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ABSTRACT. In this paper, we discuss under what conditions the solutions to (m(t)x’)’

a(t)b(x)=O are bounded, oscillatory, and stable. Furthermore, some applications of

these results are given during the discussion and proofs of the theorems.
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I. INTRODUCTION.

In this article, we shall present some general theorems concerning the second

order nonlinear differential equation,

(m(t)x’)’ a(t)b(x) 0 (i.l)

For some related results concerning (l.i) see Bhatia [I] and Kroopnick [2]. A general

boundedness theorem is now proven.

THEOREM i. Suppose a(t) and m(t) are clio,=) and, furthermore, suppose a(t)

a > O and m(t)> m > O for some positive constants a and m Also, let m’(t) < O,
O O O O

b(u)du + then Ixla’(t)iO, and let b(x) C(-=, =). Finally, if lim B(x) =fo
and Ix’l are bounded as t/(R).

Ixl/=

PROOF. By standard existence theory, (i.I) has at least one solution satisfying

x(O) x and x’(O) R and existing on some interval [O,T), T > O. Considering any
O O

such solution of (i.I) on [O,T). Multiply (i) by m(t)x’ and integrate by parts from O

to t < T obtaining,

(m(t)x (t)) 2 a(t)m(t)B(x(t)) _t B(x(s))(a’(s)m(s)
O

2
m’(s)a(s))ds a(O)m(O)B(x(O)) 1/2(m(O)x’(O))

2a(O)m(O)B(x 1/2(m(O) (1.2)
O O

Now all terms in (1.2) are positive for Ixl large except, perhaps, for

-[tB(x(s))(a’(s)m(s) m’(s)a(s))ds =-[toB(X(s))d(a(s)m(s)).O
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2We shall show that this term is bounded from below. By hypothesis, B(x) > -d so

-fo d2tB(x(s))d(a(s)m(s)) > d2/ d(am) > -a m Consequently, should Ixl or Ix’ become
O O

large, the LHS of (1.2) becomes infinite which is impossible since the RHS of (1.2) is

finite. That is, all terms in (1.2) must stay bounded. So the solution may be

extended on [O,=) and, therefore, both Ix and Ix’l are bounded.

EXAMPLE i. The above theorem shows that all solutions to x" x
n

k O are

bounded when n is an odd integer. Here we have m(t) a(t) and b(x) x k. It

is well known that when k 0 all solutions are periodic.

REMARK i. When a forcing term f(t) is introduced in (1.1) all solutions to (i.i)

b(s)ds > Mlxla(M >0, a> i) and Ixl sufficiently large.are still bounded provided [o
Specifically, consider

(m(t)x’)’ + a(t)b(x) f(t) (1.3)

Multiplying (1.3) by m(t)x’ and integrating from 0 to t as before we get,

tf(s)m(s)x’ (s)ds (I 4)LHS of (2) RHS of (2) fo
tf(s)m(s)x’(s)ds f(p)m(p)(x(t) x(O)) (O <Now by the mean value theorem, the term o

p < t). So long as f(t) is bounded and continuous the result follows since any

unounded solutions of (1.3) would approach infinity faster on the LHS of (1.4) than

the RHS of (1.4) which is impossible.

The next theorem utilizes the following lemma of Utz [3].
LEMMA i. Suppose w(t) is a real function for which w(t) is defined for > a, a

constant. (i) If for all t T, w’(t) < 0 and w"(t) O, then lim w(t) .... (ii)

if for all t T, w’(t) > O and w"(t) O, then lim w(t) +=
t

With the help of this lemma the following result may now be proven.

2. MAIN RESULTS

THEOREM 2. The hypotheses are the same as Theorem I. In addition, suppose xb(x)
> O for x O, then all solutions to (I.i) are oscillatory.

PROOF. Suppose x(t) does not oscillate, then x(t) must be of fixed sign, say

x(t) > 0 for T >_O (a similar argument works for x(t) < 0). x’(t) must also be of

fixed sign. Otherwise, since (m(t)x’(t))’ -a(t)b(x) < O, we have x"(t) -a(t)b(x)

m(t) <0 at points where x’(t) O. However, this implies x(t) has an infinite number

of relative maxima which is impossible. Also, x’(t)> 0 for if x’(t) were negative,

then x"(t) > O. Thus, by our lemma, we would have lim x(t) which is impossiblet
since x(t) is bounded.

Upon integrating (I.I) from O to t we obtain,

m(t)x’(t) m(O) fta(s)b(x(s))ds (2 i)
O O

Since x’(t) > O, lx(t) a >0 and im/ x’(t) O since x(t)is bounded and

ultimately monotonic. From (2.1), we see, however, that lim x’(t) -=, a
t

contradiction. Therefore, x(t) must oscillate. Furthermore, (1.2) implies that all

solutions are stable since the LHS is positive and its size is determined by the RHS

of (1.2).
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Actually, all bounded solutions of (i.i) must be oscillatory under somewhat

weaker conditions (cf. Bhatia [I], in his paper showed that oscillation of solutions

occurs as long a b’(x) 0 whether x(t) is bounded or not). These conditions are

discussed in the next theorem.

THEOREM 3. Suppose a(t)@ C[O,=), a(t) > O and /a(t)du Furthermore, let h

I[o,=) and let b(x>C(-% ), xb(x)m(t) > h > 0 for some constants h hl, m(t)GC
o o

for x O, then any bounded solution to (1.1) is necessarily oscillatory (note:

f=b(u)du < is possible).

PROOF. Suppose x(t) does not oscillate, then using the same reasoning employed

in Theorem II, we have 1/2i+mx(t) k > O and i+m= x’(t) O. However, from (2.1) we

have lim x(t) =-which is impossible. Thus, x(t) must oscillate.
t/=

EXAMPLE 2. Consider the differential equation

x" b(x) O (2.2)

where b(x)=C(-=, =), xb(x) > O for x O. Let V(x,x’) 1/2x’2 +o b(u)du. Since dV
x’x" + b(x)x’ x’(-b(x)) + b(x)x’ O, we must have by Liapunov’s theorem

(Petrovski [4], p. 151) that any solution with initial conditions near the origin is
+

stable and oscillatory by Theorem III. In fact, if b(u)du =, then all solutions

are periodic.

EXAMPLE 3. The differential equation

2
x" xexp(-x O (2.3)

2 2
has as its general solution x’ exp(-x k. The solutions are unbounded when k>

0 and bounded for k < O. The latter case corresponds to initial conditions near the

origin of the (x,x’) plane. So the trivial solution is stable in the sense of

Liapunov.

With the help of Theorem III, the following general oscillation theorem may now

be proven.

THEOREM 4. Suppose a(t)-C[O,=), m(t)l[o,=), b(x)C(-=, +=), xb(x) > O for x

andlxl(R)f,.o b(u)du +=. Furthermore, if a(t)_> ao_>O and ml>_ m(t) >_ mo for positiveO,

constants ao, mo’ ml’ then all solutions to (I.I) are oscillatory.

PROOF. Let x(t) be a solution of (I.I). Suppose x(t) does not oscillate. Then

for t _>T _>O, x(t) must be of fixed sign. Reasoning as in Theorem II, assume x(t) > O

(a similar argument works for x(t) < 0), then x’(t) is of fixed sign so x(t) is

monotonic. Multiply (I.I) by 2x’(t)m(t) obtaining,

2m(t)x’(m(t)x’)’ 2m(t)a(t)b(x)x’ O (2.4)

Integrating from T to we have,

(m(t)x (t)) 2 f$+ 2a(s)m(s)b(x)x ds (m(T)x (T)) 2

so (2.5) implies
x(t)

2a m fb(x)ds !(m(T)x’(T)) 2
o o

x(t)
That is, x(t) must remain bounded. Therefore, by Theorem III, x(t) oscillates.

(2.5)

(2.6)
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