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ABSTRACT. Some relations between the Blumberg property and almost continuity are

established. A problem of S.-Y. Lin and Y.-F. Lin is completely resolved.
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I. INTRODUCTION A function f:X+Y is aZmogt continuous if for every x e X and for

each open set VcY containing f(x), Cl(f-l(v)) is a neighborhood of x.

In Theorem 1 p. 453, S.-Y.T. Lin [I] proved the following.

THEOREM A. If f X+Y is a function from a Baire space X to a second countable

space Y, then the function f is almost continuous on a dense subset of X.

Next, Lin and Lin[2] Theorem 3 p. 184, the following characterization of Balre

spaces is given, see also Tong [3] and Tong [4].

THEOREM B. Let Y be an arbitrary second countable, infinite Hausdorff space.

Then a space X is Baire iff every function f X /Y is almost continuous on a dense

subset of X.

Also, Lin and Lin [2]3. Open problems, Problem i p. 185 the following question

was asked. Do Theorems A and B remain true without assuming second countability on

the range space Y?

Obviously, one cannot go as far as to have Y first countable, for otherwise the

identity function from the reals with the usual topology into the reals with the

discrete topology is a counterexample.

But how far can we go? Can Y have, say, a open-heredltarily countable pseudo-

base and still satisfy Theorem A (thus B)? Is Theorem A or Theorem B true if X is a

K-Baire space and Y has weight K? Suppose every function f :/Y satisfies the con-

clusion of Theorem A; must Y then have a countable base?

In this paper we shall answer all of these questions.

Let us start by showing that the requirement of Theorems A and B that Y is

second countable can not be relaxed to one such that Y has both a open-heredltarily

countable pseudo-base and is hereditarily Lindelf, see Lutzer [5] for the properties

of Sorgenfrey line.
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EXAMPLE i. Let X be the reals with the usual topology, let Y be the Sorgenfrey
line and let f X+Y be the identity function. Not only is f nowhere almost con-

tinuous, but the restriction to any dense subset D of X is nowhere almost continuous.

In fact, let xeX be given. Consider the open (in Y) neighborhood [f(x),f(x) + i)

CiD(f-l[f(x),f(x) + i)) is not a neighborhood of x (in D).of f(x). Clearly

2. A GENERALIZATION. Another target we may look at is a possible analogue of

Theorems A and B for arbitrary cardinals. We shall show that Theorem A is transfer-

able, but its converse requires the additional assumption that Y is metric. Further,

Theorem A then holds even in the general case for the following "specialized" class

of functions.

Recall that a function f :X/Y is eategoicaZy amos ontinos (or: C-almost

continuous), if for every x EX and each open set V=Y, x e f-l(v) implies
-i

o o
x g Int D(f (V)), where D(S) denotes the set of all points x eX which are of second
O

category relative to S, i.e., US is of second category in X for every open U con-

taining x.

Clearly, every categorically almost continuous functions is almost continuous,

but not vice versa.

LEMMA 2. Let be a cardinal number, letY have weight < , and let f X /Y be a

arbitrary function. Then the set Ac(f) of points of C-almost continuity is

K-resldual.

Ac(f) XK BPROOF: (f-l(B)\Int D(f-I(B)), where s are elements of the

base of Y. The sets f-l(B)\Int D(f-I(B)) are of first category by the Banach

category theorem.

Recall that a space X is called K-r if the union of less than or equal to

of nowhere dense subsets of X is a boundary subset of X.

COROLLARY 3. Let be a cardinal number, let X be -Baire, let Y have weight

< K and let f X /Y be a function. Then there is a dense G set A(f) such that f is

almost continuous at each point of A(f).

Using essentially the fact thatoan infinite metric space of weight K has the

cellularity which is attained: (this means that in metric spaces of weight there

is always a family of open disjoint sets of cardinality ); and applying similar

arguments as in Lin and Lin [2] we have

PROPOSITION 5. Let Y be a infinite mc space of weight K. If X is a space

such that every function f X/Y is almost continuous on a dense set D of X, then X

is K-Baire.

We shall now relate some of our results to a well-known statement in set-theo-

retical topology. Namely Martin’s Axiom says that if X is a CCC compact Hausdorff

space, then X is -Baire for each K < . This is a topological version of a set-

theoretical statement.

Somewhat unexpectedly we have the following characterization:

PROPOSITION 6. Martin’s Axiom is equivalent to the following statement:

For every compact Hausdorff CCC space X, for every cardinal < , for every

metric space Y of weight < and for every function f X /Y, there is a dense set of

points of almost continuity.

PROOF. The "if" part follows easily from Corollary 3. The "only if" part can

be deduced from Proposition 5.
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It appears that the metrizability assumption of Y in Proposition 5 is essential.

However before we demonstrate this fact (Example 8), and further in order to obtain

some consequences from the fact that euery function f X/Y is almost continuous on

a dense set Dc]R, we want to draw the reader’s attention to a relationship between

the so-called Blumberg property for a function f and f’s property of being almost

continuous on a dense subset of its domain.

3. BLUMBERG PROPERTY Recall that a function f X+Y has the BZberg property if

there is a dense set DcX such that the partial function flD is continuous on D in

the relative topology.

Further, a space X is Blumberg iff every function f X +Y, Y being any second

countable has the Blumberg property, see Piotrowski [6] Corollary 2, p. ii.

The following Proposition easily follows from properties of the relative

topology.

PROPOSITION 7. (Long and McGehee [7], Theorem 3, p. 177). If f X +Y has the

Blumberg property, then f is almost continuous on a dense subset of X.

Since there are examples, (e.g. White [8]) of Baire spaces not being Blumberg,

the converse of Proposition 7 does not hold in general.

However, in view of Proposition 7, spaces which are suitable for replacement in

Theorems A and B, the second countable ones, are so-called co-Blumberg spaces.

Recall that a space Y is said to be co-BZbe (Brown and Piotrowski [9]) if

every function f :+Y has the Blumberg property.

We shall now show that for K > e the metrizability of Y in Proposition 5 is

essential. Observe that if K e, the metrizability is not necessary, see Theorem B.

So we shall construct a non el-Baire space X and an infinite Hausdorff space Y

of weight eI such that for any function f X/Y there is a dense set D in X such that

f is almost continuous on D.

EXAMPLE 8. In fact, let X be any set of cardinality eI with the co-finite

topology; it is a T
1

Baire space which is not a el-Baire. Next let y e 8\ be an

arbitrary point. Take Y =U{y} as a subspace of 8. Clearly, wY eI. Now, any

function f X /Y has a dense set D on which it is almost continuous, see Theorem A.

THEOREM 9. Suppose every function f R+Y is almost continuous on a dense sub-

set of R. Then Y does not have to satisfy any of the following three conditions:

(a) w(Y) < e

(b) (under "MA +-CH") c(Y) < e

(c) (under (CH)) d() < e

PROOF: Ad(a) Y can be either a "co-finite" topology over the reals or an

"Arens-Fort" space (see Steen and Seebach [i0], Ex, 26). This space is countable

Hausdorff; it is not first countable, thus it does not satisfy w(Y) < e. Since Y is

a countable, every function f R +Y has the Blumberg property and hence, by Proposition

7, is almost continuous on a dense subset of X.

Ad(b) Let Y be the discrete space of cardinality H I. Clearly, c(Y) i e. Since MA

implies that no open set of the reals is the union of I or fewer nowhere dense sets,

every function f R/Y has the Blumberg property and again by Proposition 7 we are

through.
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Ad(c) Assuming (CH), it was shown in Brown and Piotrowski [9] that the following

modification of Ex. 6.3 of Juhasz [ii] serves as a space which fails to satisfy

d(Y) ; however, every function f R+Y has the Blumberg property. In fact, let Y

be the set of reals and let denote a well-ordering of Y which has countable

initial segments. As a base for the topology of Y, take sets of the form U where U
x

is open in the Euclidean topology, x E U, and U consists of U minus the elements of U
x

which precede x in this ordering. It follows from Proposition 7 that every function

f R/Y is almost continuous on a dense subset of R.

REMARK I0. Problem 2 of Lin and Lin [2] p. 185 has been answered in Rose [12],

compare Berner [13], see also Byczkowski and Pol [14] where much stronger theorems

are proved.
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