ℓ from 𝑥 to some vertex in 𝑆. The (ℓ, 𝑤)-
domination number of𝐺, denoted by 𝛾

ℓ,𝑤
(𝐺), is theminimum

cardinality among all (ℓ, 𝑤)-dominating sets of 𝐺. Clearly,
𝛾
𝑘,1
(𝐺) = 𝛾

𝑘
(𝐺) and 𝛾

1,𝑝
(𝐺) = 𝛾

𝑝
(𝐺).

It is quite natural to propose the concept of bondage num-
ber for (𝑘, 𝑝)-domination or (ℓ, 𝑤)-domination. However, as
far as we know, none has proposed this concept until today.
This is a worthwhile topic for further research.
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9.3. Fractional Bondage Numbers. If 𝜎 is a function mapping
the vertex-set 𝑉 into some set of real numbers, then for any
subset 𝑆 ⊆ 𝑉; let 𝜎(𝑆) = ∑

𝑥∈𝑆
𝜎(𝑥). Also let |𝜎| = 𝜎(𝑉).

A real-value function 𝜎 : 𝑉 → [0, 1] is a dominating
function of a graph 𝐺 if for every 𝑥 ∈ 𝑉(𝐺), 𝜎(𝑁

𝐺
[𝑥]) ⩾ 1.

Thus, if 𝑆 is a dominating set of 𝐺, 𝜎 is a function, where

𝜎 (𝑥) = {
1 if 𝑥 ∈ 𝑆,
0 otherwise,

(57)

then 𝜎 is a dominating function of𝐺. The fractional domina-
tion number of 𝐺, denoted by 𝛾

𝐹
(𝐺), is defined as follows.

𝛾
𝐹
(𝐺) = min {|𝜎| : 𝜎 is a domination function of 𝐺} .

(58)

The 𝛾
𝐹
-bondage number of 𝐺, denoted by 𝑏

𝐹
(𝐺), is

defined as the minimum cardinality of a subset 𝐵 ⊆ 𝐸 whose
removal results in 𝛾

𝐹
(𝐺 − 𝐵) > 𝛾

𝐹
(𝐺).

Hedetniemi et al. [111] are the first to study fractional
domination although Farber [112] introduced the idea indi-
rectly. The concept of the fractional domination number
was proposed by Domke and Laskar [113] in 1997. The
fractional domination numbers for some ordinary graphs are
determined.

Proposition 150 (Domke et al. [114], 1998; Domke and Laskar
[113], 1997). (a) If 𝐺 is a 𝑘-regular graph with order 𝑛, then
𝛾
𝐹
(𝐺) = 𝑛/𝑘 + 1;
(b) 𝛾

𝐹
(𝐶

𝑛
) = 𝑛/3, 𝛾

𝐹
(𝑃

𝑛
) = ⌈𝑛/3⌉, 𝛾

𝐹
(𝐾

𝑛
) = 1;

(c) 𝛾
𝐹
(𝐺) = 1 if and only if Δ(𝐺) = 𝑛 − 1;

(d) 𝛾
𝐹
(𝑇) = 𝛾(𝑇) for any tree 𝑇;

(e) 𝛾
𝐹
(𝐾

𝑛,𝑚
) = (𝑛(𝑚 + 1) + 𝑚(𝑛 + 1))/(𝑛𝑚 − 1), where

max{𝑛,𝑚} > 1.

The assertions (a)–(d) are due to Domke et al. [114] and
the assertion (e) is due to Domke and Laskar [113]. According
to these results, Domke and Laskar [113] determined the 𝛾

𝐹
-

bondage numbers for these graphs.

Theorem 151 (Domke and Laskar [113], 1997). 𝑏
𝐹
(𝐾

𝑛
) =

⌈𝑛/2⌉; 𝑏
𝐹
(𝐾

𝑛,𝑚
) = 1 wheremax{𝑛,𝑚} > 1,

𝑏
𝐹
(𝐶

𝑛
) = {

2 𝑖𝑓 𝑛 ≡ 0 (mod 3) ,
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏
𝐹
(𝑃

𝑛
) = {

2 𝑖𝑓 𝑛 ≡ 1 (mod 3) ,
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(59)

It is easy to see that for any tree𝑇, 𝑏
𝐹
(𝑇) ⩽ 2. In fact, since

𝛾
𝐹
(𝑇) = 𝛾(𝑇) for any tree 𝑇, 𝛾

𝐹
(𝑇



) = 𝛾(𝑇


) for any subgraph
𝑇
 of 𝑇. It follows that

𝑏
𝐹
(𝑇) = min {𝐵 ⊆ 𝐸 (𝑇) : 𝛾

𝐹
(𝑇 − 𝐵) > 𝛾

𝐹
(𝑇)}

= min {𝐵 ⊆ 𝐸 (𝑇) : 𝛾 (𝑇 − 𝐵) > 𝛾 (𝑇)}

= 𝑏 (𝑇) ⩽ 2.

(60)

Except for these, no results on 𝑏
𝐹
(𝐺) have been known as

yet.

9.4. Roman Bondage Numbers. A Roman dominating func-
tion on a graph 𝐺 is a labeling 𝑓 : 𝑉 → {0, 1, 2} such that
every vertex with label 0 has at least one neighbor with label
2. The weight of a Roman dominating function 𝑓 on 𝐺 is the
value

𝑓 (𝐺) = ∑

𝑢∈𝑉(𝐺)

𝑓 (𝑢) . (61)

The minimum weight of a Roman dominating function on
a graph 𝐺 is called the Roman domination number of 𝐺,
denoted by 𝛾RM (𝐺).

A Roman dominating function 𝑓 : 𝑉 → {0, 1, 2}

can be represented by the ordered partition (𝑉
0
, 𝑉

1
, 𝑉

2
) (or

(𝑉
𝑓

0
, 𝑉

𝑓

1
, 𝑉

𝑓

2
) to refer to𝑓) of𝑉, where𝑉

𝑖
= {V ∈ 𝑉 | 𝑓(V) = 𝑖}.

In this representation, its weight 𝑓(𝐺) = |𝑉
1
| + 2|𝑉

2
|. It is

clear that𝑉𝑓

1
∪𝑉

𝑓

2
is a dominating set of 𝐺, called the Roman

dominating set, denoted by 𝐷𝑓

R = (𝑉1, 𝑉2). Since 𝑉
𝑓

1
∪ 𝑉

𝑓

2
is

a dominating set when 𝑓 is a Roman dominating function,
and since placing weight 2 at the vertices of a dominating set
yields a Roman dominating function, in [115], it is observed
that

𝛾 (𝐺) ⩽ 𝛾RM (𝐺) ⩽ 2𝛾 (𝐺) . (62)

A graph 𝐺 is called to be Roman if 𝛾RM (𝐺) = 2𝛾(𝐺).
The definition of the Roman domination function is

proposed implicitly by Stewart [116] and ReVelle and Rosing
[117]. Roman dominating numbers have been deeply studied.
In particular, Bahremandpour et al. [118] showed that the
problem determining the Roman domination number is NP-
complete even for bipartite graphs.

Let 𝐺 be a graph with maximum degree at least two.
The Roman bondage number 𝑏RM (𝐺) of 𝐺 is the minimum
cardinality of all sets 𝐸 ⊆ 𝐸 for which 𝛾RM (𝐺 − 𝐸



) >

𝛾RM (𝐺). Since in study of Roman bondage number the
assumption Δ(𝐺) ⩾ 2 is necessary, we always assume that
when we discuss 𝑏RM (𝐺), all graphs involved satisfy Δ(𝐺) ⩾
2. The Roman bondage number 𝑏RM (𝐺) is introduced by
Jafari Rad and Volkmann in [119].

Recently, Bahremandpour et al. [118] have shown that the
problem determining the Roman bondage number is NP-
hard even for bipartite graphs.

Problem 7. Consider the decision problem:

Roman Bondage Problem

Instance: a nonempty bipartite graph𝐺 and a positive
integer 𝑘.

Question: is 𝑏RM (𝐺) ⩽ 𝑘?

Theorem 152 (Bahremandpour et al. [118], 2013). TheRoman
bondage problem is NP-hard even for bipartite graphs.

The exact value of 𝑏RM(𝐺) is known only for a few family
of graphs including the complete graphs, cycles, and paths.
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Theorem 153 (Jafari Rad and Volkmann [119], 2011). For any
positive integers 𝑛 and𝑚 with𝑚 ⩽ 𝑛,

𝑏RM (𝑃𝑛) = {
2, 𝑖𝑓 𝑛 ≡ 2 (mod 3) ,
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏RM (𝐶𝑛
) = {

3, 𝑖𝑓 𝑛 = 2 (mod 3) ,
2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏RM (𝐾𝑛
) = ⌈

𝑛

2
⌉ 𝑓𝑜𝑟 𝑛 ⩾ 3,

𝑏RM (𝐾𝑚,𝑛
) =

{{

{{

{

1 𝑖𝑓 𝑚 = 1 𝑎𝑛𝑑 𝑛 ̸= 1,

4 𝑖𝑓 𝑚 = 𝑛 = 3,

𝑚 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(63)

Lemma 154 (Cockayne et al. [115], 2004). If 𝐺 is a graph of
order 𝑛 and contains vertices of degree 𝑛 − 1, then 𝛾RM(𝐺) = 2.

Using Lemma 154, the third conclusion in Theorem 153
can be generalized to more general case, which is similar to
Lemma 49.

Theorem 155 (Jafari Rad and Volkmann [119], 2011). Let𝐺 be
a graph with order 𝑛 ≥ 3 and 𝑡 the number of vertices of degree
𝑛 − 1 in 𝐺. If 𝑡 ⩾ 1, then 𝑏RM(𝐺) = ⌈𝑡/2⌉.

Ebadi and PushpaLatha [120] conjectured that 𝑏RM(𝐺) ⩽
𝑛 − 1 for any graph 𝐺 of order 𝑛 ⩾ 3. Dehgardi et al.
[121], Akbari andQajar [122], independently, showed that this
conjecture is true.

Theorem 156. 𝑏RM(𝐺) ⩽ 𝑛 − 1 for any connected graph 𝐺 of
order 𝑛 ⩾ 3.

For a complete 𝑡-partite graph, we have the following
result.

Theorem 157 (Hu and Xu [123], 2011). Let 𝐺 = 𝐾
𝑚
1
,𝑚
2
,...,𝑚
𝑡

be
a complete 𝑡-partite graph with 𝑚

1
= ⋅ ⋅ ⋅ = 𝑚

𝑖
< 𝑚

𝑖+1
≤ ⋅ ⋅ ⋅ ⩽

𝑚
𝑡
, 𝑡 ⩾ 2 and 𝑛 = ∑𝑡

𝑗=1
𝑚

𝑗
. Then

𝑏RM (𝐺) =

{{{{{{{{{{

{{{{{{{{{{

{

⌈
𝑖

2
⌉ 𝑖𝑓 𝑚

𝑖
= 1 𝑎𝑛𝑑 𝑛 ⩾ 3,

2 𝑖𝑓 𝑚
𝑖
= 2 𝑎𝑛𝑑 𝑖 = 1,

𝑖 𝑖𝑓 𝑚
𝑖
= 2 𝑎𝑛𝑑 𝑖 ⩾ 2,

4 𝑖𝑓 𝑚
𝑖
= 3 𝑎𝑛𝑑 𝑖 = 𝑡 = 2,

𝑛 − 1 𝑖𝑓 𝑚
𝑖
= 3 𝑎𝑛𝑑 𝑖 = 𝑡 ⩾ 3,

𝑛 − 𝑚
𝑡

𝑖𝑓 𝑚
𝑖
⩾ 3 𝑎𝑛𝑑 𝑚

𝑡
⩾ 4.

(64)

Consider a complete 𝑡-partite graph 𝐾
𝑡
(3) for 𝑡 ⩾ 3,

𝑏RM(𝐾𝑡
(3)) = 𝑛 − 1 by Theorem 157, where 𝑛 = 3𝑡,

which shows that this upper bound of 𝑛 − 1 on 𝑏RM(𝐺) in
Theorem 156 is sharp. This fact and 𝛾

𝑅
(𝐾

𝑡
(3)) = 4 give

a negative answer to the following two problems posed by
Dehgardi et al. [121].
Prove or Disprove: for any connected graph 𝐺 of order 𝑛 ≥ 3,
(i) 𝑏RM(𝐺) = 𝑛 − 1 if and only if 𝐺 ≅ 𝐾

3
; (ii) 𝑏RM(𝐺) ⩽ 𝑛 −

𝛾
𝑅
(𝐺) + 1.
Note that a complete 𝑡-partite graph 𝐾

𝑡
(3) is (𝑛 − 3)-

regular and 𝑏RM(𝐾𝑡
(3)) = 𝑛 − 1 for 𝑡 ⩾ 3, where 𝑛 = 3𝑡.

Hu and Xu further determined that 𝑏
𝑅
(𝐺) = 𝑛 − 2 for any

(𝑛 − 3)-regular graph 𝐺 of order 𝑛 ⩽ 5 except 𝐾
𝑡
(3).

Theorem 158 (Hu and Xu [123], 2011). For any (𝑛−3)-regular
graph 𝐺 of order 𝑛 other than𝐾

𝑡
(3), 𝑏RM(𝐺) = 𝑛 − 2 for 𝑛 ⩾ 5.

For a tree 𝑇 with order 𝑛 ⩾ 3, Ebadi and PushpaLatha
[120], and Jafari Rad and Volkmann [119], independently,
obtained an upper bound on 𝑏RM(𝑇).

Theorem 159. 𝑏RM(𝑇) ⩽ 3 for any tree 𝑇 with order 𝑛 ⩾ 3.

Theorem 160 (Bahremandpour et al. [118], 2013). 𝑏RM(𝑃2 ×
𝑃
𝑛
) = 2 for 𝑛 ⩾ 2.

Theorem 161 (Jafari Rad and Volkmann [119], 2011). Let𝐺 be
a graph with order at least three.

(a) If (𝑥, 𝑦, 𝑧) is a path of length 2 in 𝐺, then 𝑏RM(𝐺) ⩽
𝑑
𝐺
(𝑥) + 𝑑

𝐺
(𝑦) + 𝑑

𝐺
(𝑧) − 3 − |𝑁

𝐺
(𝑥) ∩ 𝑁

𝐺
(𝑦)|.

(b) If 𝐺 is connected, then 𝑏RM(𝐺) ⩽ 𝜆(𝐺) + 2Δ(𝐺) − 3.

Theorem 161 (b) implies 𝑏RM(𝐺) ⩽ 𝛿(𝐺) + 2Δ(𝐺) − 3 for a
connected graph 𝐺. Note that for a planar graph 𝐺, 𝛿(𝐺) ⩽ 5;
moreover, 𝛿(𝐺) ⩽ 3 if the girth at least 4, and 𝛿(𝐺) ⩽ 2 if the
girth at least 6. These two facts show that 𝑏RM(𝐺) ⩽ 2Δ(𝐺) +
2 for a connected planar graph 𝐺. Jafari Rad and Volkmann
[124] improved this bound.

Theorem 162 (Jafari Rad and Volkmann [124], 2011). For any
connected planar graph 𝐺 of order 𝑛 ⩾ 3 with girth 𝑔(𝐺),

𝑏RM (𝐺)

⩽

{{{{{{{{{{{

{{{{{{{{{{{

{

2Δ (𝐺) ,

Δ (𝐺) + 6,

Δ (𝐺) + 5 𝑖𝑓 𝐺 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑛𝑜 V𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑓𝑖V𝑒,

Δ (𝐺) + 4 𝑖𝑓 𝑔 (𝐺) ⩾ 4,

Δ (𝐺) + 3 𝑖𝑓 𝑔 (𝐺) ⩾ 5,

Δ (𝐺) + 2 𝑖𝑓 𝑔 (𝐺) ⩾ 6,

Δ (𝐺) + 1 𝑖𝑓 𝑔 (𝐺) ⩾ 8.

(65)

According toTheorem 157, 𝑏RM(𝐶𝑛
) = 3 = Δ(𝐶

𝑛
)+1 for a

cycle 𝐶
𝑛
of length 𝑛 ⩾ 8 with 𝑛 ≡ 2 (mod 3), and therefore

the last upper bound inTheorem 162 is sharp, at least for Δ =
2.

Combining the fact that every planar graph 𝐺 with
minimum degree 5 contains an edge 𝑥𝑦 with 𝑑

𝐺
(𝑥) = 5

and 𝑑
𝐺
(𝑦) ∈ {5, 6} with Theorem 161 (a), Akbari et al. [125]

obtained the following result.



26 International Journal of Combinatorics

· · ·

· · ·

· · ·

· · ·

𝐺

Figure 9: The graph 𝐺 is constructed from 𝐺.

Theorem 163 (Akbari et al. [125], 2012). 𝑏RM(𝐺) ⩽ 15 for
every planar graph 𝐺.

It remains open to show whether the bound in
Theorem 163 is sharp or not. Though finding a planar
graph 𝐺 with 𝑏RM(𝐺) = 15 seems to be difficult, Akbari et
al. [125] constructed an infinite family of planar graphs with
Roman bondage number equal to 7 by proving the following
result.

Theorem 164 (Akbari et al. [125], 2012). Let 𝐺 be a graph of
order 𝑛 and 𝐺 is the graph of order 5𝑛 obtained from 𝐺 by
attaching the central vertex of a copy of a path 𝑃

5
to each vertex

of𝐺 (see Figure 9). Then 𝛾RM(𝐺) = 4𝑛 and 𝑏RM(𝐺) = 𝛿(𝐺)+2.

ByTheorem 164, infinitemany planar graphswith Roman
bondage number 7 can be obtained by considering any planar
graph 𝐺 with 𝛿(𝐺) = 5 (e.g., the icosahedron graph).

Conjecture 165 (Akbari et al. [125], 2012). The Roman
bondage number of every planar graph is at most 7.

For general bounds, the following observation is directly
obtained, which is similar to Observation 1.

Observation 4. Let 𝐺 be a graph of order 𝑛 with maximum
degree at least two. Assume that 𝐻 is a spanning subgraph
obtained from 𝐺 by removing 𝑘 edges. If 𝛾RM(𝐻) = 𝛾RM(𝐺),
then 𝑏

𝑅
(𝐻) ⩽ 𝑏RM(𝐺) ⩽ 𝑏RM(𝐻) + 𝑘.

Theorem 166 (Bahremandpour et al. [118], 2013). For any
connected graph 𝐺 of order 𝑛, if 𝑛 ⩾ 3 and 𝛾RM(𝐺) = 𝛾(𝐺) + 1,
then

𝑏RM (𝐺) ⩽ min {𝑏 (𝐺) , 𝑛
Δ
} , (66)

where 𝑛
Δ
is the number of vertices with maximum degree Δ in

𝐺.

Observation 5. For any graph 𝐺, if 𝛾(𝐺) = 𝛾RM(𝐺), then
𝑏RM(𝐺) ⩽ 𝑏(𝐺).

Theorem 167 (Bahremandpour et al. [118], 2013). For every
Roman graph 𝐺,

𝑏RM (𝐺) ⩾ 𝑏 (𝐺) . (67)

The bound is sharp for cycles on 𝑛 vertices where 𝑛 ≡ 0 (mod
3).

The strict inequality in Theorem 167 can hold, for exam-
ple, 𝑏(𝐶

3𝑘+2
) = 2 < 3 = 𝑏RM(𝐶3𝑘+2

) byTheorem 157.
A graph 𝐺 is called to be vertex Roman domination-

critical if 𝛾RM(𝐺 − 𝑥) < 𝛾RM(𝐺) for every vertex 𝑥 in 𝐺. If
𝐺 has no isolated vertices, then 𝛾RM(𝐺) ⩽ 2𝛾(𝐺) ⩽ 2𝛽(𝐺).
If 𝛾RM(𝐺) = 2𝛽(𝐺), then 𝛾RM(𝐺) = 2𝛾(𝐺) and hence 𝐺 is a
Roman graph. In [30], Volkmann gave a lot of graphs with
𝛾(𝐺) = 𝛽(𝐺). The following result is similar to Theorem 57.

Theorem 168 (Bahremandpour et al. [118], 2013). For any
graph 𝐺, if 𝛾RM(𝐺) = 2𝛽(𝐺), then

(a) 𝑏RM(𝐺) ⩾ 𝛿(𝐺);

(b) 𝑏RM(𝐺) ⩾ 𝛿(𝐺)+1 if𝐺 is a vertex Roman domination-
critical graph.

If 𝛾RM(𝐺) = 2, then obviously 𝑏RM(𝐺) ⩽ 𝛿(𝐺). So we
assume 𝛾RM(𝐺) ⩾ 3. Dehgardi et al. [121] proved 𝑏RM(𝐺) ⩽
(𝛾RM(𝐺) − 2)Δ(𝐺) + 1 and posed the following problem: if 𝐺
is a connected graph of order 𝑛 ⩾ 4 with 𝛾RM(𝐺) ⩾ 3, then

𝑏RM (𝐺) ⩽ (𝛾RM (𝐺) − 2) Δ (𝐺) . (68)

Theorem 161 (a) shows that the inequality (68) holds if
𝛾RM(𝐺) ⩾ 5. Thus, the bound in (68) is of interest only when
𝛾RM(𝐺) is 3 or 4.

Lemma 169 (Bahremandpour et al. [118], 2013). For any
nonempty graph 𝐺 of order 𝑛 ⩾ 3, 𝛾RM(𝐺) = 3 if and only
if Δ(𝐺) = 𝑛 − 2.

The following result shows that (68) holds for all graphs
𝐺 of order 𝑛 ⩾ 4 with 𝛾RM(𝐺) = 3 or 4, which improves
Theorem 161 (b).

Theorem 170 (Bahremandpour et al. [118], 2013). For any
connected graph 𝐺 of order 𝑛 ⩾ 4,

𝑏RM (𝐺) ≤ {
Δ (𝐺) = 𝑛 − 2 𝑖𝑓 𝛾RM (𝐺) = 3,

Δ (𝐺) + 𝛿 (𝐺) − 1 𝑖𝑓 𝛾RM (𝐺) = 4
(69)

with the first equality if and only if 𝐺 ≅ 𝐶
4
.

Recently, Akbari and Qajar [122] have proved the follow-
ing result.

Theorem 171 (Akbari and Qajar [122]). For any connected
graph 𝐺 of order 𝑛 ⩾ 3,

𝑏RM (𝐺) ⩽ 𝑛 − 𝛾RM (𝐺) + 5. (70)



International Journal of Combinatorics 27

We conclude this section with the following problems.

Problem 8. Characterize all connected graphs 𝐺 of order 𝑛 ⩾
3, for which 𝑏RM(𝐺) = 𝑛 − 1.

Problem 9. Prove or disprove: if 𝐺 is a connected graph of
order 𝑛 ⩾ 3, then

𝑏RM (𝐺) ⩽ 𝑛 − 𝛾RM (𝐺) + 3. (71)

Note that 𝛾
𝑅
(𝐾

𝑡
(3)) = 4 and 𝑏RM(𝐾𝑡

(3)) = 𝑛−1, where 𝑛 =
3𝑡 for 𝑡 ⩾ 3. The upper bound on 𝑏RM(𝐺) given in Problem 9
is sharp if Problem 9 has positive answer.

9.5. Rainbow Bondage Numbers. For a positive integer 𝑘, a
𝑘-rainbow dominating function of a graph 𝐺 is a function 𝑓
from the vertex-set 𝑉(𝐺) to the set of all subsets of the set
{1, 2, . . . , 𝑘} such that for any vertex 𝑥 in 𝐺 with 𝑓(𝑥) = 0 the
condition

⋃

𝑦∈𝑁
𝐺(𝑥)

𝑓 (𝑦) = {1, 2, . . . , 𝑘} (72)

is fulfilled.The weight of a 𝑘-rainbow dominating function 𝑓
on 𝐺 is the value

𝑓 (𝐺) = ∑

𝑥∈𝑉(𝐺)

𝑓 (𝑥)
 . (73)

The 𝑘-rainbow domination number of a graph 𝐺, denoted by
𝛾
𝑟𝑘
(𝐺), is the minimum weight of a 𝑘-rainbow dominating

function 𝑓 of 𝐺.
Note that 𝛾

𝑟1
(𝐺) is the classical domination number 𝛾(𝐺).

The 𝑘-rainbow domination number is introduced by Brešar
et al. [126]. Rainbow domination of a graph 𝐺 coincides with
ordinary domination of the Cartesian product of 𝐺 with the
complete graph, in particular, 𝛾

𝑟𝑘
(𝐺) = 𝛾(𝐺 × 𝐾

𝑘
) for any

positive integer 𝑘 and any graph 𝐺 [126]. Hartnell and Rall
[127] proved that 𝛾(𝑇) < 𝛾

𝑟2
(𝑇) for any tree 𝑇, no graph has

𝛾 = 𝛾
𝑟𝑘
for 𝑘 ⩾ 3, for any 𝑘 ⩾ 2, and any graph 𝐺 of order 𝑛:

min {𝑛, 𝛾 (𝐺) + 𝑘 − 2} ⩽ 𝛾
𝑟𝑘
(𝐺) ⩽ 𝑘𝛾 (𝐺) . (74)

The introduction of rainbow domination is motivated
by the study of paired domination in Cartesian products
of graphs, where certain upper bounds can be expressed in
terms of rainbow domination; that is, for any graph 𝐺 and
any graph 𝐻, if 𝑉(𝐻) can be partitioned into 𝑘𝛾

𝑃
-sets, then

𝛾
𝑃
(𝐺 × 𝐻) ⩽ (1/𝑘)𝜐(𝐻)𝛾

𝑟𝑘
(𝐺), proved by Brešar et al. [126].

Dehgardi et al. [128] introduced the concept of 𝑘-rainbow
bondage number of graphs. Let 𝐺 be a graph with maximum
degree at least two. The 𝑘-rainbow bondage number 𝑏

𝑟𝑘
(𝐺)

of 𝐺 is the minimum cardinality of all sets 𝐵 ⊆ 𝐸(𝐺) for
which 𝛾

𝑟𝑘
(𝐺 − 𝐵) > 𝛾

𝑟𝑘
(𝐺). Since in the study of 𝑘-rainbow

bondage number the assumption Δ(𝐺) ⩾ 2 is necessary,
we always assume that when we discuss 𝑏

𝑟𝑘
(𝐺), all graphs

involved satisfy Δ(𝐺) ⩾ 2.
The 2-rainbow bondage number of some special families

of graphs has been determined.

Theorem 172 (Dehgardi et al. [128]). For any integer 𝑛 ⩾ 3,

𝑏
𝑟2
(𝑃

𝑛
) = 1 𝑓𝑜𝑟 𝑛 ⩾ 2,

𝑏
𝑟2
(𝐶

𝑛
) = {

1 𝑖𝑓 𝑛 ≡ 0 (mod 4) ,
2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑏
𝑟2
(𝐾

𝑛,𝑛
) =

{{{{

{{{{

{

1 𝑖𝑓 𝑛 = 2,

3 𝑖𝑓 𝑛 = 3,

6 𝑖𝑓 𝑛 = 4,

𝑚 𝑖𝑓 𝑛 ⩾ 5.

(75)

Theorem 173 (Dehgardi et al. [128]). For any connected graph
𝐺 of order 𝑛 ⩾ 3, 𝑏

𝑟2
(𝐺) ⩽ 𝜆(𝐺) + 2Δ(𝐺) − 3.

Theorem 174 (Dehgardi et al. [128]). For any tree 𝑇 of order
𝑛 ⩾ 3, 𝑏

𝑟2
(𝑇) ⩽ 2.

Theorem 175 (Dehgardi et al. [128]). If 𝐺 is a planar graph
withmaximumdegree at least two, then 𝑏

𝑟2
(𝐺) ⩽ 15.Moreover,

if the girth 𝑔(𝐺) ⩾ 4, then 𝑏
𝑟2
(𝐺) ⩽ 11 and if 𝑔(𝐺) ⩾ 6, then

𝑏
𝑟2
(𝐺) ⩽ 9.

Theorem 176 (Dehgardi et al. [128]). For a complete bipartite
graph 𝐾

𝑝,𝑞
, if 2𝑘 + 1 ⩽ 𝑝 ⩽ 𝑞, then 𝑏

𝑟𝑘
(𝐾

𝑝,𝑞
) = 𝑝.

Theorem177 (Dehgardi et al. [128]). For a complete graph𝐾
𝑛
,

if 𝑛 ⩾ 𝑘 + 1, then 𝑏
𝑟𝑘
(𝐾

𝑛
) = ⌈𝑘𝑛/(𝑘 + 1)⌉.

The special case 𝑘 = 1 of Theorem 177 can be found in
Theorem 1. The following is a simple observation similar to
Observation 1.

Observation 6 (Dehgardi et al. [128]). Let 𝐺 be a graph
with maximum degree at least two, 𝐻 a spanning subgraph
obtained from 𝐺 by removing 𝑘 edges. If 𝛾

𝑟𝑘
(𝐻) = 𝛾

𝑟𝑘
(𝐺),

then 𝑏
𝑟𝑘
(𝐻) ⩽ 𝑏

𝑟𝑘
(𝐺) ⩽ 𝑏

𝑟𝑘
(𝐻) + 𝑘.

Theorem 178 (Dehgardi et al. [128]). For every graph 𝐺 with
𝛾
𝑟𝑘
(𝐺) = 𝑘𝛾(𝐺), 𝑏

𝑟𝑘
(𝐺) ⩾ 𝑏(𝐺).

A graph 𝐺 is said to be vertex 𝑘-rainbow domination-
critical if 𝛾

𝑟𝑘
(𝐺 − 𝑥) < 𝛾

𝑟𝑘
(𝐺) for every vertex 𝑥 in 𝐺. It is

clear that if 𝐺 has no isolated vertices, then 𝛾
𝑟𝑘
(𝐺) ⩽ 𝑘𝛾(𝐺) ⩽

𝑘𝛽(𝐺), where 𝛽(𝐺) is the vertex-covering number of𝐺. Thus,
if 𝛾

𝑟𝑘
(𝐺) = 𝑘𝛽(𝐺), then 𝛾

𝑟𝑘
(𝐺) = 𝑘𝛾(𝐺).

Theorem 179 (Dehgardi et al. [128]). For any graph 𝐺, if
𝛾
𝑟𝑘
(𝐺) = 𝑘𝛽(𝐺), then

(a) 𝑏
𝑟𝑘
(𝐺) ⩾ 𝛿(𝐺);

(b) 𝑏
𝑟𝑘
(𝐺) ⩾ 𝛿(𝐺)+1 if𝐺 is vertex 𝑘-rainbow domination-

critical.

As far as we know, there are no more results on the 𝑘-
rainbow bondage number of graphs in the literature.
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10. Results on Digraphs

Although domination has been extensively studied in undi-
rected graphs, it is natural to think of a dominating set
as a one-way relationship between vertices of the graph.
Indeed, among the earliest literatures on this subject, von
Neumann and Morgenstern [129] used what is now called
domination in digraphs to find solution (or kernels, which
are independent dominating sets) for cooperative 𝑛-person
games. Most likely, the first formulation of domination by
Berge [130], in 1958, was given in the context of digraphs and,
only some years latter by Ore [131], in 1962, for undirected
graphs. Despite this history, examination of domination and
its variants in digraphs has been essentially overlooked (see
[4] for an overview of the domination literature). Thus, there
are few, if any, such results on domination for digraphs in the
literature.

The bondage number and its related topics for undirected
graph have become one of major areas both in theoretical
and applied researches. However, until recently, Carlson
and Develin [42], Shan and Kang [132], and Huang and
Xu [133, 134] studied the bondage number for digraphs,
independently. In this section, we introduce their results
for general digraphs. Results for some special digraphs such
as vertex-transitive digraphs are introduced in the next
section.

10.1. Upper Bounds for General Digraphs. Let 𝐺 = (𝑉, 𝐸)

be a digraph without loops and parallel edges. A digraph 𝐺
is called to be asymmetric if whenever (𝑥, 𝑦) ∈ 𝐸(𝐺) then
(𝑦, 𝑥) ∉ 𝐸(𝐺) and to be symmetric if (𝑥, 𝑦) ∈ 𝐸(𝐺) implies
(𝑦, 𝑥) ∈ 𝐸(𝐺). For a vertex 𝑥 of 𝑉(𝐺), the sets of out-
neighbors and in-neighbors of 𝑥 are, respectively, defined as
𝑁

+

𝐺
(𝑥) = {𝑦 ∈ 𝑉(𝐺) : (𝑥, 𝑦) ∈ 𝐸(𝐺)} and 𝑁−

𝐺
(𝑥) = {𝑥 ∈

𝑉(𝐺) : (𝑥, 𝑦) ∈ 𝐸(𝐺)}, the out-degree and the in-degree of
𝑥 are, respectively, defined as 𝑑+

𝐺
(𝑥) = |𝑁

+

𝐺
(𝑥)| and 𝑑−

𝐺
(𝑥) =

|𝑁
+

𝐺
(𝑥)|. Denote themaximum and theminimum out-degree

(resp., in-degree) of 𝐺 by Δ+(𝐺) and 𝛿+(𝐺) (resp., Δ−(𝐺) and
𝛿
−

(𝐺)).The degree 𝑑
𝐺
(𝑥) of 𝑥 is defined as 𝑑+

𝐺
(𝑥)+𝑑

−

𝐺
(𝑥), and

the maximum and the minimum degrees of𝐺 are denoted by
Δ(𝐺) and 𝛿(𝐺), respectively; that is, Δ(𝐺) = max{𝑑

𝐺
(𝑥) : 𝑥 ∈

𝑉(𝐺)} and 𝛿(𝐺) = min{𝑑
𝐺
(𝑥) : 𝑥 ∈ 𝑉(𝐺)}. Note that the

definitions here are different from the ones in the textbook
on digraphs; see for example, Xu [1].

A subset 𝑆 of𝑉(𝐺) is called a dominating set if𝑉(𝐺) = 𝑆∪
𝑁

+

𝐺
(𝑆), where𝑁+

𝐺
(𝑆) is the set of out-neighbors of 𝑆.Then, just

as for undirected graphs, 𝛾(𝐺) is the minimum cardinality
of a dominating set, and the bondage number 𝑏(𝐺) is the
smallest cardinality of a set 𝐵 of edges such that 𝛾(𝐺 − 𝐵) >
𝛾(𝐺) if such a subset 𝐵 ⊆ 𝐸(𝐺) exists. Otherwise, we put
𝑏(𝐺) = ∞.

Some basic results for undirected graphs stated in
Section 3 can be generalized to digraphs. For example,
Theorem 18 is generalized by Carlson and Develin [42],
Huang andXu [133], and Shan andKang [132], independently,
as follows.

Theorem 180. Let 𝐺 be a digraph and (𝑥, 𝑦) ∈ 𝐸(𝐺). Then
𝑏(𝐺) ⩽ 𝑑

𝐺
(𝑦) + 𝑑

−

𝐺
(𝑥) − |𝑁

−

𝐺
(𝑥) ∩ 𝑁

−

𝐺
(𝑦)|.

Corollary 181. For a digraph 𝐺, 𝑏(𝐺) ⩽ 𝛿−(𝐺) + Δ(𝐺).

Since 𝛿
−

(𝐺) ⩽ (1/2)Δ(𝐺), from Corollary 181,
Conjecture 53 is valid for digraphs.

Corollary 182. For a digraph 𝐺, 𝑏(𝐺) ⩽ (3/2)Δ(𝐺).

In the case of undirected graphs, the bondage number of
𝐺
𝑛
= 𝐾

𝑛
× 𝐾

𝑛
achieves this bound. However, it was shown

by Carlson and Develin in [42] that if we take the symmetric
digraph𝐺

𝑛
, we haveΔ(𝐺

𝑛
) = 4(𝑛−1), 𝛾(𝐺

𝑛
) = 𝑛, and 𝑏(𝐺

𝑛
) ⩽

4(𝑛 − 1) + 1 = Δ(𝐺
𝑛
) + 1. So this family of digraphs cannot

show that the bound in Corollary 182 is tight.
Corresponding to Conjecture 51, which is discredited

for undirected graphs and is valid for digraphs, the same
conjecture for digraphs can be proposed as follows.

Conjecture 183 (Carlson and Develin [42], 2006). 𝑏(𝐺) ⩽
Δ(𝐺) + 1 for any digraph 𝐺.

If Conjecture 183 is true, then the following results shows
that this upper bound is tight since 𝑏(𝐾

𝑛
×𝐾

𝑛
) = Δ(𝐾

𝑛
×𝐾

𝑛
)+1

for a complete digraph 𝐾
𝑛
.

In 2007, Shan and Kang [132] gave some tight upper
bounds on the bondage numbers for some asymmetric
digraphs. For example, 𝑏(𝑇) ⩽ Δ(𝑇) for any asymmetric
directed tree 𝑇; 𝑏(𝐺) ⩽ Δ(𝐺) for any asymmetric digraph 𝐺
with order at least 4 and 𝛾(𝐺) ⩽ 2. For planar digraphs, they
obtained the following results.

Theorem 184 (Shan and Kang [132], 2007). Let 𝐺 be a
asymmetric planar digraph.Then 𝑏(𝐺) ⩽ Δ(𝐺)+2; and 𝑏(𝐺) ⩽
Δ(𝐺) + 1 if Δ(𝐺) ⩾ 5 and 𝑑−

𝐺
(𝑥) ⩾ 3 for every vertex 𝑥 with

𝑑
𝐺
(𝑥) ⩾ 4.

10.2. Results for Some Special Digraphs. The exact values and
bounds on 𝑏(𝐺) for some standard digraphs are determined.

Theorem185 (Huang andXu [133], 2006). For a directed cycle
𝐶
𝑛
and a directed path 𝑃

𝑛
,

𝑏 (𝐶
𝑛
) = {

3 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

2 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛,

𝑏 (𝑃
𝑛
) = {

2 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

1 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛.

(76)

For the de Bruijn digraph 𝐵(𝑑, 𝑛) and the Kautz digraph
𝐾(𝑑, 𝑛),

𝑏 (𝐵 (𝑑, 𝑛)) = 𝑑 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

𝑑 ⩽ 𝑏 (𝐵 (𝑑, 𝑛)) ⩽ 2𝑑 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛,

𝑏 (𝐾 (𝑑, 𝑛)) = 𝑑 + 1.

(77)

Like undirected graphs, we can define the total domi-
nation number and the total bondage number. On the total
bondage numbers for some special digraphs, the known
results are as follows.
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Theorem 186 (Huang and Xu [134], 2007). For a directed
cycle 𝐶

𝑛
and a directed path 𝑃

𝑛
, 𝑏

𝑇
(𝑃

𝑛
) and 𝑏

𝑇
(𝐶

𝑛
) all do not

exist. For a complete digraph 𝐾
𝑛
,

𝑏
𝑇
(𝐾

𝑛
) = ∞ 𝑖𝑓 𝑛 = 1, 2,

𝑏
𝑇
(𝐾

𝑛
) = 3 𝑖𝑓 𝑛 = 3,

𝑛 ⩽ 𝑏
𝑇
(𝐾

𝑛
) ⩽ 2𝑛 − 3 𝑖𝑓 𝑛 ⩾ 4.

(78)

The extended de Bruijn digraph EB(𝑑, 𝑛; 𝑞
1
, . . . , 𝑞

𝑝
) and

the extended Kautz digraph EK(𝑑, 𝑛; 𝑞
1
, . . . , 𝑞

𝑝
) are intro-

duced by Shibata and Gonda [135]. If 𝑝 = 1, then they
are the de Bruijn digraph B(𝑑, 𝑛) and the Kautz digraph
K(𝑑, 𝑛), respectively. Huang and Xu [134] determined their
total domination numbers. In particular, their total bondage
numbers for general cases are determined as follows.

Theorem 187 (Huang andXu [134], 2007). If 𝑑 ⩾ 2 and 𝑞
𝑖
⩾ 2

for each 𝑖 = 1, 2, . . . , 𝑝, then

𝑏
𝑇
(EB(𝑑, 𝑛; 𝑞

1
, . . . , 𝑞

𝑝
)) = 𝑑

𝑝

− 1,

𝑏
𝑇
(EK(𝑑, 𝑛; 𝑞

1
, . . . , 𝑞

𝑝
)) = 𝑑

𝑝

.

(79)

In particular, for the de Bruijn digraph B(𝑑, 𝑛) and the Kautz
digraph K(𝑑, 𝑛),

𝑏
𝑇
(B (𝑑, 𝑛)) = 𝑑 − 1, 𝑏

𝑇
(K (𝑑, 𝑛)) = 𝑑. (80)

Zhang et al. [136] determined the bondage number in
complete 𝑡-partite digraphs.

Theorem 188 (Zhang et al. [136], 2009). For a complete 𝑡-
partite digraph 𝐾

𝑛
1
,𝑛
2
,...,𝑛
𝑡

, where 𝑛
1
⩽ 𝑛

2
⩽ ⋅ ⋅ ⋅ ⩽ 𝑛

𝑡
,

𝑏 (𝐾
𝑛
1
,𝑛
2
,...,𝑛
𝑡

)

=

{{{{{{{

{{{{{{{

{

𝑚 𝑖𝑓 𝑛
𝑚
= 1, 𝑛

𝑚+1
⩾ 2 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒,

𝑚 (1 ⩽ 𝑚 < 𝑡)

4𝑡 − 3 𝑖𝑓 𝑛
1
= 𝑛

2
= ⋅ ⋅ ⋅ = 𝑛

𝑡
= 2,

𝑡−1

∑

𝑖=1

𝑛
𝑖
+ 2 (𝑡 − 1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(81)

Since an undirected graph can be thought of as a sym-
metric digraph, any result for digraphs has an analogy for
undirected graphs in general. In view of this point, studying
the bondage number for digraphs is more significant than
for undirected graphs. Thus, we should further study the
bondage number of digraphs and try to generalize known
results on the bondage number and related variants for undi-
rected graphs to digraphs, prove or disprove Conjecture 183.
In particular, determine the exact values of 𝑏(B(𝑑, 𝑛)) for an
even 𝑛 and 𝑏

𝑇
(𝐾

𝑛
) for 𝑛 ⩾ 4.

11. Efficient Dominating Sets

A dominating set 𝑆 of a graph 𝐺 is called to be efficient if for
every vertex 𝑥 in𝐺, |𝑁

𝐺
[𝑥]∩𝑆| = 1 if𝐺 is a undirected graph

or |𝑁−

𝐺
[𝑥] ∩ 𝑆| = 1 if 𝐺 is a directed graph. The concept of an

efficient set was proposed by Bange et al. [137] in 1988. In the
literature, an efficient set is also called a perfect dominating
set (see Livingston and Stout [138] for an explanation).

From definition, if 𝑆 is an efficient dominating set of a
graph 𝐺, then 𝑆 is certainly an independent set and every
vertex not in 𝑆 is adjacent to exactly one vertex in 𝑆.

It is also clear from definition that a dominating set 𝑆 is
efficient if and only if N

𝐺
[𝑆] = {𝑁

𝐺
[𝑥] : 𝑥 ∈ 𝑆} for the

undirected graph 𝐺 or N+

𝐺
[𝑆] = {𝑁

+

𝐺
[𝑥] : 𝑥 ∈ 𝑆} for the

digraph𝐺 is a partition of𝑉(𝐺), where the induced subgraph
by𝑁

𝐺
[𝑥] or𝑁+

𝐺
[𝑥] is a star or an out-star with the root 𝑥.

The efficient domination has important applications in
many areas, such as error-correcting codes, and receives
much attention in the late years.

The concept of efficient dominating sets is a measure
of the efficiency of domination in graphs. Unfortunately, as
shown in [137], not every graph has an efficient dominating
set and,moreover, it is anNP-complete problem to determine
whether a given graph has an efficient dominating set. In
addition, it was shown by Clark [139] in 1993 that for a wide
range of 𝑝, almost every random undirected graph 𝐺 ∈

G(𝜐, 𝑝) has no efficient dominating sets. This means that
undirected graphs possessing an efficient dominating set are
rare. However, it is easy to show that every undirected graph
has an orientationwith an efficient dominating set (see Bange
et al. [140]).

In 1993, Barkauskas and Host [141] showed that deter-
mining whether an arbitrary oriented graph has an efficient
dominating set is NP-complete. Even so, the existence of
efficient dominating sets for some special classes of graphs has
been examined; see, for example, Dejter and Serra [142] and
Lee [143] for Cayley graph, Gu et al. [144] formeshes and tori,
Obradović et al. [145], Huang and Xu [36], Reji Kumar and
MacGillivray [146] for circulant graphs, Harary graphs and
tori, and Van Wieren et al. [147] for cube-connected cycles.

In this section, we introduce results of the bondage
number for some graphs with efficient dominating sets, due
to Huang and Xu [36].

11.1. Results for General Graphs. In this subsection, we intro-
duce some results on bondage numbers obtained by applying
efficient dominating sets. We first state the two following
lemmas.

Lemma 189. For any 𝑘-regular graph or digraph 𝐺 of order 𝑛,
𝛾(𝐺) ⩾ 𝑛/(𝑘 + 1), with equality if and only if 𝐺 has an efficient
dominating set. In addition, if 𝐺 has an efficient dominating
set, then every efficient dominating set is certainly a 𝛾-set, and
vice versa.

Let 𝑒 be an edge and 𝑆 a dominating set in 𝐺. We say that
𝑒 supports 𝑆 if 𝑒 ∈ (𝑆, 𝑆), where (𝑆, 𝑆) = {(𝑥, 𝑦) ∈ 𝐸(𝐺) :
𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆}. Denote by 𝑠(𝐺) the minimum number of edges
which support all 𝛾-sets in 𝐺.

Lemma 190. For any graph or digraph 𝐺, 𝑏(𝐺) ⩾ 𝑠(𝐺), with
equality if 𝐺 is regular and has an efficient dominating set.
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A graph 𝐺 is called to be vertex-transitive if its automor-
phism group Aut(𝐺) acts transitively on its vertex-set 𝑉(𝐺).
A vertex-transitive graph is regular. Applying Lemmas 189
and 190, Huang and Xu obtained some results on bondage
numbers for vertex-transitive graphs or digraphs.

Theorem 191 (Huang and Xu [36], 2008). For any vertex-
transitive graph or digraph 𝐺 of order 𝑛,

𝑏 (𝐺) ⩾

{{{{

{{{{

{

⌈
𝑛

2𝛾 (𝐺)
⌉ 𝑖𝑓 𝐺 𝑖𝑠 𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑,

⌈
𝑛

𝛾 (𝐺)
⌉ 𝑖𝑓 𝐺 𝑖𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑.

(82)

Theorem192 (Huang andXu [36], 2008). Let𝐺 be a 𝑘-regular
graph of order 𝑛. Then

𝑏(𝐺) ⩽ 𝑘 if𝐺 is undirected and 𝑛 ⩾ 𝛾(𝐺)(𝑘+1)−𝑘+1;
𝑏(𝐺) ⩽ 𝑘+1+ℓ if𝐺 is directed and 𝑛 ⩾ 𝛾(𝐺)(𝑘+1)−ℓ
with 0 ⩽ ℓ ⩽ 𝑘 − 1.

Next, we introduce a better upper bound on 𝑏(𝐺). To this
aim, we need the following concept, which is a generalization
of the concept of the edge-covering of a graph 𝐺. For 𝑉

⊆

𝑉(𝐺) and 𝐸 ⊆ 𝐸(𝐺), we say that 𝐸covers 𝑉 and call 𝐸
an edge-covering for 𝑉 if there exists an edge (𝑥, 𝑦) ∈ 𝐸 for
any vertex 𝑥 ∈ 𝑉. For 𝑦 ∈ 𝑉(𝐺), let 𝛽[𝑦] be the minimum
cardinality over all edge-coverings for𝑁−

𝐺
[𝑦].

Theorem 193 (Huang and Xu [36], 2008). If 𝐺 is a 𝑘-regular
graph with order 𝛾(𝐺)(𝑘 + 1), then 𝑏(𝐺) ⩽ 𝛽[𝑦] for any 𝑦 ∈
𝑉(𝐺).

Theupper bound on 𝑏(𝐺) given inTheorem 193 is tight in
view of 𝑏(𝐶

𝑛
) for a cycle or a directed cycle 𝐶

𝑛
(seeTheorems

1 and 185, resp.).
It is easy to see that for a 𝑘-regular graph 𝐺, ⌈(𝑘 + 1)/2⌉ ⩽

𝛽


[𝑦] ⩽ 𝑘 when 𝐺 is undirected and 𝛽[𝑦] = 𝑘 + 1 when 𝐺 is
directed. By this fact and Lemma 189, the following theorem
is merely a simple combination of Theorems 191 and 193.

Theorem 194 (Huang and Xu [36], 2008). Let 𝐺 be a vertex-
transitive graph of degree 𝑘. If 𝐺 has an efficient dominating
set, then

⌈
𝑘 + 1

2
⌉ ⩽ 𝑏 (𝐺) ⩽ 𝑘 𝑖𝑓 𝐺 𝑖𝑠 𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑,

𝑏 (𝐺) = 𝑘 + 1 𝑖𝑓 𝐺 𝑖𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑.

(83)

Theorem 195 (Huang and Xu [36], 2008). If 𝐺 is an undi-
rected vertex-transitive cubic graph with order 4𝛾(𝐺) and girth
𝑔(𝐺) ⩽ 5, then 𝑏(𝐺) = 2.

The proof of Theorem 195 leads to a byproduct. If 𝑔 =
5, let (𝑢

1
, 𝑢

2
, 𝑢

3
, 𝑢

4
, 𝑢

5
) be a cycle, and let D

𝑖
be the family

of efficient dominating sets containing 𝑢
𝑖
for each 𝑖 ∈

{1, 2, 3, 4, 5}. ThenD
𝑖
∩D

𝑗
= 0 for 𝑖 = 1, 2, . . . , 5. Then 𝐺 has

at least 5𝑠 efficient dominating sets, where 𝑠 = 𝑠(𝐺). But there
are only 4s (=ns/𝛾) distinct efficient dominating sets in𝐺.This

contradiction implies that an undirected vertex-transitive
cubic graph with girth five has no efficient dominating sets.
But a similar argument for 𝑔(𝐺) = 3, 4 or 𝑔(𝐺) ⩾ 6 could
not give any contradiction. This is consistent with the result
that CCC(𝑛), a vertex-transitive cubic graph with girth 𝑛 if
3 ⩽ 𝑛 ⩽ 8, or girth 8 if 𝑛 ⩾ 9, has efficient dominating sets
for all 𝑛 ⩾ 3 except 𝑛 = 5 (see Theorem 199 in the following
subsection).

11.2. Results for Cayley Graphs. In this subsection, we use
Theorem 194 to determine the exact values or approximative
values of bondage numbers for some special vertex-transitive
graphs by characterizing the existence of efficient dominating
sets in these graphs.

Let Γ be a nontrivial finite group, 𝑆 a nonempty subset of
Γ without the identity element of Γ. A digraph 𝐺 is defined as
follows:

𝑉 (𝐺) = Γ, (𝑥, 𝑦) ∈ 𝐸 (𝐺) ⇐⇒ 𝑥
−1

𝑦 ∈ 𝑆

for any 𝑥, 𝑦 ∈ Γ
(84)

is called a Cayley digraph of the group Γ with respect to
𝑆, denoted by 𝐶

Γ
(𝑆). If 𝑆−1 = {𝑠−1 : 𝑠 ∈ 𝑆} = 𝑆; then

𝐶
Γ
(𝑆) is symmetric and is called a Cayley undirected graph,

a Cayley graph for short. Cayley graphs or digraphs are
certainly vertex-transitive (see Xu [1]).

A circulant graph 𝐺(𝑛; 𝑆) of order 𝑛 is a Cayley graph
𝐶
𝑍
𝑛

(𝑆), where 𝑍
𝑛
= {0, . . . , 𝑛 − 1} is the addition group of

order 𝑛 and 𝑆 is a nonempty subset of𝑍
𝑛
without the identity

element and, hence, is a vertex-transitive digraph of degree
|𝑆|. If 𝑆−1 = 𝑆, then𝐺(𝑛; 𝑆) is an undirected graph. If 𝑆 = {1, 𝑘},
where 2 ⩽ 𝑘 ⩽ 𝑛 − 2, we write 𝐺(𝑛; 1, 𝑘) for 𝐺(𝑛; {1, 𝑘}) or
𝐺(𝑛; {±1, ±𝑘}) and call it a double-loop circulant graph.

Huang and Xu [36] showed that, for directed 𝐺 =

𝐺(𝑛; 1, 𝑘), ⌈𝑛/3⌉ ⩽ 𝛾(𝐺) ⩽ ⌈𝑛/2⌉ and 𝐺 has an efficient
dominating set if and only if 3 | 𝑛 and 𝑘 ≡ 2 (mod 3); for
directed 𝐺 = 𝐺(𝑛; 1, 𝑘) and 𝑘 ̸= 𝑛/2, ⌈𝑛/5⌉ ⩽ 𝛾(𝐺) ⩽ ⌈𝑛/3⌉
and 𝐺 has an efficient dominating set if and only if 5 | 𝑛 and
𝑘 ≡ ±2 (mod 5). By Theorem 194, we obtain the bondage
number of a double loop circulant graph if it has an efficient
dominating set.

Theorem 196 (Huang and Xu [36], 2008). Let 𝐺 be a double-
loop circulant graph 𝐺(𝑛; 1, 𝑘). If 𝐺 is directed with 3 | 𝑛
and 𝑘 ≡ 2 (mod 3), or 𝐺 is undirected with 5 | 𝑛 and
𝑘 ≡ ±2 (mod 5), then 𝑏(𝐺) = 3.

The 𝑚 × 𝑛 torus is the Cartesian product 𝐶
𝑚
× 𝐶

𝑛
of

two cycles and is a Cayley graph 𝐶
𝑍
𝑚
×𝑍
𝑛

(𝑆), where 𝑆 =

{(0, 1), (1, 0)} for directed cycles and 𝑆 = {(0, ±1), (±1, 0)} for
undirected cycles and, hence, is vertex-transitive. Gu et al.
[144] showed that the undirected torus𝐶

𝑚
×𝐶

𝑛
has an efficient

dominating set if and only if both 𝑚 and 𝑛 are multiples
of 5. Huang and Xu [36] showed that the directed torus
𝐶
𝑚
× 𝐶

𝑛
has an efficient dominating set if and only if both

𝑚 and 𝑛 are multiples of 3. Moreover, they found a necessary
condition for a dominating set containing the vertex (0, 0)
in 𝐶

𝑚
× 𝐶

𝑛
to be efficient and obtained the following

result.
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Theorem 197 (Huang and Xu [36], 2008). Let 𝐺 = 𝐶
𝑚
× 𝐶

𝑛
.

If 𝐺 is undirected and both𝑚 and 𝑛 are multiples of 5 or if 𝐺 is
directed and both𝑚 and 𝑛 are multiples of 3, then 𝑏(𝐺) = 3.

The hypercube 𝑄
𝑛

is the Cayley graph 𝐶
Γ
(𝑆),

where Γ = 𝑍
2
× ⋅ ⋅ ⋅ × 𝑍

2
= (𝑍

2
)
𝑛 and 𝑆 =

{100 ⋅ ⋅ ⋅ 0, 010 ⋅ ⋅ ⋅ 0, . . . , 00 ⋅ ⋅ ⋅ 01}. Lee [143] showed that
𝑄
𝑛
has an efficient dominating set if and only if 𝑛 = 2𝑚 − 1

for a positive integer𝑚. ByTheorem 194, the following result
is obtained immediately.

Theorem 198 (Huang and Xu [36], 2008). If 𝑛 = 2𝑚 − 1 for a
positive integer𝑚, then 2𝑚−1

⩽ 𝑏(𝑄
𝑛
) ⩽ 2

𝑚

− 1.

Problem 10. Determine the exact value of 𝑏(𝑄
𝑛
) for 𝑛 = 2𝑚−1.

The 𝑛-dimensional cube-connected cycle, denoted by
CCC(𝑛), is constructed from the 𝑛-dimensional hypercube
𝑄
𝑛
by replacing each vertex 𝑥 in 𝑄

𝑛
with an undirected cycle

𝐶
𝑛
of length 𝑛 and linking the 𝑖th vertex of the 𝐶

𝑛
to the 𝑖th

neighbor of 𝑥. It has been proved that CCC(𝑛) is a Cayley
graph and, hence, is a vertex-transitive graph with degree 3.
Van Wieren et al. [147] proved that CCC(𝑛) has an efficient
dominating set if and only if 𝑛 ̸= 5. From Theorems 194 and
195, the following result can be derived.

Theorem 199 (Huang and Xu [36], 2008). Let 𝐺 = 𝐶𝐶𝐶(𝑛)
be the 𝑛-dimensional cube-connected cycles with 𝑛 ⩾ 3 and
𝑛 ̸= 5. Then 𝛾(𝐺) = 𝑛2𝑛−2 and 2 ⩽ 𝑏(𝐺) ⩽ 3. In addition,
𝑏(𝐶𝐶𝐶(3)) = 𝑏(𝐶𝐶𝐶(4)) = 2.

Problem 11. Determine the exact value of 𝑏(CCC(𝑛)) for 𝑛 ⩾
5.
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