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ABSTRACT. Let B() be the class of Bazilevic functions of type B(>O).
zf’ (z)

A function fgB(B) if it is analytic in the unit disc E and Re I_B>O,
f (z)g (z)

where g is a starlike function. We generalize the class B(8) by taking g

to be a function of radius rotation at most k(k>2). Archlength, differ-

ence of coefficient, Hankel determinant and some other problems are solved

for this generalized class. For k=2, we obtain some of these results for

the class B() of Bazilevic functions of type
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i. INTRODUCTION.

Bazilevic [i] introduced a class of analytic function f defined by the

following relation. For zgE: E

let B l+ai
z -ai i 2 B

f(z) (h() ai)
2 l+a

g () dE
l+a

2
0

(i.i)

where a is real, B > O, Re h(z)>O and g belongs to the class S of starlike

functions. Such functions, he showed, are univalent [I]. With a=O in (I.i),

we have for zeE

Re
zf’ (z) > 0 (1.2)

fl-8(z)gS(z

This class of Bazilevic functions of type B was considered in [2]. We de-

note this class of functions by B(B). We notice that if B =i in (1.2), we

have the class K of close-to-convex functions. We need the following defi-

nations.

Definition I.i

A function f analytic in E belongs to the vlass V
k

of functions with

bounded boundary rotation, if f(0) 0, f’(0) I, f’(z) # 0, such that for

z 9e eE, 0<r<l
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(zf’ (z))
Re f"-(z/ d @ < k k>2 (1.3)

For k=2, we obtain the class C of convex functions. It is known [3] that

for 2<k<4,_ V
k

consists entirely of univalent functions. The class V
k

has

been studied by many authors, see [3], [4], [5] etc.

Definition 1.2

Let f be analytic in E and f(O)=O, f’(0)=l. Then f is said to belong

to the class R
k

of functions with bounded radius rotation, if z--re eE,

O<r<l

2
zf’ (z)IRe -fCz)- IdO<k k>2 (1.4)

0

,
We also note that R2=SIt is clear that feV

k
if and only if zf’eRk.

We now give the following generalized form of the class B(8).

Definition 1.3

Let f be analytic in E and f(0)=l, f’(O)=l. Then f belongs to the

class Bk(8) 8>0 if there exists a geRk; k>2_ such that

zf (z)Re =1_ 8 8
> O,

f (z) g (z)

We notice that, when 8=1, Bk(1) T

duced and discussed in [6]. Also B

of close-to-convex functions.

2. PRELIMINARIES

zeE (1.5)

a class of analytic functions intro-k’
2(8) B(8) and B2(I K, the class

We shall give here the results needed to prove our main theorems in

the preceeding section.

Lemma 2.1 [3].

zeE

Let feVk. Then there exist two starlike functions SI,S 2
such that for

k i-+(sl(z)/z)
f’ (z)

k i k>2_ (2.1)

4 2(S2(z)/z)

Lemma 2.2

Let H be analytic in E, IH(O) I<i and be defined as

k i (_k iH(z)=( + )hl(z) 4 )h2(z) Rehi(z)>O’
Then, for z re

i=1,2,k>2.

(i)

and

1__ IH(z) 12-< l-(k2-1)r
22

l-r
(2.2)
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2T

i k (2 3)(ii) IH’ (z)Id@< 2
0

l-r

This result is known [6] and, for k=2, we obtain Pommerenke’s result [7]

for functions of positive real parts

Lemma 2. 3

Let S be univalent in E. Then:
i

(i) there exists a z
I with ,IZll =r such that for all z, Izl =r

2
2rIZ-Zll IS l(z) I<_ 2

see [8] (2.4)
l-r

and

(ii) r r
2 <--IS1 (z) I< 2’

see [9] (2.5)
(l+r) (l-r)

Definition 2.1.
n

Let f be analytic in E and be given by f(z) z+ Z a z
n

qth Hankel determinant of f is defined for q>l, n>l 2
Then the

H (n)
q

a a a
n n+l n+q-1

an+ 1

an+q- 1
a
n+2q-2

(2.6)

Definition 2.2.

Let z
1

be a non-zero complex number

n
f(z) z+ Y, a z we define for j>l,

n=2 n

Then, with A0(n,zl,f) an;

Aj (n,zl,f) Aj_l(n,zl,f Aj_l(n+l,Zl,f) (2.7)

Lemma 2.4

Let f be analytic in E and let the Hankel determinant of f be defined

by (26). Then, writing Aj=Aj(n,zl,f), we have

Lemma 2.5

With z

H (n)=
q

A2q_2 (n) A2q_3 (n+l) Aq_ 1
(n+q-l)

A2q+3 (n+l) A

A (n+q-l) A
q-1

2q-4 (n+2) Aq_ 2
(n+q)

q-2(n+q) A (n+2q-3)
0

n
i n---y’ and v>0_ any integer,

k
y (v- (k-l) n)

Aj (n+v,zl,zf’) k=0l () --(n+l)- k Aj_k (n+v+k, y, f)

(2.8)

Lemmas 2.4 and 2.5 are due to Noonan and Thomas [i0].
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Lemma 2.6 [ii].

Let N and D be anlytic in E, N(0)--D(O) and D maps E onto many shee-

ted region which is starlike with respect to the origin. Then Re >0
N(z)

implies Re DZ-- > 0.

3. MAIN RESULTS.

THEOREM 3.1: Let feBk(8) k>2, 0<8<1. Then

Lr(f)<C(k_ ,8) MI-8(r) (I)_
C(k,8) is a constant depending on k,8 only.

the closed curve f(Izl=r<l) and M(r) max

PROOF: We have

where

L (f) denotes the length of
r

L (f)
r

0
zf’ z de, z=re

2 1_ 8 8If (zig (z)h(z)[de,
0

8_< M1-8(r) Ig (z) h(z)lde
0

using (1.5), where geR
k

and

Re h(z)>0.

12 I r
8-1< MI-8(r) 18g’ (zlg

0 0
(z)h(z)+g 8(z)h’(z) Idrde.

< Mi-8(r) 0
r2n ir0 1 g(z) g (z)h(z)Idrde

12 ir 8g (z)zh (z)IdrdO
0 0

2rr

0 0
]2 I r i 88(z)h(z) Idrde+ 1g (z)zh’ (z) ldrde}
0 0

where H(z) is defined as in Lemma 2 2g(z)

Using Lemma 2.1, Lemma 2.3 (li), Schwarz inequality and then Lemma 2.2 for

both general and speclal cases (k>2, k=2) we have

k
8(y + 1)

Lr(f)<C(k,8)Ml-8(r) (r)
depending on k,8 only.

Corollary 3.1
i 28

For k=2, feB(8) and Lr(f)<C(8)Mi-8(r) (-)
THEOREM 3.2.

Let feB k(8), 0<8<1, k>2_ and f(z) z +

0<8<1, C(k,8) is a constant

n
l a z Then for n>2

n=2

1
la n !_< C

1
(8,k)M1-8(1 ) .n

1)-1

Cl(8,k) is a constant depending only upon k and 8



PROOF:Since, with z=re
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Cauchy’s theorem gives

83

then

1
n a zf’ (z)e

nn
2r 0

-ine
de,

nla < i f[2 Izf’ (z)Id@ i e (f)n-
2zr

n 70 2r
n r

Using theorem 3.1 and putting r=l
1

we obtain the required result.n
Corollary 3.2

When B=I,fET
k

and from theorem 3.2 we have

k/.2la <A(k)n
n

This result was proved in [6].

Corollary 3.3

For k=2, fgB(8) and

la I<A (8) M I-B I). 2B-I
n 1

(i- n n>2
n

THEOREM 3. 3.

A(k) being a constant depending on k only.

Let f be as defined in theorem 3.2.

Ilan+ l I-la II 0(z)M
n

where 0(i) depends only on k and B.

Then, for n>2,_ k > - 2,

k

(i- __I) .n
8( + i)-2

n

PROOF:For ZlgE n>2_ and z=re
i0

eE, we have

I(n+l)z
I lan+ 1 I-nla I1< i 12n+l Z-zlll zf’(z) Id@n

2r 0

n+l z z
i

II f (z) g (z)h(z) Id@, where we have
2r 0

used (1.5).

TakiDg M(r)=max f(z) and using (2.1) (2.4) and (2.5), we have

MI-8 (r) 4 8 (k i

[
.k+2

(n+l) z I an+l l-n an II < 4 ) 2r
2 2 [--- i)

n+l Isz(z) Ih(z) lae,
2r 1-r

2
0

where S is a starlike function.
1

Schwarz inequality, together with Lemma 2.2 (k=2) and subordination for

starlike functions [12] yields

(n+l) z

k

MIr) 4( 27r8( + i)-2

1 an+l l-nlanll < 2rn’+ () 2r2
i@ 8(k+- de)1/2" (2 -I+3r2)1/2

l-r2 l-re l-r2
0

( + 1)-i
<__C(k,B)MI- (r) (r)

whre C(k,B) is a constant depending only on k and 8.
we obtain the required result.

__n_nChoosing z I r
n+l’
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Corollary 3.4

If 8=1, fT
k

and we obtain a known [6] result, for k>3,
k

llan+ll-lanll O(1).n 2

We now proceed to study the Hankel determinant problem for the class

Bk(8)
THEOREM 3.4.

Let feBk(8) 0<8<1, k>2 and let the Hankel determinant H (n) of f be
q

defined as in definition 2. Then

H (n)ffiO (1)M1-8q

k8(7 + 1)-1,
(r)

8(+ i) q-q

q=l

q>2, k>_l 2

PROOF: Since feBk(8), we can write

1-8 8zf(z)--f (z) g (z)h(z), Re h(z)>0, gR
k

Let F(z)fzf’(z). Then for j>l,_ z I any non-zero complex number and zfre

consider Aj(n,Zl,F) as defined by (2.7). Then

IA j (n,Zl,F)
1_., -i(n+j)@ d

2rn+J (Z-Zl)JF(z)e 01
0

2 r
n+j I

0

<
MI-8 (r) iZ_Zll ig

Using (2.1), (2.4) and (2.5), we have

IAj (n,Zl,F)I<Ml-B(r)--------- (--4r)--2rn+J

1-8(z)gS(z) h(z)IdO

(2r22)j 12n k 1
8( ( + )-J

S lcz)l IhCz) Id0
1-r

0

i0

Schwarz inequality together with subordination for starlike functions
k i[12] and (2.2) gives us, for 8( + )- J>0,

k

IA (n z F) I<C(k j)MI-8(r)(Tr)8( + l)-J

j ’1.....
where C(k,8,J) is a constant which depends uponok, 8 and J only.

1
Applying lemma 2.5 and putting Zl= )e (n+) r-i ---’n we have

for k > 2 2
P

kio ( + 1)-j-1

j(n,e n f);O(1)Ml-8(r) n

where 0(1) depends on k, and J only,

We now estimate the rate of growth of H (n)
q

For q=l, H (n) a’ A (n) and
q n 0
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k
H (n) O(1)MI-8 8( + i)-i
q n q=l

For q>2, we use the Remark due to Noonan and Thomas in [i0] and we have
k 2

i-8 ( + 1)q-qH (n) 0(1)M (r)nq q_>2, 0<B<I,
and k > 2 This completes the proof.
Corollary 3.5

When B--l, feT
k and

q=l

H (n)=O (i) k 2q (- + 1)q-q
q>2, k>Sq- i0.

This result is known [13].
Definition 3.1

A function f is called -convex if, for >0,

zf’ (z) (zf’ (Z)) ’}Re {(l-s) +
_

f"(’z’) > 0 zeE.
’We now prove the following
THEOREM 3.5.

Let feB 1k(B), k>2 and B>I. Then f is convex for [z[<ro, where

r 0

PROOF:Since fKBk(B), we have

zf’(z) fl-B(z)gB(z) h(z); Reh(z)>O, geRk, from which it follows that
_i (zf’ (z))’ 1 zf’(z)

+ 1 zh’ (z)’f’(z)- + (i- ) --f(’z’)-- g(z) h---- (8>I)

Thus

1 (zf’(z))’ 1 zf’(z) zg’(z) 1 zh’ (z)
Re [ F + (i- f ] >Re g 81 h(-z)

Since zG’=geR
k

implies GeVk, we have from a known result [14],

2
Re Re

(zG’ (z)) >l-kr+__r
g(z) G’(z) 2

l-r

and for functions h of positive real part, it is known [15] that

(3.2)

zh’ (z)l<__2,r_ (3.3)

Using (3.2) and (3.3), we have

Re [i (zf’(z))’ + (I-f (z)

2
8(l-kr+r )-2rzf (z)

f >.
2

8(l-r

and this gives us the requaired result.

i
For k=2, 8>1, feB(8) is - convex for Izl<r I

(8+1) /-/’f
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(ii) 8 I implies fgT
k

and it is convex for zI<r 2
[(k+2)- +4k

This result is known, see [6].

(iii) When k=2, and 6=1, fgK and it is convex for IzI<2-.
THEOREM 3.6.

1
Let GERk, k>2._ Let, for any positve integer, 2,3,...,n be

defined as
z 2

h(z) t G (t) dt
0

1
Then h is ( I +8) valently starlike for _lzl<ro, where

i 2
r
0 (k- /k -4) (3.4)

PROOF:
(zh’ (z)) (I zG’ (z)

h’(z) 1) + G(z)

zG’ i
Since GeRk, it is known [16] that Re---->0 for Izl<r 0 (k- 4).

I
Hence h is convex and thus starlike in IzI<r 0. The (- i+) valency

foliows from the argument principle.

THEOREM 3.7.

Let GeRk, k>_2 and

I i-
II- --1 -2

g(z)
(

z t G(t)dt, where and are defined as in

theorem 3.6. Then g is starlike for IzI< r
0, where r is given by (3.4).

PROOF
i i[z 1 2 G (z)

_
I t G (t)dt + z N(z)

( -E 0 E
_i_ 2 8(t)dtz c G
t

to
G3(t)dt, which is (+ _l

a
-1)

1

where D(z)

given by (3.4) from theorem 3.6.
Izl<r O, r

0

Now

N’ (z) zG’ (z)

r given by (3.4), we have
and for Izl<r O, 0

N’ (z) zG’ (z)
Re 8Re ---- >0, since GRk"

it follows that
Thus, using lemma 2.6, for Izl < r O,

z’(z) N(z)
8 eg(---- Re D--- > 0, and this completes the proof.

valently starlike for

(i) For k=2, 8 =1, we obtain Bernardi’s result [17] for starlike functions.

(ii)Also, for k=2, =I/2, we obtain a result proved in [18].
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THEOREM 3.8.

Let FeBk(B) zeE and let

1 1-1/ (i/)-2 8fB(z) z t F (t) dt, e and 8 defined (3.5) as in theorem
3.6. Then fEB(B) for IzI<ro,r 0 is given by (3.4).

PROOF:Let GER
k

and let g be defined as in theorem 3.7. Then 8 is starlike
for JzJ<r0’ where r0 is given by (3.4)

Now, from (3.5), we obtain

z 1 1
i I - 2 B - l

(i-) t F (t)dt + z F (z)
B zf’ (z_) 0 N(z)fZ-8(z)gS(z z 1

2 D(z------
t C (t)]dt

rz 1

where D(z) t

0

Also

iGS(t)dt is (8+-i) valently starlike for

D-’-(z) FI-8 s ce (B).

Thus using lemma 2.6, we obtain the desired result that fgB(B) for
Izl<rO, where r

0 is given by (3.4).

Corollar[ 3-8"
(i) For k=.2, FEB(B) zeE and it follows from theorem 3.8 that fB(B) for

(li) For k=2, 8=1 implies FeK and from theorem 3.8 it follows that f also

belongs to K for zl <i.

(ill) Let B=I, then FeTk, and it follows from theorem 3.8 that f is close-

to-convex for Izl< r0, given by (3.4). This is a generalization of a re-
1sult proved in [13] for @=

_THEOREM. 3.9

Let feBk(S). Then for z-re O<el<e2_<2, f(z) o, f’(z)#O in E and

0<r<l, we have

2

Re { (zf’ (z))
f (z) + (B-l)

z i de>- l
f(z) 8k.

PROOF: Sine feBk(8) we can write

zf’(z) fl-B(z) gS(z)h(z), Re h(z)>O, geRk.

fl-B(z)gB(Z)hl(Z) where h(z)ffihSl(Z) Re h

fl-S(z) (zT’ (z))8 where TeT
k

Therefore,

_(zf’ (z))
f’ (z) + (S-l) zf’ (z) (_zT’ (z))

f(z) S --T"()

1
(z)> 0

(3.5)
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Using a known result [6] for the class Tk, we have by integrating both sides

of (3.5) between O I, O 2, 0<01<02<2

Re{ (zf’ (z))
f’ (z) + (8-i) zf’_(z) d0>- knfz-

01
The following theorem shows the relationship between the classes Bk(8) and

B(B). More precisely it gives the necessary condition for fgBk(8) to be

univalent.

THEOREM 3.10

Let feB (8).
k

Then f is univalent if k_< where 0<8<1._

PROOF:The proof follows immediately from Theorem 3.9 and the result of

Shell-Small [19]
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