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ABSTRACT. A theoretical study of scattering of seismic waves at the foot of a mountain

is discussed here. A mountain of an arbitrary shape and of width a (0 x a, z 0)

in the surface of an elastic solid medium (z 0) is hit by a Rayleigh wave The

method of solution is the technique of Wiener and Hopf. The reflected, transmitted and

scattered waves are obtained by inversion of Fourier transforms. The scattered waves

behave as decaying cylindrical waves at distant points and have a large amplitude near

the foot of the mountain. The transmitted wave decreases exponentially as its distance

from the other end of the mountain increases.

KEY WORDS AND PHRASES. Rayleigh surface waves, wave motions in elastic solids, reflected
and transmitted waves.
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I. INTRODUCTION.

Earthquakes throw a grave challenge to human beings. Seismic waves cause the havoc

because of their scattering due to the inhomogeneities and discontinuities in the sur-

face of the earth. Rayleigh waves, appearing on the surface of the earth, are responsi-

ble for destruction of the buildings and loss of human lives. Scattering of seismic

waves due to irregularities in the surface leads to large amplification and variation in

ground motion during earthquakes.

The paper presents a mechanism by which the energy of a body wave is lessened by

partial conversion into reflected body and surface waves and by scattering at the foot

of a mountain.

Love wave propagation in case of a surface layer on a solid halfspace has been

studied by Sato (1961) using the Wiener-Hopf technique. Kazi (1978) has solved the same

problem by an approximate method. Both of them have taken the surface discontinuity

along half of the solid halfspace which helps in Fourier transformation and in simpli-

fying mathematical calculations. Scattering of a compressional wave due to the presence

of a rigid barrier in the surface of a liquid halfspace has been discussed by Deshwal

(1971). He (1981) has also studied the problem of diffraction of a compressional wave

when there is a rigid finite strip in the surface of the liquid halfspace. But the
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medium is a liquid halfspace which reduces the number of elastic parameters, the basic

equations and the boundary conditions. Not much theoretical study is available on the

problem of scattering of elastic waves due to an irregular boundary of finite dlmenslon

Recently Momol (1980, 82) has studied the problem of scattering of Rayleigh waves by

semicircular and rectangular discontinuities in the surface of a solid halfspace. The

solutions are not exact because of the approximations used in the solution of these

problems.

We propose to discuss here the problem of scattering of Raylelgh waves at the foot

of a mountain with its base occupying the region 0 x ! a, z 0 in the surface of a

solid halfspace z 0 Since we are interested in scattering of waves at the foot of

a mountain, its shape is immaterial and it is assumed to be rigid such that there is no

displacement across the mountain. The method of solution is the Fourier transformation

of the basic equations and determination of unknown functions by the technique of Wiener

and Hopf (Noble, (1958)).

2. STATEMENT OF THE PROBLEM.

The problem is two-dimenslonal in zx-plane. The mountain of width a has its

base along 0 x a, z 0 in the surface of an elastic solid halfspace z 0

(figure I). The medium is homogeneous, isotropic and slightly dissipative. If the re-

tarding force of the medium is proportional to the velocity, then the wave equation is

2 2 2 + E+ (2.1)
x2 3z2 c2 t2 c2 t

where c is the velocity of propagation and e > 0 is the damping constant. The pote

tial function harmonic in time is

(x,z,t) (x,z) exp(-imt) (2.2)

The equation (2.1) is now

(V2 + ()2) (x,z) 0 (2.3)

where / (m2 + le)/c I + i2 is complex whose imaginary part is small and posi-

tive. An incident wave

iP0X -B0z
#i(x,z) D(2p k2) e e (2.4)

iP0x -60z
i(x’z) D(21P080) e e (2.5)

where P0 is a root of the Raylelgh frequency equation

f(p) (2p2 k2) 4p286 0, 8 / (p2 ()2), 6 / (p2 k2) (2.6)

80 8(p0), 60 6(p0), strikes at the foot of the mountain from the region x < 0.

The potential (x,z) satisfies the wave equation

(V2 + k2) (x,z) 0 (2.7)

Let the total potentials be

#t(x’z) (x,z) + #i(x’z) (2.8)

t(x,z) (x,z) + i(x,z) (2.9)
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The potentials are connected with the displacements (u,w) by

u t/x + t/z w t/z t/z (2.10)

We assume that, for given z, (x,z) and (x,z) have the behaviour exp(-dlxl) as

Ix] , d > 0 The Fourier transform

_(p,z) f0_ (x,z) e
ipx dx, p a + ia

0 (2.11)

is analytic in the region n
0

< d of the complex p-plane. The Fourier transform

ipx#(p,z) I (x,z) e dx

ipx la ipxI0 (x,z) e dx + (x,z) e dx + I (x,z) e
ipx

dx
0 a

#_(p,z) + #a(P’z) + +a(P’Z) (2.12)

and its derivatives w.r.t.z are analytic in the strip -d < s
0

< d of the complex

plane. The transform of (x,z) has the same behaviour.

3. BOUNDARY CONDITIONS.

The boundary conditions of the problem are

(i) u #t/x + t/z 0 z 0 0 x a, (3.1)

(ii) w t/Sz t/x 0 z 0 0 ! x ! a, (3.2)

(iii) Zxkz x k2@ 0 z 0 x ! 0 x Z a, (3.3)

(iv) 2x,x + z) + k2 0 z 0 x ! 0 x a, (3.4)

The conditions (3.1) and (3.2) subject to (2.3) and (2.7) reduce to

iPoX -B0z
-i -D(2p k2) e e z 0, 0 x a, (3.5)

iP0x -60z
-i -D(ZiP0B0) e e z 0, 0 ! x ! a, (3.6)

4. SOLUTION OF THE PROBLEM.

Fourier transforms of the wave equations (2.3) and (2.7) lead to

d2Idz2 82 0 8 +/-/ (p2 (i2) (4.1)

d2/dz2 62 0 6 +/-/ (p2 k2 (4.2)

Since (x,z) and @(x,z) are bounded as z tends to infinity and their transforms

are also bounded. The solutions of (4.1) and (4.2) are

(p,z) A(p) e
-8z (4o3)

@(p,z) B(p) e (4.4)

The signs in radicals for 8 and 6 are such that their real parts are positive for all

p. We use the notations (p) @(p) for (p,0) (p,O) etc. From (4.3) we obtain

’Cp)/B -Cp) C4.5)
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This equation is decomposed

(p) #(-k) #’_(-k)
]+ +(P) +

’ (p) ’ (-k) + (k)
_

(p) - (4.6)
p+/k p-/k /-2 /2(p-)

The left hand member of (4.6) is analytic in a
0

> -d and the right hand member in

a
0

> d They represent an entire function. Further each member tends to zero as

Pl By Liouville’s theorem, the entire function is identically zero. Equating

each member to zero, it is found that

+(p) - +(p)/8 + qF(p), q (k) ’_(-k) (4.7)

#_(p) -#’_(p)/8 qF(p), -q ’_(k) i(-k)

F(p)
/2(p-) /-2(p+)

Similarly, we find from (4.4) that

+(p) -$+(p)/6 + qG(p) q $(k) ’_(-k)

(4.8)

(4.9)

(4.10)

@_(p) =-’(p)16 qG(p) -q @’_(k) (-k) (4.11)

G(p) (4.12)
/2k(p-k) J-2k(p+k)

Fourier transforms of (3.5) and (3.6) lead to

D(2p k2) i(p+p0)a
dx

i(p + p0
(e I) (4.13)

i(p+P0)Xa (p) -m(2p k2) fa e
0

a (p) -D (2iP0B0) la
i (P+P0) x -2P080D i(p+P0) a

e dx (e i) (4.14)
0 P+ P0

And those of (3.1) and (3.2) result in

i (p+p0) a
a(p) 2mP0B060(e l)/(p+p0) (4.15)

i (p+p0) a
(p) -imB0(2P k2)(e l)/(p+p0) (4.16)

We now multiply (3.3) by exp(ipx) and integrate between x and x 0 to

find out

2 f0 3__(8_ ipx k2 f_0 eipX
8x 3z x)e dx dx 0 (4.17)

Since w 3#/3z 3/3x is continuous, the first integral in (4.17) is integrated by

parts to obtain

3@) ipx k2 8 3-2ip /_0 (38z x e dx _(p) -2(z x)0

or
8i 3i)-2ipI(P) + (2p2- k2) -(P) (3z x 0 + 2ip(i) 0 2BoD(k2-2pp (4.18)
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In the same way, (3.4) leads to

(2p2-k2)_(p) + 2ip ’_(p) 2ip[(p-po)(2p-k2) + 2P08060
Solving (4.8) (4.111 (4.18) and (4.19) for _(p) and @_(p), we find

(4.19)

f(p)_(p) 2ip6[q(2p2- k2) G(p) 2ipSF(p)]

+ 2iD(2p2-k2)[(p-p0)(2p-k2) + 2P0B00 +4iPBoD(k2-2ppO) (4.20)

f(p)_(p) (2p2-k2)[-2ipBF(p) + 2BoD(k2-2pp01]

-2ipB[2ip6qG(p) + 2iD[(p-p0)(2p-k2) + 2P08060 ]] (4.21)

Integrating (3.3) and (3.4) between x a and x after multiplying it by
exp(ipx), it is obtained that

i(p+po)a(2P2 -k2) +a(p) 2ip a(p) =-2oD(k2- 2pp0) e (4.22)

(2p2 -k21 La (p) + 2ip -a (p) -2iD[ (p-p0) (2p-k21 + 2P0060].
exp (i (p+p0) a) (4.23)

Inversion of Fourier transforms will give various waves.

5. VARIOUS WAVES.

The factor exp(-ipx) exp(-iex) exp(eoX in the inverse transforms makes the inte-

grals vanish at infinity in the upper part of the complex plane if x < 0 and in the
lower part if x > 0. For waves in the region x < O, we have

$(x z) +ieo -ipx

+ie0 $_(p,z) e dp (5.1)

where the line integral (5.1) is in the strip -d < < d The contour is in theo
upper half of the complex plane where _(-p,z) is analytic and hence

o

f _(-p,z) e
-ipx

dp (5.2)
0

o

From (5.1) and (5.2), it is found that

=’+iaO
,(x,z) +ia0 [0_(p,z) 0_(-p,z)] e ipXdp (5.3)

To find the integrand, the wave equation (2.3) is integrated from x to x 0

after multiplying it by exp(ipx), to find out

d2_/dz2 82_ ffi-($/x)
0 + ip() 0

(5.4)

Changing p to -p and subtracting the resulting equation from (5.41, we obtain

(d2/dz2 821[_(p,z) _(-p,z)] -2ipD(2p-k21 exp(-80z) (5.51

whose complete solution is

-Sz 2ipD(2p-k2) e-80z
(p,z) _(-p,z) E(p) e

8z + El(p) e + (5.6)
p2_ pg

To find E and E we take z 0 in (5.6) and use (4.19), it is found that
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(p z) - (-p z) 2Esinh Bz + 4ip [(2p2_k2)6q G(p)
f(p)

+ D(2p2- k2)(2p k2) + 2DB0k26]e-Bz

-B0z -Bz) 2_ p)+ 2ipD(2p k2)(e e /(p

Differentiating (5.7) w.r.t, z and putting z 0, we find

’(p) ’(-p) 2BE 4ip8 [(2p2_ k2)6q G(p) + 2DB0k2f(p)

(5.7)

2ipD(B-B0)(2p k2)
+ D(2p2- k2)(2p k2)] + (5.8)

p2_p
2E is obtained from here as the left hand member is known from (4.8) and (4.20). We

find the integrand in (5.3) to be

2ipD(B-B0) (2P-k2) sinh Bz#_(p,z) _(-p,z)
p2_p) B

2ipD (2p-k2 -80z -Bz
+ (e e + 4ip[q(2p2- k2)6G(p)

p2_p
-8z+ D(2p2-k2)(2p-k2) + 2Dk2B06] e (5.9)

The pole at p P0 contributes

4P060 (2p-k2) G(p0) + 2DB0(2p+k2)] e
-ip0x 0z

l(X,Z) [0) [q e (5.10)

This represents the reflected wave in the region x < 0. This does not depend upon the

width a of the mountain. The reflected shear wave in the region is found to be

4P0B0 -iP0x -6 z

l(X’Z) [0) [(2p-k2) F(Po) 4iPoBoD(2p-k2B060)] e e
0 (5.11)

The integrand in (5.9) has branch points at p k and p k. The branch cuts are

given by the conditions Re(B) 0 Re(6). As discussed by Ewtng and Press (1957), the

parts of branch cuts are hyperbolic as shown in figure 2. For contribution along the

branch cut we put p + iu, u being small as the main contribution is around the

branch point. Along the cut, Re(B) 0 and Im(8) changes signs along two sides of

the cut. Since B is imaginary, 82 is negative. Therefore

82 =( + iu)2_ ()2 2iU(l + i2) U2 (5.12)

From here

B + +i i 0 (5.13)

Integrating (5.3) along two sides of the branch cut, we find

k2x
i e I’[ _(p,z) -_(-p,z)]B: i#2 (x’z) 2 0

--_ e-UX-[_(p z) (-p z)] B _i] du

2ek2x f [H (u) sin z 22u + H2(u) u/- cos z22u e-UXdu(5.14)
0
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u is small, Hi(u) and H2(u are expanded around u 0 and only HI(0) and H2(0)
are retained. The following Laplace integrals (Oberhettinger, (1973)) are used

sin a e
-pt

dt aCn exp(-a2/4p)/2p3/2 (5.15)

cos at/{--e-pt dt (p/2 a2/4) exp(-a2/4p)/p5/2 (5.16)

The scattered waves for the region x < 0 are obtained to be

2 (x,z)
(2k--2) 312 z[(2(k2)2 + k2) + 2(2)2(2)2 + k2).

x

(x + oz2)
5/2

x
[q G()(2(k--2)2 + k2) /((2)2 + k2)

280Dk2(2)2 + k2) iD(2p k2)(z(2)2+ k2)].

exp [k--
2 (x+z

2 /2x) (5.17)

when x >>z, then

r /(x2 + z2) x+z2/2x (5.18)

and the scattered wave is of the form

2 (x,z) GO exp (2r)/r (5.19)

This represents a cylindrical wave. On the free surface (z--0), the wave has the

behaviour of exp(k2x)/x
3/2

We now find the waves transmitted to the other side of the mountain. The poten-

tial for the region x > a is given by

_+ia -ipx(x,z) f_o+iao +a(P’Z) e dp (5.20)
o

The countour is in the lower half of the complex plane in which La(-p,z) is ana-

lytic and so

.+ie 2ipa e-ipx0 J_+ieo +a (-p’z) e dp
o

From (5.20) and (5.21), we obtain

(5.21)

.+ie [+a(p z +a(-p,z)]e dp (5.22)(x,z) - =+ieo e2ipa- -ipx

o

We take the Fourier transform of the wave equation (2.3) from x a to x to

find out

d2+a/dZ2 82+a (a/ax)
a

e
ipa ip()

a
e
ipa (5.23)

Changing p to -p and subtracting the resulting equation from (5.23) it is found

that

(d2/dz2 82)[+a (P z)e-ipa +a(-p,z)eipa]

iPoa -80z2ipD(2p2-k2) e e (5.24)

and its complete solution is
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8z+a (p’z) e2ipa.+a(-p,z) Dl(p) e

2ipD(2p-k2 e e

p2_ p02
Using (4.22) and (4.23) and the procedure of (5.6), we find

i (P+P0) a -80z2ipD (2pg-kZ)e e
2ipa (-p,z) 2D sinh Bz+a(P’Z) e

T+a p2_p

where

+ g(p) exp(-Bz)/f(p)

-8z+ D
2
(p)e

i(p+p0)a -80z
-(5.25)

(5.26)

g(p) +2ip[-(2p2-k2) qG(p) (l+e2ipa) 2ipBF(p) (e2ipa-l)
2ipa

+ 2pB0D(2p-k2)(p
0
+ _p0

2ipa
+ 2P0B0D(2p2-k2)( I

e

P+P0 P-P0
e2ipa2p(2p-k2)BD(pO +

e2ipa
2(2p-kP0B00D(p--O__ php (5.27)

D in (5.26) is eliminated by the procedure for E in (5.7). It is obtained that

La(p, z) e2ipa--+a (-p,z) sinh8 Bz [8F(p) (l_e2ipa)

e2ipa
+iD(mp-k2) (B-B0) (P0 + "P-P0 -)

i (p+p0)a -80z-2ipm(2pg-k2) e e / (pZ_pg)
+ g(p)exp(-Bz)/f (p) (5.28)

The pole P -P0 in the integrand in (5.22) contributes

iP0x -80z
3(x,z) -m(2pg-k2) e e 4P0[q0(2pg-k2) G(-P0)Cos2P0a

iP0 (x-a) -B0z
-2P0B00qF(-P0) sin2P0a e e /f’ (-p0) (5.29)

The first term cancels exactly the incident wave and the second term is the transitional

wave in the region x > a.

6. CONCLUSIONS.

The integrals along the branch cuts_at p -, k lead to the scattered waves as

obtained in (5.19). They behave as exp(-2r)/r where r is the distance from the

scatterer. These are cylindrical waves which die at distant points from the foot of the

mountain. On the free surface (z 0), the scattered waves have the form exp(-2x)/x3/2
which is large at the points near the scatterer. Thus the energy of the scattered waves

is very large close to the scatterer and dminishes as the wave moves away from it. The
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transmitted wave in (5.29) depends upon width a of the mountain. As the distance from

the other end of the mountain increases, the transmitted wave decreases exponentially and

dies out at distant points. The reflected waves are given by (5.10) and (5.11) which do

not depend upon the width of the mountain. Numerical results for the amplitude of the

scattered wave have been computed or Poisson’s solids for which k 3 k at a point

(r I/2 km, z 0) in the region < 0 of the free surface. The results are obtained

for q 0 and 1.8932 k. There is a sharp increase in the amplitude (fig. 3) when

the wave number k increases through small values.

The results of this paper have their application to underground nuclear explosions

carried out on either side of the mountains llke Himalayas. It helps calculating the

amount of energy reflected and scattered at the foot of the mountain and the amount of

energy which is transmitted to the other side of the mountain.
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